"

Searchable Encryption

Hugo Krawczyk
IBM Research

Winter School - Bar Ilan University - January 2015

"
Class Plan (time permitting)

m Part 1: Overview/Intro (BIU-hugo-1-overview.pdf)
The searchable encryption problem, models and functionalities
Dedicated solutions and state of the art (OXT Protocol)
m Part 2: The OXT single-client protocol
Single keyword search (BIU-hugo-2-SKS.pdf)
Conjunctions and Boolean queries (BIU-hugo-3-OXT.pdf)
Range and substring queries (BIU-hugo-4-complex.pdf)
m Part 3: Multi-client and OSPIR settings (BIU-hugo-5-OSPIR.pdf)

m Part 4: Other solutions, attacks and research questions
(Slides at the end of BIU-hugo-1-overview.pdf)

'_
The Data-in-the-Cloud Conundrum

m Your data in the cloud: email, backups, financial/medical info, etc.

m Datais visible to the cloud and to anyone with access (legitimate or not)

(1 At best, data is encrypted "at rest” with the server's keys and decrypted upon use

m Q: Why not encrypt it with your (data owner) own keys?
m A: Utility, e.g. allow the cloud to search the data (e.g. gmail)

m Can we keep the data encrypted and search it too?

Can I eat the cake
and have it t00?

© Webweaver.nu

" JE
SSE: Searchable Symmetric Encryption

m Owner outsources data to the cloud: Pre-processes data, stores the
processed and encrypted data at the cloud server

Keeps a small state (e.g. a cryptographic key)

Later, sends encrypted queries to be searched by the server

m e.g. return all emails with Alice as Recipient, not sent by Bob, and containing
at least two of the words {searchable, symmeftric, encryption}

m Goal: Server returns the encrypted matching documents w/o learning
the plaintext query or plaintext data

Some forms of statistical leakage allowed: data access patterns (e.g. repeated
retrieval, size info), query patterns (e.g., repeated queries), etc.

m Plaintext data/queries never directly exposed, but statistical inference possible

m Protects against break-ins, cloud insiders, even "surveillance attacks”

" N
With SSE...

The cloud cannot disclose your data... not even at gun point!

TINNG ¢ R TS ! WV 1u
= 1100100101 ﬁu 1) \(
WLLTREEDT Y WIVIUW

| ‘
010010010100 00100 W)
o
| 01010
Fqu

Seen » N AR -
v W\
A1 I\ "
) 01011100101
) 000
|

10100010101110010 0001001001010010¢

11001010001001001 100100001110010¢

001001010010 00100 tﬂwn ()
010100010101110010100 (k

SAVIU 00001 1100 1001010001010 11001010001001001010

'_
SSE before 2013

m Generic tools: FHE, ORAM, PIR

0 Expensive

s BUT ORAM getting closer to practice for moderate size DBs (Benny Pinkas talk)

[great™ security

= *assumes al/ raw datais ORAM-encrypted, o/w leakage via access patterns

m Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]

O Practical but significant leakage (Naveed-Kamara-Wright, CCS'2015)

Deterministic and order preserving

Elaine

Jim

John

John

John

Samuels

Stein

Stein

Sommers

Williams

Garcia

Gould

24

37

81

17

43

37

Geb$#u

2Tr #7

Q*6sh#

2@#3Br

2@H3Br

gM@9*h

gM@9*h

gM@9*h

gyV6 7ot
X%30L7

wnM7#1

8vy8$Z

223

736

34

160

308

"
Attack on CryptDB

"Inference Attacks against Property-Preserving Encrypted
= Methodology Databases” Naveed-Kamara-Wright. €CS'2015.

[Input: CryptDB-encrypted medical database DB, (hundreds of hospitals)
(1 Training data: Plaintext medical data from public database DB,

1 Output: Decrypted DB, data via correlation analysis
using DB, as training data

m Basic attacks: frequency, sorting and cumulative analysis

m Results (for each analyzed column): "at least x7% correctly decrypted
records in y7% of the hospitals” (denoted x/y). Examples:

1 Race=60/69 (race guessed correctly for at least 60% of patients
in 69% of the hospitals - race admits 6 values)

1 Major Diagnostic Category = 40/27 (admits 25 values)
1 Age 95/78 (125 possible values)

'_
SSE before 2013

m Generic tools: FHE, ORAM, PIR

1 Expensive (ORAM getting closer to practice for moderate size DBs)

[great™ security

= *assumes a// raw data is ORAM-encrypted, o/w leakage via access patterns

m Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]

1 Practical but significant leakage (Naveed-Kamara-Wright, CCS'2015)

m Name of the game: Security-Functionality-Performance

Tradeoffs

"
SSE before 2013 (cont.)

m Dedicated SSE solutions™:
1 Single-Keyword Search (SKS) [SWP'00, Goh'03, CGKO'06, ChaKam'10, ...]

= "privacy optimal” (if we don't count encrypted query results as leakage)

1 Conjunctions: Very little work

= naive (n single-keyword searches),

s GSW'04: structured-data, LINEAR in DB, communication-pairings tradeoff
m Practicality limitations
[single-keyword only support, limited support for dynamic data
[non-scalable design (esp. adaptive solutions), no I/O support for large DBs
0 little experimentation/prototyping

* Survey: Bosch-Hartel-Jonker-Peter ACM Comput. Surv. 47, 2, Article 18

http://eprints.eemcs.utwente.nl/24788/01/a18-bosch.pdf 10

"
ESPADA/OXT (our technical focus)

m Joint work IBM-UCI teams:

m David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit Jutla,
Quan Nguyen, Marcel Rosu, Michael Steiner

m Crypto'l3, CCS'13, NDSS'14, ESORICS'15
m TARPA SPAR Program

1 Reduce agencies' reluctance to share information (9/11, Boston bombing)

[Preparing for a posT-PA'lXIOT world (DHS has a “chief privacy officer") *

Snowden
* alturl.com/o0t72x

m Co-performers: Columbia + Bell Labs - Blind Seer [Oakland 14 + 15]

[1 Guest presentation: Ben Fisch

11

'_
ESPADA: Extends SSE in 4 dimensions

1. Functionality (well beyond single-keyword search):

O Conjunctions 0 General Boolean expressions (on keywords)
0 Range queries o Substring/wildcard queries, phrase queries

Search on structured data (relational DBs) as well as free text

2. Scalability:

[terabyte-scale DB, millions documents/records,
billions indexed document-keyword pairs

0 Dynamic data

[Validated implementation, tested by a third party (TIARPA, Lincoln Labs)

3. Provability: "imperfect security” but with provable leakage profiles
(establishing upper bounds on leakage), well-defined adversarial models

12

"

4.

This work: extends SSE in 4 dimensions

New application settings and trust models

Multiple clients: Data owner D outsources Encrypted DB to cloud;

clients run queries at the cloud but only for gueries authorized by D

[Leakage to cloud as in basic SSE, client only learns documents matching
authorized queries (policy-based authorization enforced by data owner)

Blind authorization: As above but authorizer enforces policy without

learning the queried values (we call it " Outsourced Symmetric PIR")

1 Assumes hon-collusion between cloud and data owner

Note: multi-reader, single-writer system (no public key encryption)

13

"
Example Applications

m Example: Hospital outsources DB, provides access to clients
(doctors, administrators, insurance companies, etc.)

[Policy-based authorization on a client/query-basis

1 Hospital doesn't need to learn the query, only (blindly) enforce policy

m Good for security, privacy, regulations

. . Obama's 3" Party
m Warrant scenario (extended 4-party setting) solution (phone data)

1 Judge provides warrant for a client C (e.g. FBI) to query a DB
1 DB owner enables access but only to queries allowed by judge
1 DB owner does not learn warrant content or queries

01 Client C (e.g., FBI) gets the matching documents for the allowed queries
and nothing else

14

" JEE
Large-Scale & Functional Implementation
(OXT)

m Support for arbitrary Boolean queries on all 3 (extended) SSE models

m Validated on synthetic census data: 10Terabytes, 100 million records,
> 100,000,000,000=10" indexed record-keyword pairs |

1 Equivalent to a DB with one record for each American household and 1000

keywords in each record and any boolean query (including textual fields)
01 Smaller DB's: Enron email repository, ClueWeb (>> English Wikipedia)
[Support for range queries, substring/wildcards, phrase queries (5x perf. cost)

[Dynamic data: Supports additions, deletions and modifications of records

18

"
Scalability

m Preprocessing scales linearly w/ DB size (minutes-days for above DBs)

m Careful data structure, crypto and I/0 optimizations

m Can benefit on any improvement on single-keyword search

m Search proportional to # documents matching the least frequent
term: w; ABw,,..., w,) (w; called the s-term)

[Single round to retrieve matching document indexes (tokens from client
to server, matching indices back; retrieve encrypted documents)

