
1

Searchable Encryption

Hugo Krawczyk

IBM Research

Winter School – Bar Ilan University – January 2015

Class Plan (time permitting)

 Part 1: Overview/Intro (BIU-hugo-1-overview.pdf)

 The searchable encryption problem, models and functionalities

 Dedicated solutions and state of the art (OXT Protocol)

 Part 2: The OXT single-client protocol

 Single keyword search (BIU-hugo-2-SKS.pdf)

 Conjunctions and Boolean queries (BIU-hugo-3-OXT.pdf)

 Range and substring queries (BIU-hugo-4-complex.pdf)

 Part 3: Multi-client and OSPIR settings (BIU-hugo-5-OSPIR.pdf)

 Part 4: Other solutions, attacks and research questions

 (Slides at the end of BIU-hugo-1-overview.pdf)

 2

The Data-in-the-Cloud Conundrum

 Your data in the cloud: email, backups, financial/medical info, etc.

 Data is visible to the cloud and to anyone with access (legitimate or not)

 At best, data is encrypted “at rest” with the server‟s keys and decrypted upon use

 Q: Why not encrypt it with your (data owner) own keys?

 A: Utility, e.g. allow the cloud to search the data (e.g. gmail)

 Can we keep the data encrypted and search it too?

3

Can I eat the cake
and have it too?

© Webweaver.nu

SSE: Searchable Symmetric Encryption

 Owner outsources data to the cloud: Pre-processes data, stores the

processed and encrypted data at the cloud server

 Keeps a small state (e.g. a cryptographic key)

 Later, sends encrypted queries to be searched by the server

 e.g. return all emails with Alice as Recipient, not sent by Bob, and containing
at least two of the words {searchable, symmetric, encryption}

 Goal: Server returns the encrypted matching documents w/o learning

the plaintext query or plaintext data

 Some forms of statistical leakage allowed: data access patterns (e.g. repeated

retrieval, size info), query patterns (e.g., repeated queries), etc.

 Plaintext data/queries never directly exposed, but statistical inference possible

 Protects against break-ins, cloud insiders, even “surveillance attacks”

4

ENCowner(DB)

5

The cloud cannot disclose your data... not even at gun point!

With SSE…

SSE before 2013

 Generic tools: FHE, ORAM, PIR

 Expensive

 BUT ORAM getting closer to practice for moderate size DBs (Benny Pinkas talk)

 great* security

 *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB‟11]

 Practical but significant leakage (Naveed-Kamara-Wright, CCS‟2015)

6

Deterministic and order preserving

7

Name Lastname Age

Elaine Samuels 24

Mary Stein 37

Jim Stein 81

John Sommers 3

Mary Williams 17

John Garcia 43

John Gould 37

Name Lastname Age

Ge5$#u Q*6sh# 223

E89(%y 2@#3Br 340

2Tr^#7 2@#3Br

736

qM@9*h gYv6%t 34

E89(%y X%3oL7 160

qM@9*h wnM7#1 308

qM@9*h 8vy8$Z 340

Attack on CryptDB

 Methodology

 Input: CryptDB-encrypted medical database DB1 (hundreds of hospitals)

 Training data: Plaintext medical data from public database DB2

 Output: Decrypted DB1 data via correlation analysis

using DB2 as training data

 Basic attacks: frequency, sorting and cumulative analysis

 Results (for each analyzed column): “at least x% correctly decrypted

records in y% of the hospitals” (denoted x/y). Examples:

 Race=60/69 (race guessed correctly for at least 60% of patients

in 69% of the hospitals – race admits 6 values)

 Major Diagnostic Category = 40/27 (admits 25 values)

 Age 95/78 (125 possible values)

 Age (125): 95/78;

8

“Inference Attacks against Property-Preserving Encrypted
Databases” Naveed-Kamara-Wright. CCS‟2015.

SSE before 2013

 Generic tools: FHE, ORAM, PIR

 Expensive (ORAM getting closer to practice for moderate size DBs)

 great* security

 *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB‟11]

 Practical but significant leakage (Naveed-Kamara-Wright, CCS‟2015)

 Name of the game: Security-Functionality-Performance

9

Tradeoffs

SSE before 2013 (cont.)

 Dedicated SSE solutions*:

 Single-Keyword Search (SKS) [SWP‟00, Goh‟03, CGKO‟06, ChaKam‟10, …]

 “privacy optimal“ (if we don‟t count encrypted query results as leakage)

 Conjunctions: Very little work

 naive (n single-keyword searches),

 GSW‟04: structured-data, LINEAR in DB, communication-pairings tradeoff

 Practicality limitations

 single-keyword only support, limited support for dynamic data

 non-scalable design (esp. adaptive solutions), no I/O support for large DBs

 little experimentation/prototyping

* Survey: Bosch-Hartel-Jonker-Peter ACM Comput. Surv. 47, 2, Article 18

 http://eprints.eemcs.utwente.nl/24788/01/a18-bosch.pdf

10

ESPADA/OXT (our technical focus)

 Joint work IBM-UCI teams:

 David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit Jutla,

Quan Nguyen, Marcel Rosu, Michael Steiner

 Crypto‟13, CCS‟13, NDSS‟14, ESORICS‟15

 IARPA SPAR Program

 Reduce agencies„ reluctance to share information (9/11, Boston bombing)

 Preparing for a post-PATRIOT world (DHS has a “chief privacy officer”) *

* alturl.com/ot72x

 Co-performers: Columbia + Bell Labs - Blind Seer [Oakland 14 + 15]

 Guest presentation: Ben Fisch

11

X
Snowden

ESPADA: Extends SSE in 4 dimensions

1. Functionality (well beyond single-keyword search):

□ Conjunctions □ General Boolean expressions (on keywords)

□ Range queries □ Substring/wildcard queries, phrase queries

Search on structured data (relational DBs) as well as free text

2. Scalability:

 terabyte-scale DB, millions documents/records,

billions indexed document-keyword pairs

 Dynamic data

 Validated implementation, tested by a third party (IARPA, Lincoln Labs)

3. Provability: “imperfect security” but with provable leakage profiles

(establishing upper bounds on leakage), well-defined adversarial models

12

This work: extends SSE in 4 dimensions

4. New application settings and trust models

 Multiple clients: Data owner D outsources Encrypted DB to cloud;

clients run queries at the cloud but only for queries authorized by D

 Leakage to cloud as in basic SSE, client only learns documents matching

authorized queries (policy-based authorization enforced by data owner)

 Blind authorization: As above but authorizer enforces policy without

learning the queried values (we call it “Outsourced Symmetric PIR”)

 Assumes non-collusion between cloud and data owner

 Note: multi-reader, single-writer system (no public key encryption)

13

Example Applications

 Example: Hospital outsources DB, provides access to clients

(doctors, administrators, insurance companies, etc.)

 Policy-based authorization on a client/query-basis

 Hospital doesn‟t need to learn the query, only (blindly) enforce policy

 Good for security, privacy, regulations

 Warrant scenario (extended 4-party setting)

 Judge provides warrant for a client C (e.g. FBI) to query a DB

 DB owner enables access but only to queries allowed by judge

 DB owner does not learn warrant content or queries

 Client C (e.g., FBI) gets the matching documents for the allowed queries

and nothing else

14

Obama‟s 3rd Party
Solution (phone data)

Large-Scale & Functional Implementation
(OXT)

 Support for arbitrary Boolean queries on all 3 (extended) SSE models

 Validated on synthetic census data: 10Terabytes, 100 million records,

> 100,000,000,000=1011 indexed record-keyword pairs !

 Equivalent to a DB with one record for each American household and 1000

keywords in each record and any boolean query (including textual fields)

 Smaller DB‟s: Enron email repository, ClueWeb (>> English Wikipedia)

 Support for range queries, substring/wildcards, phrase queries (5x perf. cost)

 Dynamic data: Supports additions, deletions and modifications of records

18

Scalability

 Preprocessing scales linearly w/ DB size (minutes-days for above DBs)

 Careful data structure, crypto and I/O optimizations

 Can benefit on any improvement on single-keyword search

 Search proportional to # documents matching the least frequent

term: w1 Λ B(w2,…, wn) (w1 called the s-term)

 Single round to retrieve matching document indexes (tokens from client

to server, matching indices back; retrieve encrypted documents)

 Query response time: Competitive w/ plaintext queries on indexed DB

19

4 seconds: fname='CHARLIE' AND sex='Female' AND

 NOT (state='NY' OR state='MA' OR state='PA' OR state='NJ)

on 100M records/22Billion index entries US-Census DB

Crypto Design-Engineering Synergy

 Major effort to build I/O-friendly data structures

 Critical decision: Do not design for RAM-resident data structures

(it severely limits scalability)

 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk)

 Need randomized data structures to reduce leakage and need
structured ones to improve I/O performance (locality of access)

 Cryptographic index based on elliptic curve cryptography

(optimized for very fast exponentiation, esp. with same-base)

Typically: I/O and network latency dominate cost

 On a midsize storage system: ~300 IOPS (I/O Operations Per Second)

 ~1000 expon‟s per random I/O access (133 w/o same-base optimization)

 Data encryption uses regular symmetric crypto (e.g., AES)
20

500,000/sec, 8 cores, same-
base opt , 100-1000 per IO

Security: The challenge of being imperfect

 Good news: Semantic security for data; no deterministic or order

preserving data encryption

 But: Security-Performance trade-offs  Leakage to server

 Leakage in the form of access patterns to retrieved data and queries

 Data is encrypted but server can see intersections b/w query results (e.g.
identify popular document, intersection b/w results of two ranges, etc.)

 Server learns query function (not values/attrib‟s); identifies repeated query

 Additional specific leakage (more complex functions of DB and query history):

 E.g. we leak |Doc(w1)| and in query w1 Λ w2 Λ…Λ wn we leak |Doc(w1 Λ wi)|

 E.g. the server learns if two queries have the same w1 (other terms are hidden)

 Leads to statistical inference based on side information on data

(effect depends on application), masking techniques may help

21

Security: The challenge of being imperfect

 Security proofs: Formal model and precise provable leakage profile

 Security modeling and definitions follow simulation paradigm [CGKO, CK]

 Leakage profile: provides upper bounds on what‟s learned by the attacker

 Syntactic leakage vs “semantic leakage”

 Need to assess on an application basis and relative to a-priori knowledge

 For example, formal leakage proven even if attacker can choose data and
queries – but in practice semantic leakage will be substantial in this case.