1 Query response time: Competitive w/ plaintext queries on indexed DB

4 seconds: fname='CHARLIE' AND sex='Female' AND
NOT (state='NY' OR state="MA' OR state='"PA"' OR state="NJ)
on 100M records/22Billion index entries US-Census DB

19

"
Crypto Design-Engineering Synergy

m Major effort to build I/O-friendly data structures

0 Critical decision: Do not design for RAM-resident data structures
(it severely /imits scalability)

1 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk)

» Need randomized data structures to reduce leakage and need
structured ones to improve I/0 performance (locality of access)

m Cryptographic index based on elliptic curve cryptography
(optimized for very fast exponentiation, esp. with same-base)

Typically: I/0O and network latency dominate cost 500000/sec, 8 cores, same-

base opt , 100-1000 per IO
1 On a midsize storage system: ~300 IOPS (I/0 Operations Per Second)

1 ~1000 expon's per random I/O access (133 w/o same-base optimization)

m Data encryption uses regular symmetric crypto (e.g., AES)
20

"
Security: The challenge of being imperfect

m (Good news: Semantic security for data; no deterministic or order
preserving data encryption

m But: Security-Performance trade-offs - Leakage to server

[Leakage in the form of access patterns to retrieved data and queries

= Data is encrypted but server can see intersections b/w query results (e.g.
identify popular document, intersection b/w results of fwo ranges, etc.)

m Server learns query function (not values/attrib's); identifies repeated query

1 Additional specific leakage (more complex functions of DB and query history):

m E.g. we leak |Doc(w;)| and in query w; A w, A..Aw, we leak |Doc(w; A w))

m E.g. the server learns if two queries have the same w; (other terms are hidden)

m |eads to statistical inference based on side information on data

(effect depends on application), masking techniques may help
21

"
Security: The challenge of being imperfect

m Security proofs: Formal model and precise provable leakage profile
[Security modeling and definitions follow simulation paradigm [CGKO, CK]

[Leakage profile: provides upper bounds on what's learned by the attacker
m Syntactic leakage vs "semantic leakage”

1 Need to assess on an application basis and relative to a-priori knowledge

m For example, formal leakage proven even if attacker can choose data and
queries - but in practice semantic leakage will be substantial in this case.

o E.g. Cash, Grubbs, Perry, Ristenpart, CCS'2015 (Sasha's talk)
m Even the "basic leakage” from access to encrypted results (e.g., sizes and
intersections) can be very significant in some cases
m Yet, we expect in many cases to provide meaningful (if imperfect)
security (in particular, relative to property-preserving solutions)

22

"
Columbia/Bell Labs Solution (Blind Seer)

m Parallel work: Same TARPA project - papers at [Oakland'14, 15]

m Elegant solution based on Bloom filter trees with Garbled Yao for
privacy and authorization

01 Conceptually simpler than ours; e.g., no need to choose s-term

1 Symmetric crypto and multi-party computation techniques (Yao) (instead
of homomorphic operations in our case) - much faster pre-processing

1 Less scalable: Bloom filters are /nherently random access
~>DB sizes limited by the size of RAM

[Single client, limited negations

1 Many trade-offs with ESPADA (but incomparable leakage)

m e.g., Bloom filter path vs. w;-related leakage

23

" A
Practice

m Is CryptDB (and other DetEnc/OPE solutions) sufficient in practice?

Is their leakage acceptable?

m Who is the attacker?
s What do requlations say?

m Is it enough to not being the weakest link?

24

'_
Practice

m CryptDB (and other DetEnc/OPE solutions) are /egacy friendly .
But is their leakage acceptable?

Need more "privanalysis” - current

i ?
-1 Who is the attacker: attacks just scratch the surface

1 What do regulations say?

1 Is it enough to not being the weakest link?

82588110

25

Closing Remarks and Future Work

(following slides will be presented
in the closing class)

26

"
Challenges

m |eakage: how do we characterize, prove, evaluate

m Tradeoffs: interplay security-performance (asymptotics & concrete)
1 space/computation/privacy

m Close engineering-theory interaction: keep it simplel
[can't throw the heavy weapons on the problem

m Provel Crypto design w/o proof not worth much (especially if you are
going to build/use the system)

01 Complicating a proof is fine, complicating a solution is not

27

'_
Lot of...

m Room for improvement (functionality, privacy, performance)
m Interesting research questions

m Trade-offs to resolve

m Fundamental bounds to be proven

m Theories and models to be developed

N’

m Privanalysis attacks to make you famous (easy to get papers accepted...

m Dealing with "the challenge of being imperfect”
[Leaving the "all-but-negligible security guarantees” paradise

1 Is there an acceptable compromise? Should we abandon it o ad-hoc
practitioners? Too dirty for our souls?

28

"
Research Questions (partial list)

m Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp'n

m Fundamental limits (leakage-computation tradeoffs), e.q.:
[leakage from returned ciphertexts (ORAM helps but at significant cost)

1 Frequency of w; (least frequent term) (reduction from 3SUM)

m "Semantic leakage": Proving formal leakage is nice but how bad is it
for a given particular application, what forms of masking can help?

[Can we have a theory to help us reason about it (cf. differential privacy)?

1 A theory of leakage composition? Guidance for masking techniques

1 Attacks welcome! IKK'12, KNW'15, CGPR'15 just scratched the surface

m Characterizing privacy-friendly plaintext search algorithms/data str.

m A more complete SQL query set (esp. joins)
29

'_
Tradeoffs

m Tons of privacy-performance trade-offs examples

1 BXT vs OXT vs PXT (computation/communication), Masking s-terms and
Xset (space), Bloom filters (false positives), network-latency, and more

1 Fundamental: ???
m Privacy/performance bounds?

0 E.g., the intrinsic cost of perfect secrecy

1 But how about bounds in terms of necessary leakage

= E.g.in the case of perfect secrecy even a1 bit of leakage can be really bad

m Any hope for trade-offs between "polynomially-related” objects?

31

"
Example: s-term leakage

m OXT leaks the size of |DB(w;)| (w; is the least frequent conj. term)
m Necessary? "Yes". Can you prove it? No.

m Conjecture: any conjunctions algorithm will leak (via running time)
an upper bound on |DB(w,)|, except if

0 Search is padded to max, |[DB(w)| size (= search is linear in |[DB|)
1 Or: Conjunctions pre-computed (= pre-processing is super-linear)

m Why? Consider 2 conjunctions that return the same small # of
records, one with 2 infrequent terms, one with 2 very frequent terms

["name=David and gender=Female" vs "name=Charanjit and lastname=Jutla"
m We conjecture a lower bd on plaintext search (hence on encrypted)

1 Reduction from 3SUM (based on [P'10])

32

" A
Join the (multi) Party...

m Anexciting & large space to explore with many many research
opportunities!

m ... and many practical applications

Very timely given cloud migration, explosion of private info, and strong
attackers (including surveillance, espionage, mafia, and just hackers...)

m An opportunity for sophisticated crypto in the real world?

34

"
Summary

m Great progress relative to work on single-keyword single-client SSE

[Rich queries: General Boolean queries (structured data, free text),
Plus: range, substring, wildcards, phrase, proximity

1 Huge DBs: 10 TB, 100M records, 10! indexed keyword-document pairs

m EDB creation linear in DB size, queries competitive with MySQL

01 Single- and Multi-Client models, policy-based delegation of queries
1 Authorization w/o learning query ("Outsourced Symmetric PIR")

O Privacy, insider security, surveillance protection, warrant enforcement

m Imperfect security: Leakage from access- and query-patterns, but
well defined leakage profiles, and simulation-based adaptive security

m Many challenging theoretical and engineering questions

1 Going for practice? Don't forget simplicity, engineering and... proofs!
35

Thanks!

Crypto'2013: Boolean search, single client eprint.iacr.org/2013/169

CCS'2013: Multi-client, Blind authorization eprint.iacr.org/2013/720

NDSS'2014: Dynamic data, implementation eprint.iacr.org/2014/853

ESORICS 2015: Range, Substrings, Wildcards, Phrases

2015/927

36

Backup

37

Single Keyword Search (SKS)

Graphics courtesy of David Cash

"
Single-Keyword Search (SKS) in SSE

m SSE (searchable symmetric encryption)
1 A client C (both client and data owner) and server E (* Charlie, Eddie *)

01 Client C transforms its plaintext DB into "encrypted DB" (EDB) that
includes encrypted records and metadata;

1 EDB stored at server E; C only keeps a cryptographic key
m SKS: Given keyword w return /ndices of documents containing w

0 Important: mode/ simplified by abstracting out retrieval (and enc/dec)
of documents (note: variable vs. fixed-length ciphertexts)

m SKS at the basis of all our solutions

SKS with Cleartext Lists

1 Encrypted keyword tags

Inverted index Encrypted index
-
I_ Rutgers 4,9,37 45e8a 4,937
- » Admissions 9,37,93,94,95 » 092ff 9.37.93.94.95
- I committee 8,37,89,90 f61b5 8,37,89,90
I accept 4,37,62,75 cc562 4,37,62,75

1. Build inverted index (each keyword points to record id’s)
2. Choose key K and replace each keyword with PRF tag F(K,w)
3. Client saves key K

2) Search protocol

1. Client sends F(K,w)
2. Server retrieves proper row

"
SKS with encrypted lists

» additionally encrypt rows under different keys

45e8a

45e8a |4, 9,37
092ff 9,37,93,94,95
f61b5 8,37,89,90 f61b5

cch62 4.37,62,75 cch62

» requires modification of server, but more secure
0ozt |

There should no leakage on individual
size of record lists

keyword records

45e8a
092ff

f61b5
cc562
a845c
b8423
ab067
63fa2

54db1
b7696

ed15b

nCeUKIK7GO5ew6mwplra
ODusbskYvBj9GXO0F0ObNv
puxtwXKuEdbHVuYAd4mE
ULgyJmzHV03ar8RDpUE1
6TfEgihoa8WzcEol8U8b
Q1BzLK368qufobMMHIGVN
sOVqt2xtfZhDUpDig810
jyWyuOedYOvYqg6XPqgZc2
S5tDHNCLv2DFJdcD904FD

"

How to maps lists into memory

keyword records keyword records

Rutgers 4,9,37 K1 . . .
Admissions 9.37.93.94.95 Ko Ty
Committee 8.37.89.90 Ks =

Accept 4,37,62,75 Ka

server can observe memory touched during searches:

Touched on Touched on
search 1: search 2:

composition of untouched
regions reveals info about
unopened part of index!

\/

= e.g. 7 remaining spots
do not correspond to a
single list

"
A distinguishing example

Index lo Index Iz
Rutgers 49,37 Soil 9,19,93,94,95
Admissions 9,19,93,94,95 Plants 4,9,37
Committee 8,76,89,90 Flowers 9
Accept 2,35,62,75 L Rose 9,15,42,75,78
Pots 9,37
1. Search wo1 = “Rutgers” 1. Search w11 = “Plants”

2. Search wo2 = “Admissions” 2. Search w12 = “Soil”

" N
Secure solution: Maximal Padding [CK]

» pad all encrypted lists to size N
» store lists in rows in random order
» pad with extra dummy lists to hide # lists

pad to N = hides list sizes
ﬁ

pad to N
—

hides no.
of lists

"
Secure solution:
Random Access Linked List [CGKO]

1. put ciphertexts in random order in array

2. link together lists with encrypted pointers

(example with poir
for word “Accept”)

'_
Randomness vs. Structure

m We need randomness to avoid leakage to server
.. but we pay with wasted memory (padding solution)

.. or we pay with random access (linked list solution)

m Tradeoff: Random-access lists with multiple elements per entry

(1 Each entry = fixed-size bucket (wasted space/read in half-filled buckets)

m Lower bound [CT'14]: Cannot be simultaneously optimal in:

.. locality, total space and goodput (read utilization)

m Asharov et al.: asymptotics close to optimal (can it be practical t00?)
11

" A
Packed Solution [NDSS'14*]

m Hybrid: Random-access lists with multiple elements per entry
documents
Each entry = bucket withw in them
But single-size buckets don't work well with high-variable DB(w) sizes

Hence we use a two-layer solution: buckets of pointers, each pointing to a
block of identifiers

Plus: we use two-sized bucket* for optimizing goodput

m Pointer lists implemented w/history-independent dictionary structure
Identifier blocks of arranged in an external array (paralle/ access)

lists incur in storage allocation overhead but array does not

* NDSS'14 in eprint 2014/853; see C'13 eprint 2013/169 for a simpler scheme

12

Faster Pre-Processing and Better Goodput

p

\ B P
B 8

)
B

Jr,.«+ Bucket (Paged) Hash (PH)

)
B &
#

. Low storage utilization (~60%)
. Cuckoo Hash fix (~90% util):
sensitive to insertion history

. Low goodput

JL,,,~ TWo Levels (2L)

a B |

AN
/K
-

/) o

[

. Multi-modal keyword distribution
. Good storage utilization (92%)
. High goodput.

LEAKAGE

14

"
Security Formalism (adversarial server)

m Based on the simulation-based definitions given for SKS [CGKO,CK].

m There is an attacker E (acting as the server), a simulator Sim and a
leakage function (DB, queries):

01 Real: Attacker E chooses DB and gets the pre-processed encrypted DB,
then interacts with client on adaptively chosen queries

(1 Ideal: Attacker E chooses DB and queries (adaptively),
E gets Sim(L(DB)) and Sim(L(DB,queries))

A SSE scheme is semantically secure with leakage L if for all
attackers E, there is a simulator Sim such that the views of E
in both experiments are indistinguishable

=> Server learns nothing beyond the specified leakage L even if it knows
(and even if it chooses adaptively) the plaintext DB and queries

15

" JE
SKS Leakage

m Inall cases: Result set (matching enc'd documents) + query repetition
m Basic solution: Randomized linked list
"Minimal” leakage: Only total number of record-keyword pairs
Z(wEW) |DB(w)|

m Better locality: Packed list (lists of blocks of size B)

Leakage: 2 ,cn) [@} (incomparable leakage with above)

m 2-level implementation (blocks of b pointers, each to a block of size B
Leakage = Size of external array (function of param's b and B)

m Adaptive security with ROM (“programmable PRF") or client interaction

16

"

Example for leakage analysis

pad to N = hides list sizes
—

EEEEEEEEEEEEEEEE
EEEEENEEE
EEEEEEEEEE . |
EEEEEEEEEEEEEEEE | P
I
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
I

hides no.
of lists

17

"
Proving leakage (toy case)

m Consider a simple strategy where all w's are assigned equal-length
arrays [Cash-Kamara]

1 Memory divided into N arrays, each of size M ; N > [W|, M2 [DB(w)|, yweW

1 Each w in W is assigned one array (at random) which contains the permuted
and encrypted set of all ind € DB(w).

01 Client processes query w by sending (K1,K2)=F(K,w) where K1 points to the
w-array and K2 is used to decrypt each ind € DB(w).

m Leakage for queries wy,..w, = {M,N, DB(w)) i=1,...n, {(i.j): w=w;} }

m Simulator (static): Given leakage profile: o creates N arrays of size M;
0 chooses key K, and V i, computes (K1,K2)=F(Kw,);
01 for ind eDB(w;) (in permuted order) stores Enc(K2,ind) under array K1;

0 fills all other arrays with random values (assumes pseudorandom ciphertexts)
18

"

Proving adaptive security

m Same as above but

0 All arrays are initially filled in with random values
01 PRF replaced with RO which programs the DB(w) entries for each new query w

OR

(1 The decryption is done by the client sending a decryption pad for each ind in
DB(w) - still a single message from client to server but of length |DB(w)].

19

"
SKS Attacks [CGPR'15]

m See Sashd's presentation (IsraelWinterAB15Parts2,3.pptx #87..)
m Very basic attacks focusing on the following cases:

m Known documents and enc'd keywords =» learn per-keyword doc count
which they claim is unique for a /arge fraction of keywords (use count
to match b/w ptext and enc'd words, use intersection sizes for the rest)

m Unknown documents but encrypted keywords stored in the positions
(w/repetitions) they appear in the document (substitution code)

0 Input to attack is a small number of representative ptext docs (w/enough
words in them) and the corresponding encrypted keywords

m Previous item but keywords given w/o order, they use an active chosen-
document attack

m Application to sound SKS (e.g. OXT):
0 First attack applies for actually queried keywords (if ptext DB is known);

0 last attack will apply only after most of the keywords were actually queried
20

"
Searchable Encryption:

OXT Protocol (Single Client Setting)

Hugo Krawczyk
IBM Research

Winter School - Bar Ilan University - January 2015

"
Terminology

m Client = Charlie C, Server = EDdie E

1 In the multi-client setting (covered later) DB owner called DeBbie
m DB = collection of plaintext records (aka documents) owned by client C
m EDB (encrypted DB): data stored at E (encrypted records + metadata)
m ind = index to plaintext records (whose order is randomized)
m DB(w)={ind,, ind,,...} indices of records containing w
m W(ind) = set of words contained in record ind,

m W = the set of all words in DB, i.e. U;,,g W(ind)

"
Single-Keyword Search (SKS) in SSE

m SSE (searchable symmetric encryption)

1 A client C (both client and data owner) and server E

01 Client C transforms its plaintext DB into "encrypted DB" (EDB) that
includes encrypted records and metadata;

1 EDB stored at server E; C only keeps a cryptographic key
m SKS: Given keyword w return /ndices of documents containing w

0 Important: mode/ simplified by abstracting out retrieval (and enc/dec)
of documents (note: variable vs. fixed-length ciphertexts)

m SKS at the basis of all our solutions

Conjunctive (and Boolean) Queries

Cash et al, Crypto 2014, eprint 2013/169

Conjunctions: the naive solution
(conj =w; Aw, A ... Aw,)

Run single-keyword-search on each w; to get ind's for each w;,
then retfrieve ind's in intersection

Performance: Work proportional to the sum of matching sets for
each term, i.e. |DB(w;)|+..+|DB(w,)]

01 Sum of costs of n single-term searches

0 Prohibitive with low entropy terms, e.g. "lastname=Jutla A gender=male"

Leakage: ind's for each DB(w;) leaked

1 Same effect as if each w; was queried separately

= union of leakages rather than their intersection

Need to improve both cost and security...

" J
Conjunctions via Forward Index
(unencrypted)

m Inverted index: keyword w points to records containing w
w—> DB(w) = {ind;, ind,,..., ind;}

m Forward index: record points to all its keywords w
ind > W(ind) = {wy,... w, }

m Conjunction algorithm (conj=w;Aw, A... Aw,)
Let w; be the term with smallest DB(w;) set.

For each ind in DB(w;) and each w; in conj, check if w; in record ind.

If tests succeeds for all w; , j=2..n, returnind.

m Terminology: s-term vs x-terms

\

[|
wiAw, AL Aw,

Resolving w; A w, A ... A w, (w; least frequent)
with forward indexing

inverted index
s-term w; - |ind,

? ?
forward index / \ \

X-terms WZ W3

...

?
W, W,
\

- | ind,
Wiy .. W

...

n

w
}

!

- |ind,,
> Wi .. W,

return ind, iff it contains all w,,....w,
return ind; iff H(ind,w,) € XSet for all j=2,..,n

m Implementation trick: Build set XSet of hash values as follows

For each record ind and each w in W(ind): add H(ind,w) to XSet

m To test if w e W(ind) check if H(ind,w) € XSet

= Vv ind € DB(w;) return ind iff H(ind,w;) € XSet for all j=2,...n

" J
Private Forward Indexing

w, replaced
with f.(w,) :51-091

@ o) o >[5 > [x
VAR VAR

WITh fie(wy) =xtrap(w;)

s Implementation: stag=f(w;) xtrap;=fi«(w;) K'zk two prf keys

m Preprocessing: V xind and w in xind: add H(xind, xtrap(w)) to XSet
m Client hands to E: stag; and xtrap, ..., x’rmpn\was H(ind,w)
m E returns record xind in stag, if for all j>1, H(xind, xtrap;) € Xset

(Basic Cross-Tag Protocol - BXT)

"

Computational cost of BXT

m E work is proportional to |DB(w;)|: Major improvement over naive sol'n

01 In naive, cost is |DB(w,)| + |[DB(w,)| + ... + |[DB(w,)|
(min vs max, e.g. gender=male)

1 Choosing wy right is important: Based on DB statistics

m "Non-interactive”: Single short message from C to E and E sends
back results

"
BXT Leakage

m leakage to E: Substantial improvement over ndive solution —
reduces correlation between x-terms across same or diff queries

© When w; and w; are x-terms in same or diff queries nothing is learned
about DB(w;) and DB(w;) other than via intersections with s-terms

© E learns repeated terms in different queries and learns the sizes of
DB(w;) and of DB(w;aw;) for each x-term w; in the same query.

® E learns ind's of all s-terms (= their size and intersections).

® Since E learns xtrap for each x-term w; , it also learns DB(w;)~DB(w;) for
any pair of s-term w; and x-term w; even across gueries

m Next: How to reduce inter-query leakage. Avoid revealing ind's
(intfer s-term leakage) and xtrap's (inter x-term leakeage)

10

"
Terminology to remember
Wi Wy ... W,
s-term X-ferms
C. strap xtrap (trapdoors: for C only)
E: stag xtag (tags: revealed to E)

xtag = elements of Xseft (i.e. xtag = H(xind,xtrap))
Tset(w) (tuple set = inverted index)
List Fy(w) 2 (Ency,(indy), ... , Ency,(ind,,)) (SKS solution)
Tset = {Tset(w)},cw
TsetSetup(T), TsetRetrieve(Tset stag), stagéTsetGet Tag(K+,w)

14

" J
Reducing cross-query leakage
(via oblivious computation)

m Recall (BXT):

Client computes and hands to E: stag; and xtrap, ,.., xtrap,

E returns record xind in stag; if for all j>1, H(xind, xtrap;) € Xset
m Goal: reduce cross-query correlations by hiding xtrap's from E

m Idea l: Interactive protocol b/w CandE (IXT)

E sends each xind to € who sends back H(xind xtrap;), j=1....n

E learns H(xind xtrap) but not xtrap and can check if conjunction holds
for xind - all xtrap-related leakage avoided

@ (i) Extra round of communication; (ii) E can cheat sending xind from diff. s-term
(E learns forbidden intersections); (iii) leakage to client in MC-SSE (s-term inters.)
Yet, for HBC E and single-client SSE, IXT can be a great solution (w/ more latency)

15

" JE
Reducing cross-query leakage
(via oblivious computation)

m Recall (BXT):

Client computes and hands to E: stag; and xtrap, ,.., xtrap,

E returns record xind in stag; if for all j>1, H(xind, xtrap;) € Xset
m Goal: reduce cross-query correlations by hiding xtrap's from E

m Tdea 2: Replace H(xind, xtrap;) with secure computation (b/w E & C)

C inputs xtrap, E inputs xind
E learns H(xind,xtrap) but not xtrap; C learns nothing (e.g. xind)
Solution: H(xind, xtrap) = xtrap*nd mod p

(Group G=<g> of prime order p, xtrap €6, xind € Z,)

16

"

Interactive Solution

m H(xind, xtrap) = xtrap*ind mod p
m E has "key" xind, C has xtrap
0 CtoE: a«< xtrap? for z random in Z,
0 EtoC: b « qgxind
0 CtoE: xtag < blz (= xtrapxind)
[E searches xtag in XSet
m Problems:
1. E knows xind hence it learns xtrap (=xtag!/*ind) (didn't gain much)
2. E learns xind hence it learns relation b/w s-terms (e.g. |[DB(s)n DB(s")|)

3. Rounds of interaction
17

" A
Non-Interactive Solution

m Interactive: E has key xind (from stag tuple), C has xtrap (from DB)

CtoE: a«<xtrap? zrandominZ,

EtoC: b« qgxind

CtoE: xtag < bVz(= (x‘rr'apz xtrapxind)

m Non-interactive: store xind blinded with a one-time blinding factor z

At setup: y stored at EDB;

At search C sends a=xtrap? o E (C derives xtrap from w; and z from w,)

E retfrievesy from EDB and sets xtag < a (= (xtrapz)xind/z= xtpqpxind)

\Wavoids interaction (and prevents E from learning xtrap or xind!)

18

"
OXT: Oblivious X-Tags Protocol

m Non-interactive: store xind blinded by a one-time blinding factor z
1. At setup: y=xind-zlis stored at EDB;
2. At search C sends a=xtrap?to E (€ computes xtrap from w; and z from w,)
3. E retrievesy from EDB and sets xtag « a¥

m OXT basics, 2-term conjunction example (w;,w,)

-1 EDB setup: vwinW, for t=1.. T,=|DB(w)|

= store y,=xind-z; ! in w-list with corresp. encrypted ind (z=F(w,t) €Z,)

1 On query (w;w,): C computes xtrap (a prf applied to w,) f
= C sends to E stag(w,;) and the T, ;-long vector {af:x‘rr'apzT: t=1,..T,1}
0 For t=1.T,;, E retrieves y; from stored w;-list, sets xtag; < a;”" (= xtrapind)

O E returns t-th encrypted ind iff xtag, in Xset
19

" EE————
OXT Core

m E Setup: Forallwin W:
0 strap,=F(Ksw); xtrap,= 9" {F(K, w)}

0 For t=1 to T=|DB(w)]:

s Tset(t) = [Enc(K,,ind,), y;=xind; -z, 1] (
s Add xtag=(xtrap,)*"dto Xset (* where xtrap,= g"{F(K,,w)} *)

m Search on (w;,w,,...W,):
01 C computes (using keys Kg, Ky): strap,, xtrap,,.. xtrap,
01 For t=1..|DB(w,)|, C sends to E: {szx’rmpjz*, j=2,..n} (* z:=F(strap,, t) *)
01 For +=1..|DB(w,)|, E sets xtag;+ = xjy*, j=2,...n (*y,stored in Tset *)
O E returns t-th encrypted ind iff for all j=2,..,n, xtag;;in Xset

m It works because xtag;; = x;Y = (xtrap;?)¥ = (xtrap2)<ind/z = xtrqp ind

20

"
OXT Leakage (Improvements on BXT)

m Repeftition of s-term still visible to E (stag is deterministic) but
x-term repetition mostly™ avoided (see below).

m Most important: OXT solves the bad inter-query leakage where

® E learns intersection DB(w;)NDB(w;) for any pair of s-term w; and
xX-term w, even across gueries

(in OXT can't combine x-term from one query with an s-term from another)

m The following milder leakage remains:

For queries w; A x and w;' A X', if DB(w; A wy') 2 @ and x=x'
then E learns that x=x' and the encrypted ind's in DB(w; A wy')

Leakage unlikely for s-terms chosen as low-frequent terms (w;Aw; would
be usually empty); and it is impossible if both wy,w,' are, say, last names.

23

"
Summary: OXT Leakage to E

m Asin BXT:

0 Total index size = upper bound on %, |DB(w;)| (Tset leakage)

1 Number of terms in each conjunction

(1 Size of s-term set |DB(w,)| (unavoidable? Reduction from 3SUM)

[s-term repetitions

1 Encrypted ind's in the set DB(w;aw)) , j=2,..,n (e.g. | DB(w;aw))|)

01 NO leakage about intersections of x-terms in same or different queries
m Improvement on BXT:

01 For queries w; A x and wy' A X', if x=x"and DB(w; A w;) 2 @,
then E learns that x=x' and the encrypted ind's in DB(w; A w;')

m Server E can be malicious but trusted to return the correct results
24

" J
OXT non-leakage

m OXT does not reveal

plaintext data (semantically secured, no det'c enc, no repeated patterns, etc)
plaintext queried values (s-term and x-terms)
plaintext ind's other than those matching the conjunction

information on intersecting records of different x-terms
(in the same query or across different queries)

repeated x-terms or intersections between different s-terms,
except for those revealed via last leakage item in previous slide

= This leakage can be reduced substantially with more memory (practical for
moderate number of keywords per document, e.g. 100 keywords/record)

An example of space-privacy trade-offs

25

'_
OXT Theorem

m Security formalism: Same simulation-based definition as in SKS

m Let L be (a formal description of) the leakage function described
before.

m Theorem: OXT is semantically secure with leakage L under the DDH
assumption when implemented with a secure PRF and CPA encryption.

m Proof: see paper for painful enjoyment... eprint 2013/169
m Note: No ROM required!

m ROM used in our implementation of the more advanced models and to improve
communication in the adaptive security case.

27

"
Simulation Ideas
(details in eprint 2013/169)

m Tset simulation (as in SKS)
m Yy values (=xind z!) chosen as random elements of Zp
m Tricky part: How to choose Xset values so that (xtrap,)*i"d € Xset

iff wis in record xind. Note that:

= (i) any w can be queried (even if not in DB);

= (ii) the values x=xtrap!/z sent by the client and the stored random y need to
satisfy that x¥ is (or is not) in Xset depending on whether "w € ind";

m (iii) x¥ values may repeat for different values of x and y

[Solution: Choose Xset values as random elements h in group G simulate
client values xtrap'/z as h!/v depending on retrieved y (so that (xtrap!/z) =h)

m Use DDH to claim that random Xset values are indistinguishable from real
(structured) g7 xind (note that w and xind may repeat in multiple Xset entries)

28

General Boolean Formulas

Queries of the form|w; A ®(W,,...,W;)| where @ is any Boolean

formula (progmm) - SNF = "Searchable Normal Form”

Similar to the conjunctions mechanism:

0 For all ind € DB(wy), set p;=1if H(ind,w,) € Xset, return ind iff ®(p,,..., By) = true
[Same cost as for conjunction

1 Any Boolean query via "w; = True" (linear in worse case)

More generally: Disjunction of any number of such formulas
Example: (m out of t)-threshold query = disjunction of (t-m+1) formulas:
(wy A T(m-1,+-1)(W2,---,WT)) or (w AT(m—l,T-Z)(W3:-"/WT)) or ..or (WT—m+1AT(m—l,...)(wf-m+2/---IWT))

Leakage:

0 Asin conjunctive search, plus EDB learns @ (not w;'s) and the bits p; for j=2,...1
29

"

Extensions

m Dynamic DBs: additions, deletions, modifications (and client caching)

m More complex query types
[Range queries: return all records with DOB between 2/3/87 and 3/4/88
(1 Substring/Wildcard queries: %lope%, enc_clo_ _dia, %cycl_ _ _dia
01 Phrase queries: "searchable symmetric encryption”, "Gone _ _ Wind"

m PXT: Very communication-efficient (as in BXT: short client message)
but uses pairings, same leakage as OXT

m Complex operational/trust settings: MC-SSE and PIR-SSE:

01 Malicious clients, hiding queries from Debbie (and even hiding policy as in
warrant-based scenarios)

1 Tools (all via simple exponentiation): OPRF (for PIR), attribute-based keys for
blind authorization, homomorphic signatures for query authentication by Eddie
30

Updates

31

"
Dynamic Data (updates)

m Updates: add, delete, modify

(1 Operational assumption: |DB|>>updates; thus:
m EDB super-optimized for disk access but update structures planned for RAM
m Periodic re-encryption eliminates leakage trails (e.g. new/old records)

m Caching (defense against leakage)

[Client can identify previously retrieved documents in result set before
requesting them

0 Will refrieve a previously refrieved document only if the document
changed since last retrieval

[Important defense against server learning intersection b/w queries

m but leakage on the number of matching-but-not-retrieved documents

"
Data Structures (NDss'14, eprint 2014/853)

m EDB (Tsets + Xsets) unchanged
1 Changes to clear-text DB do not affect EDB
m EDB+ records DB changes between re-processing phases
1 RAM resident Hash Tables (dictionaries)
1 TSet+ stores new tuples
[0 XSet+ stores new XTags
1 RevID Set stores revocation IDs for deleted records
m Clear-text database enhanced

0 | Tset(w)|, for all keywords w

(1 Seq # of last successful update

33

"
Integrating EDB+ into OXT

m Eddie runs OXT on EDB first and on EDB+ next
[EDB+ tuples are labeled separately (not grouped in blocks)
(1 OXT result set filtered using the RevID Set
01 Very efficient

m Charlie and Debbie are unchanged

m Security

[Cannot relate old and new tuples except if keyword was searched (can
avoid with evolving periodic keys)

= Can hide operation (add/del/modify) by always doing a delete+add

1 But Eddie knows if returned record (and touched tuple) is new or old

m Caching: Can identify previously cached records and know if they changed
34

Complex Queries
(summary in case I don't get to do them in

detail)

Extensions fo OXT - reductions to Boolean queries

36

"
Range Queries

m Eg., returnall records with DOB between 2/3/87 and 3/4/88
m Compute a cover of the range by intervals (via a tree cover algorithm)

m Generate a disjunction of values representing each of the intervals
1 Range R translated into disjunction of up to 2 log R exact-match terms

m Thus: the Boolean OXT protocol applies AS IS

m The more interesting part: Blind authorization

1 Debbie authorizes based on total size of range (eg. query span < one year)

1 Needs to let Debbie learn the total size of the range w/o leaking on the
endpoints? (e.g.., # of intervals should be same for any two ranges of same size)

1 Two solutions: Canonical covers (all ranges of given size have same-lengths

intervals); 3-node over-covers (always 3 intervals with 40% avg overhead)
37

"
Substring/Wildcard Queries

m Any combination of _ ("single character wildcard") and substrings of k
or more consecutive characters (k is a tunable parameter)

m Plus a % ("any string") at the beginning and/or end of a search
expression

m Examples (return "encyclopedia”):
(i) %cycl_ _ _dia (ii) %lope% (iii) enc_clo_ _dia

1 Tunable k: smaller for more general queries; larger for search efficiency

0 Variable k: flexibility and efficiency (only "anchor” 2 k)

38

" A
OXT Protocol (substring extensions)

m Substrings: we treat k-gram's as keywords, associated to a xind as
well as a position p in xind - we thus extend the function H to:

H("cha", xind, p) = (prf(*cha")) ird)

m We want to know if “charan” is in record xind:

We find (encrypted) values of y=xind and v=xindP in Tset("cha")
(which means: "cha" is in pos p in xind),

We then check if "ran” is in position p+3 in xind by checking that

3 . P+3
(prf(‘ran)"Y" = (prf(‘ran")*") i Xset

m Computed via a non-interactive 2-party secure function evaluation:
Charlie has ("ran”,A), Eddie has encrypted (y,v) and A 39

"
Generalization: Proximity Queries

m A generalization of our substring technique

m Can do search of the form (e;.e,,A) meaning

(1 Return all records where element e, is at distance A from e, (A can be
hegative)

m Examples:

[e; are k-grams: resolves substrings and wildcards

[e; are textual words: resolves phrases (e.g., "Bar Ilan University")

[Multi-dimensional distances (e.g., grid), etc.

40

Subsequences Leakage to Eddie

Reminder: Leakage from conjunctions wy; A ... A w,,

1.

2.

3.

4.

5.

Index size = upper bound on %, |Doc(w;)]

Number of terms in each conjunction

Size of s-term set |Rec(w;)| and whether s-term repeats
Size of Rec(w;aw;) , j=2,.., n

For queries w; A x and wy' A X', if x=x"and Rec(w; A wy) 2 ¢,
then E learns that x=x' and the encrypted rind's in Rec(w; A w;')

Leakage is similar for subsequence queries with s-term k-gram w; and
x-term grams w,,..,w, except for more involved 5' (stated for 2-term query)

For queries w; A x and wy' A X', with offsets A; A,

if x=x' and there exist ind in Rec(w; A wy) and p, p’' such that

wy is in position p in ind and wy' in position p' in ind, and p-p'= As- A,
then E learns that x=x', and the encrypted pairs (ind,p), (ind,p’).

Plus: offset A leaks - can be avoided with a round of communication C-E
a1

"
Leakage from Range Queries
For Debbie:

m The fotal size of the queried range (necessary to apply policy)

For Eddie:

m |eakage for atomic range query with cover wy=(h;,c;) ..., w, =(h,.c,) is
same as for OXT disjunction “w; or ... or w,"

o |DB(w;)| fori=1,.n, DB(w;or..orw,)

m For composite queries, leakage is same as OXT where the range query
is replaced with "w; or ... or w,"

For Client:

m Mask(|DB(w;)|) fori=1,..,nif range query acts as s-term

42

"
Searchable Encryption:

Multi-client and OSPIR Settings

Hugo Krawczyk
IBM Research

Winter School - Bar Ilan University - January 2015

"
Encrypted Search I (SSE)

m Owner of database DB (= client) outsources its Encrypted Data to a
server (EDdie) such that:

m Owner/Client:

[pre-processes data, outsources to Eddie, keeps only a cryptographic key,
later runs queries at Eddie, retrieves/decrypts matching documents

m Eddie:
[gets all DB documents in encrypted form
[keeps index information (metadata) in encrypted form
[responds to client’s queries (returns matching encrypted doc's)

[does not learn the searched terms or DB plaintext information
- but leakage on data-access patterns and query patterns allowed

"
Encrypted Search IT (Multi-Client SSE)

m Owner of DB (DeBbie) outsources DB to Eddie such that
Eddie (as before):

[keeps all records and index information in encrypted form
[can accurately respond to any boolean query (returning matching records)

[does not learn the searched terms or any plaintext information on the DB
(some leakage allowed)

m While Debbie:

[can delegate search to clients (via search tokens)

[such that clients can search through queries authorized by Debbie
but learn nothing about data not matching the authorized queries

0 multiple and adversarial clients (fully malicious in our solutions)

" J
Encrypted Search IIT
(OSPIR=OuTsour'ced Symmetric PIR)

m As scenario IT
PLUS

m Debbie can authorize clients to perform queries according to a
prescribed policy

(i.e., determine the query compliance and provide the corresponding tokens)

m .. but she has to do so without learning the searched terms

Assumption: Debbie and Eddie do not collude (otherwise the strong
performance limitations of PIR apply)

The MC-SSE Setting

D gives the tokens to C and authorizes according to a policy

(leakage to C: anything beyond the results to authorized queries)

'_
OXT Core

m EDB Setup: Forall win W:
0 strap,=F(Ks,w); xtrap,= g”{F(K, w)}
0 For t=1 1o T=|DB(wW)|:

m Tset(t) = [Enc(K,.,ind,), y;=xind; -z;'1] (* where z, = F(strap,, 1) *)
s Add xtag=(xtrap,)<i"dto Xset (* where xtrap,= g"{F(K,w)} *)

m Search on (w;,w,,...W,):
01 C computes (using keys Kg, Ky): strap,, xtrap,,.. xtrap,
1 For t=1.T, C sends to E: {szxTr‘apJ-Z*, j=2,...n} (* where z,= F(strap,, 1) *)
0 For t=1.T, E sets xtag;; = X;"", j=2,...n (*y; stored in Tset *)
0 E returns t-th encrypted ind iff for all j=2,..,n, xtag;, in Xset

m It works because xtag;; = x;Y = (xtrap;?)¥ = (xtrap2)<ind/z = xtrqp ind

"
MC-OXT

m In OXT: Search on (w;,w,,..w,):
01 C computes (using keys Kg, Ky): strap,, xtrap,,.. xtrap,
0 For t=1..|DB(wy)|, Csends to E: {x=xtrap', j=2,..n} (* z;= F(strap,, t)*)
0 For t=1..|DB(wy)|, E sets xtag;; = x;"', j=2,...,n (* y, stored in Tset *)
m Adapting to the MC-SSE setting - initial ideas:

1 D (using keys K, Ky) provides C with strap,, xtrap,,.., xtrap,

= Fails: C can combine strap from one query with xtrap's from another to obtain
an unauthorized query

01 Solution: D signs (strap;, xtrap,,.., xtrap,) so that E can verify binding

m Fails: C does not pass xtrap values to E but rather xtrap? and revealing z
values to E is insecure: allows E to do unauthorized searches (back to BXT)

= D needs to sign (strap;, xtrap,?,.. xtrap,?) for many z's (but how many?)
10

"
MC-OXT
m In OXT: Search on (wy,w,,...w,):
01 C computes (using keys Kg, Ky): strap,, xtrap,,.. xtrap,
0 For t=1.T, C sends to E: {xj:x‘rr'apjz*, j=2,...n} (* where z,= F(strap,, 1) *)
0 For t+=1..T, E seZ,...,n (* y; stored in Tset *)
m Adapting to the MC-SSE setting (“homomorphic signature"):

1 D needs to sign (strap;, xtrap,?,.. xtrap,?) for many z's (but how many?)

1 Solution: D provides C with (strap;, xtrap,™ .. xtrap,™) for random r,...r,,
and also AuthEnc(Ky: r,,....r,) where K, is key shared between D and E.

0 Cwill send x;=(xtrap")** (* instead of xtrap*'*)

O E decrypts and verifies r,,..,r, , then it compu’re

= Note: E does not verify the signature on x;'s, but by raising to the r;"! it ensures
that if C is cheating, the xtag will result in a random value (w.h.p not in Xset)
11

"

The OSPIR Setting

As in MC-SSE but D authorizes queries according to
a policy without learning the queried values (a la PIR*)

OSPIR = "Outsourced Symmetric PIR"
(*PIR = Private Information Retrieval CGKS'95)

12

" S
Multi-Client SSE with Blind Authorization
(OSPIR)

m We call this setting "outsourced symmetric PIR (OSPIR)"
m Parties: Client C, DB owner D (authorizer), EDB holder E

m Keywords are attribute-value pairs, e.g. ("name",Joe), (“text”, I am happy)

m Atftribute-based policies ("Is client C authorized for query Q?")

1 Policy decisions based on attributes not values

= E.g. can query name and lastname but only with one of (zipcode, fown, school)

m Permissions set by D and can depend on client and type of boolean query
m D enforces policy w/o learning the queried values, only the attrib’s

[or less, e.g.a class of attrib’'s a term belongs to, not the specific attrib

13

Basic Tool: Oblivious PRF (OPRF)

[NR'04,FIPR'05]
f.(x) is a Pseudo-Random OPRF protocol
Function (PRF) if
@)| | D C(x)
. X c()z < @ﬁ:’
f.-or-$ £(x) or $ § Adv)

Ty U0

m OPRF Instantiation: f. (x)=[H(x)]x (DH OPRF)

m Oblivious computation via "Blind DH Computation™

C sends a = [H(x)]" to D, D replies with b = ak, C computes f,(x) as b /"

" JE
Warm-Up: Single-Keyword Search

m DB: Collection of inverted indexes pointed by each keyword (i,val)
(i,val) > {list of doc's containing (i val)}

m EDB: Collection of inverted indexes using PRF-computed pointers
(for hiding the keyword from Eddie)

fe(ival) > { encrypted list of records containing (i,val) }

m Policy: For each client C, Debbie has a list A, of allowed attributes
(i.e., C can search for any (i,val) such that i € A.)

m Case 1. Debbie is allowed to learn the query
1.C > D: (i, val) 2.D > Ciifi€A,thenreturn f(ival)
3.C> E: f(ival) 4.E > C: Records pointed by f(i,val)

15

" JE
Single-keyword / Query hidden from Debbie

m Case 1: Debbie learns query (fy = PRF)

1.C~> D: (i, val) 2. D> C ifieA,then reTurn

3.C> E: f(ival) 4. E > C: Records pointed by f(i,val)
m Case 2: Debbie learns attribute i but not value val

Replace PRF f, with Oblivious PRF f,:
m D enters k, C enters (i,val), C Iear'n only learns i
But how does D know if attribute i was authorized for C?
m C can disclose i but then how does D knows that input (i,val) has same i?

= Need a "conditional OPRF" (return output fo Conly if i € A;)

Simple solution: per-attribute OPRF key K;: C learns Fg(i,val)

m If Cclaims attrib i but enters (j,val), he learns al) which will

return nothing at Eddie (e.g. zipcode=michael) ,

"
Conjunctions Case

m Given (iy,vq), (i,,V5),...(i,,v,), return all records containing all these words

m Policy: A. = subsets of {1,..N}, eg. if {1,3,8} € A. then C is allowed a
conjunction of the form (1,v;), (3,v,), (8,v3) for any vy, v,, v;
(can have more compact representations, e.g. any 2-out-of-{1,3,8,11})

m Extension from the single-keyword case (example (i,u) A (j,v))
0 D provides C with Fy;(i,u) and Fy;(j.v) via OPRF
[But then C can combine two allowed queries into a non-compliant one
» Given pair Fy(i,u), F;(j.v) and pair F(i'u’), F;(j'.v), € can query (i,u) A (§'.v)

m Solution: Let D sign the tokens F(i,u), FKJ-(j,v) given to C, Eddie will
verify the signature before serving the query

1 But how can D sign OPRF output values she does not (and should not) know?

17

"
Signing tokens against mix & match

m Solution via “homomorphic signatures”

Exploit the homomorphic properties of the DH OPRF

18

"
Recall DH OPRF

m Cyclic group G of prime order q; H hash function from {0,1}" o G
m OPRF: Z, x{0,1}' > 6, Fy(w)= H(w)
m Two party computation of Fy(w): (* similar to a blind signature *)
0 D has key KinZ,, C has input w in {01}
0 Cto D: a=H(w)P for b random in Z,
01 D to C: c=ak

1 C: FK(W) & clb (% = ((HW)P)K)e = (H(w))K *)

19

"
Signing tokens against mix & match

m Solution via “homomorphic signatures”
01 Exploit the homomorphic properties of the DH OPRF
m C > Dia = (H(ip v, ap = (H(izv2))P? (by,b, random in Z))
m D> C clzalK”@czzazK‘@ (ryr, random in Z,)
env = AEncpe((r),) (* AEnc key shared between D & E *)
m C > E: (H(®i v))Xrrt (H(i,,v,))K2r2, env (*C de-blinds by raising to 1/b *)

m E: Verifies and decrypts ry, r,, computes (H(iy,v;)), (H(i,,v,))%2 and
serves the query

5 To mix (v D (Ho v with (HG; v, (Hiy v,
C would need to forge env = AuThEncDE® @

1 Otherwise, if C uses a valid env, E derives random values not in EDB.
20

"

Cost and Extension to Boolean Queries

m Authorization mechanism *very* cheap: one round of communication,
2n+1 exponentiations for the client and n+1 for Debbie (on n terms)

1 Base SSE protocol (OXT) already uses exponentiations for search,
much more intensively and very optimized

m Boolean queries: Same as conjunctions but env includes description
of expression ¢ (query type) plus “signatures” ry,...,r,

0 E.g. "x1 and (not x2 or x3)",rl, r2, r3

\ J
|

symbolic expression

21

"
Security

m OSPIR-OXT leakage

01 To D: Query type and input attributes (values are info-theoretic protected)

(1 To C: Size of s-term (or an upper bound if E sends dummy values - unavoidable)

01 To E: No extra leakage relative to basic OXT
m Security proven against malicious clients

01 I.e., no behavior by clients (even collusion between multiple clients)
can lead to authorization of non-compliant queries or to learning policy

= assumes "one-more DH" and ROM for OPRF implementation
m .. and malicious Debbie, but assumes non-collusions with E
1 No behavior by Debbie can lead to learn information on queried values

m Note: Can add replay protection to env (one-time use, exp. date, etc.)
22

q _
Authorization Extensions/Enhancements

m Debbie learns class of attributes, not individual attributes

[E.g.: Debbie authorizes any conjunction with attribute 1 and any attribute
from {2,3,4}, then Debbie does not need to learn which of 2,3,4 used

0 Solution: Debbie raises H(i;,v;) to K; and H(i, v,) To K; K3,K4, C chooses one
m Role of Debbie can be split:

1 Holder of plaintext DB generates EDB; outsources EDB to Eddie and
delegates the per-attribute authorization keys to Authorizer

= The former needs not know the policy, the latter does not need DB

m Policy Manager: A 3rd party that holds policy, authorizes queries, but
can't provide search tokens without Debbie's participation ("warrant”)

23

" S
Searchable Encryption:

Extending the OXT Protocol with
Substring and Range Queries

Hugo Krawczyk
IBM Research

Winter School - Bar Ilan University - January 2015

Substring Search

Idea: Represent substring as conjunction of k-grams

m Preprocessing: Tag each text by all its 3-grams (k=3)

n w " n n n._ i " n

e.g. Charanjit = “cha", “har", "ara", "ran", "anj", "nji" , "jit

m Search by Substring:
01 Search on a conjunction of all 3-grams in the substring

e.g. *charan* = “cha" & “har" & "ara” & "ran”

Problem: False Positives

e.g. Searchon ("cha" & "har” & "ara” & "ran") returns:

“... Harry chased the oranges rolling around in his garage ..."

"
Substring Search

Idea: Represent substring as conjunction of k-grams

Problem: False Positives

Refinement: Account for k-gram positions

m Preprocessing: Tag each text by (3-grams,position) pairs
e.g. Charanjit = (1,"cha"), (2,"har"), (3,"ara"), (4,"ran"), (5,"anj"), (6,"nji"), (7."jit")

m Search by conjunction of (3-gram,shift) pairs
e.g. *charan* = (0,"cha") & (3—ker-4éf2—are=-& (3,"ran"))

Problem: e Positions in DB keywords are absolute
e Positions in query are relative

"
Substring Search

Goal: match relative pos. (query) to absolute pos. (keyword)

W(ind) contains "cha” at pos. p and "ran” at pos. p+3
n TSet(“cha”)={ ..., E(ind,p), ...}

m XSet contains 'H("ran ,ind p+3) .

A E(ind,p)
TSet("cha") | > ind, >0 ind,
/ \ \ / \ NN X
“ran” at W> W3z ... W,

(ind, p+3)?

"
Substring Search

Goal: match relative pos. (query) to absolute pos. (keyword)

W(ind) contains "cha” at pos. p and "ran” at pos. p+3
n TSet(“cha”)={ ..., E(ind,p), ...}

m XSet contains ... 'H("ran ,ind p+3) |

We need two-party computation:
Client Input: x‘rrap(“mn@ Server (Eddie) Input: E(in
Eddie's Output: H("ran",ind(p+3

"
Substring Search: Conjunction Protocol

Client: strap("cha"), x’rmp(“r'an",\ét) Eddie: Esh,ap(uchan)(ind@
Eddie's Output: H("ran”, ind,[p+Al)

Recall Our Regular Conjunctive Protocol (w/o positions):

Client: PRF,("cha") , PRF,(*ran") Eddie: y = EnCopr,chan(ind)

H("ran", ind) = (PRF,("ran")) ind
y =ind / z,,., where otp z_,. derived from PRF,("cha")

1. CsendstoS: A = (PRF,("ran"))(zer)
2. Scomputes AY = ((PRF,("ran")) @) (ind/zer) = (PRF,(“ran"))ind

"
Substring Search: Conjunction Protocol

Client: strap(“cha"), xtrap(“ran”, A) Eddie: Egtpapechany(ind,p)
Eddie's Output: H("ran”, ind, p+A)

Modifications to account for positions:

Client: PRF,("cha") , PRF,("ran"), A Eddie: y = Encppp,chan(ind)
Y' = ENCppr,chany(indP)
H("ran", ind) = (PRF,("ran")) ind ucha,,iposp
y - lnd / chr‘ in record ind

1. CsendstoS: A = (PRF,("ran"))(zer)
2. Scomputes AY = ((PRF,("ran")) @) (ind/zer) = (PRF,("ran"))ind

"
Substring Search: Conjunction Protocol

Client: strap(“cha"), xtrap(“ran”, A) Eddie: Egtpapechany(ind,p)
Eddie's Output: H("ran”, ind, p+A)

Modifications to account for positions:

Client: PRF,("cha") , PRF,("ran"), A Eddie: y = Encppp,chan(ind)
Y = ENCppe,chany(indP)

N
HCran”, ind, p)= (PRF(ran")) (%)

y=ind/ z, H PRF under q-DDH for
q = maxp

1. CsendstoS: A = (PRF,("ran"))(zer)
2. Scomputes AY = ((PRF,("ran")) @) (ind/zer) = (PRF,("ran"))ind

q

q-DDH: given 9,g,g<°,g*°,.....g<" cannot tell gxq+1 from $

"
Substring Search: Conjunction Protocol

Client: strap(“cha"), xtrap(“ran”, A) Eddie: Egtpapechany(ind,p)
Eddie’'s Output: H("ran”, ind, p+A)

Modifications to account for positions:

Client: PRF,("cha") , PRF,("ran"), A Eddie: y = Encppp,chan(ind)
Y' = ENCppr,chany(indP)

H("ran", ind, p) = (PRF,("ran")) (indP)

y =ind / z.
y' =indP/v,. , where v . derived from PRF;("cha")

1. CsendstoS: A = (PRF,("ran"))(zer)
2. Scomputes AY = ((PRF,("ran")) @) (ind/zer) = (PRF,("ran"))ind

"
Substring Search: Conjunction Protocol

Client: strap(“cha"), xtrap(“ran”, A) Eddie: Egtpapechany(ind,p)
Eddie’'s Output: H("ran”, ind, p+A)

Modifications to account for positions:

Client: PRF,("cha") , PRF,("ran"), A Eddie: y = Encppp,chan(ind)
Y' = ENCppr,chany(indP)

H("ran", ind, p) = (PRF,("ran")) (indP)

y =ind / z.
y' =indP/vg,

1. CsendstoS: A = (PRF,("ran")) ((zetr)® - Verr) ;and A
2. Scomputes AY = ((PRF,("ran")) @) (ind/zer) = (PRF,("ran"))ind

10

"
Substring Search: Conjunction Protocol

Client: strap(“cha"), xtrap(“ran”, A) Eddie: Egtpapechany(ind,p)
Eddie’'s Output: H("ran”, ind, p+A)

Modifications to account for positions:

Client: PRF,("cha") , PRF,("ran"), A Eddie: y = Encppp,chan(ind)
Y' = ENCppr,chany(indP)

H("ran", ind, p) = (PRF,("ran")) (indP)

y =ind / z.
Y' =indP/v,

1. CsendstoS: A< (PRF,("ran")) ((zetr)® - Verr) ;and A
2. S computes @ = ((PRF,("ran")) (@em)® - verr) y (ind/zetry™ - indP/verr)
= (PRF,("ran")) ind Pea = H("ran", ind, p+A)

11

"

Extensions

m Wildcards: immediate application of above technique:
cha _ _ _ jit: same as (s-term = cha, x-term = jit, A =6)
m The described solution assumes s-term is a k-gram, but how about

0 “Iname = Jutla” and "name like %ara _ jit" ?

1 We add a data structure XTset which encodes a// positions of a given
k-gram in a record

m Can mix grams of different sizes, e.g. 3-grams as s-terms with
1-grams as x-terms for more flexibility

1 no pre-processing/EDB cost, moderate online overhead (more conjuncts)
m Proximity queries: Phrase queries "Bar Ilan University"

12

Range Queries

13

" JEE
Preprocessing DB

Attribute valued 0..K=2k (or any other range)
Build binary tree with values as leaves (tree height = k = log max range)
Add k columns: i-th column describes nodes of height i
Each new column acts as a new attribute in DB
Attribute-value pairs: (height,node)
Record w/ value v = columns include nodes from v to the root

root (0,101) (1,10) (2,1)

/\
/\ /\

/\ /\ /\ /\

000 001 010 011 100 101 110 111
v =101

14

"

Query

Query [q0.9:] : Client chooses cover of [q,.q;] interval, namely:
(h;¢1).,..., (hy cy) (c;describes a node, h; describes its height)

Client queries a reqgular disjunction
“exact-match(h; ¢;)" OR .. OR "exact-match(h; c,)"

root

/\
/\ /\

/\ /\ /\ /\

000 001 010 011 100 101 110 111
o =001 v =101 q, = 111

15

"

Query

Query [q0.9:] : Client chooses cover of [q,.q;] interval, namely:
(h;¢1).,..., (hy cy) (c;describes a node, h; describes its height)

Client queries “"exact-match(h; ¢;) OR ... OR exact-match(h; c,)"

e.g. (0,001) OR (1,01) OR (2,1)

root

/\:
/\ /\

/\ /\ /\ /\

LN]
. e
o 0‘

000 %001: 010 011 100 101 110 111
o =001 v =101 q, = 111

16

"

Range Query Authorization

Our policy authorizes range query based on total size of range
Client discloses heights to Debbie (the attributes) with which
Debbie computes total size (e.g. 20+21+22=7)
Client is allocated a max allowed range by policy

we do not guarantee contiguous range

root

/\:
/\ /\

/\ /\ /\ /\

LN]
. e
o 0‘

000 %001: 010 011 100 101 110 111
o =001 v =101 q, = 111

17

" JEE
Privacy Concern

Assume client always chooses a minimal cover (min # nodes)
Client discloses heights (the query attributes) to Debbie
Debbie learns total size (good) but...

.. can distinguish b/w different ranges of a given size (bad)
E.g. [4,7] has cover w/single node while [1,4] needs 3 nodes

root

/\:
/\ /\

/\ /\ /\ /\

LN]
. e
o 0‘

000 =001+ 010 011 lOO 101 110 111

18

0
B
Privacy-Preserving Covers
Universal Covers
Def: The profile of a cover is the set of heights: eg. {0, O, 1} vs {2}
Are there universal covers? I.e. a way to choose covers such that
all ranges of a given size have the same profile?
Answer is yes (e.g. set of leaves). More interesting (minimal universal)
Size 20 = 15+5 > (1+2+4+8) + (1+4) > profile (0,1,2,3,0,2)
We use universal covers to hide anything but total size from Debbie
We call these "canonical covers”

3-node universal covers
Canonical covers: up to 2 log n nodes - can we have them smaller ?
Not possible in general, except if we're willing to expand the range
3-node universal over-covers exist for all ranges (40% avg overhead)
Offers tradeoffs in performance and leakage

19

"
Leakage from Range Queries
For Debbie:

m The fotal size of the queried range (necessary to apply policy)

For Eddie:

m |eakage for atomic range query with cover wy=(h;,c;) ..., w, =(h,.c,) is
same as for OXT disjunction “w; or ... or w,"

o |DB(w;)| fori=1,.n, DB(w;or..orw,) (3-node solution better here)

m For composite queries, leakage is same as OXT where the range query
is replaced with "w; or ... or w,"

For Client:

m Mask(|DB(w;)|) fori=1,..,nif range query acts as s-term

20

" JE
Time/Space Overhead
for Substring and Range Queries

m Both are non-interactive as any other queries in OXT (one msg from C,
matching encrypted ind's from E)

m Substring/wildcards queries

Space: ~1.8 times tuple size (Ph 1), O(n) tuples for each n length field

Online: n/4 exponentiations for n-long substring/wildcard query

= "4" is from 4-grams

m Range queries

log N new columns per range-searchable attribute

= N=max searchable range size

~N Tset's

Online: (log n)-term disjunction (n = size of gueriedrange), or 3 in 3-node
21

"
Subsequence Generalization:
Proximity Queries

m A generalization of our substring technique

m Can do search of the form (e;.e,,A) meaning

Return all records where element e, is at distance A from e, (A can be
hegative)

m Examples:
e; are k-grams: resolves substrings and wildcards

e; are textual words: resolves phrases (e.g., "Bar Ilan University")

Multi-dimensional distances (e.g., grid), etc.

22

Subsequences Leakage to Eddie

Reminder: Leakage from conjunctions wy; A ... A w,,

1.

2.

3.

4.

5.

Index size = upper bound on %, |Doc(w;)]

Number of terms in each conjunction

Size of s-term set |Rec(w;)| and whether s-term repeats
Size of Rec(w;aw;) , j=2,.., n

For queries w; A x and wy' A X', if x=x"and Rec(w; A wy) 2 ¢,
then E learns that x=x' and the encrypted rind's in Rec(w; A w;')

Leakage is similar for subsequence queries with s-term k-gram w; and
x-term grams w,,..,w, except for more involved 5' (stated for 2-term query)

For queries w; A x and wy' A X', with offsets A; A,

if x=x' and there exist ind in Rec(w; A wy) and p, p’' such that

wy is in position p in ind and wy' in position p' in ind, and p-p'= As- A,
then E learns that x=x', and the encrypted pairs (ind,p), (ind,p’).

Plus: offset A leaks - can be avoided with a round of communication C-E
23