 E.g. Cash, Grubbs, Perry, Ristenpart, CCS‟2015 (Sasha‟s talk)

 Even the “basic leakage” from access to encrypted results (e.g., sizes and
intersections) can be very significant in some cases

 Yet, we expect in many cases to provide meaningful (if imperfect)

security (in particular, relative to property-preserving solutions)

22

Columbia/Bell Labs Solution (Blind Seer)

 Parallel work: Same IARPA project – papers at [Oakland‟14, 15]

 Elegant solution based on Bloom filter trees with Garbled Yao for

privacy and authorization

 Conceptually simpler than ours; e.g., no need to choose s-term

 Symmetric crypto and multi-party computation techniques (Yao) (instead

of homomorphic operations in our case)  much faster pre-processing

 Less scalable: Bloom filters are inherently random access

DB sizes limited by the size of RAM

 Single client, limited negations

 Many trade-offs with ESPADA (but incomparable leakage)

 e.g., Bloom filter path vs. w1-related leakage

 23

Practice

 Is CryptDB (and other DetEnc/OPE solutions) sufficient in practice?

 Is their leakage acceptable?

 Who is the attacker?

 What do regulations say?

 Is it enough to not being the weakest link?

24

Practice

 CryptDB (and other DetEnc/OPE solutions) are legacy friendly .

But is their leakage acceptable?

 Who is the attacker?

 What do regulations say?

 Is it enough to not being the weakest link?

25

Need more “privanalysis” – current
attacks just scratch the surface

Closing Remarks and Future Work

(following slides will be presented

in the closing class)

26

Challenges

 Leakage: how do we characterize, prove, evaluate

 Tradeoffs: interplay security-performance (asymptotics & concrete)

 space/computation/privacy

 Close engineering-theory interaction: keep it simple!

 can't throw the heavy weapons on the problem

 Prove! Crypto design w/o proof not worth much (especially if you are

going to build/use the system)

 Complicating a proof is fine, complicating a solution is not

27

Lot of…

 Room for improvement (functionality, privacy, performance)

 Interesting research questions

 Trade-offs to resolve

 Fundamental bounds to be proven

 Theories and models to be developed

 Privanalysis attacks to make you famous (easy to get papers accepted…)

 Dealing with “the challenge of being imperfect”

 Leaving the “all-but-negligible security guarantees” paradise

 Is there an acceptable compromise? Should we abandon it to ad-hoc

practitioners? Too dirty for our souls?

28

Research Questions (partial list)

 Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp‟n

 Fundamental limits (leakage-computation tradeoffs), e.g.:

 leakage from returned ciphertexts (ORAM helps but at significant cost)

 Frequency of w1 (least frequent term) (reduction from 3SUM)

 “Semantic leakage”: Proving formal leakage is nice but how bad is it

for a given particular application, what forms of masking can help?

 Can we have a theory to help us reason about it (cf. differential privacy)?

 A theory of leakage composition? Guidance for masking techniques

 Attacks welcome! IKK‟12, KNW‟15, CGPR‟15 just scratched the surface

 Characterizing privacy-friendly plaintext search algorithms/data str.

 A more complete SQL query set (esp. joins)
29

Tradeoffs

 Tons of privacy-performance trade-offs examples

 BXT vs OXT vs PXT (computation/communication), Masking s-terms and

Xset (space), Bloom filters (false positives), network-latency, and more

 Fundamental: ???

 Privacy/performance bounds?

 E.g., the intrinsic cost of perfect secrecy

 But how about bounds in terms of necessary leakage

 E.g. in the case of perfect secrecy even a 1 bit of leakage can be really bad

 Any hope for trade-offs between “polynomially-related” objects?

31

Example: s-term leakage

 OXT leaks the size of |DB(w1)| (w1 is the least frequent conj. term)

 Necessary? “Yes”. Can you prove it? No.

 Conjecture: any conjunctions algorithm will leak (via running time)

an upper bound on |DB(w1)|, except if

 Search is padded to maxw |DB(w)| size ( search is linear in |DB|)

 Or: Conjunctions pre-computed ( pre-processing is super-linear)

 Why? Consider 2 conjunctions that return the same small # of

records, one with 2 infrequent terms, one with 2 very frequent terms

 “name=David and gender=Female” vs “name=Charanjit and lastname=Jutla”

 We conjecture a lower bd on plaintext search (hence on encrypted)

 Reduction from 3SUM (based on [P‟10])

32

Join the (multi) Party…

 An exciting & large space to explore with many many research
opportunities!

 … and many practical applications

 Very timely given cloud migration, explosion of private info, and strong

attackers (including surveillance, espionage, mafia, and just hackers…)

 An opportunity for sophisticated crypto in the real world?

34

Summary
 Great progress relative to work on single-keyword single-client SSE

 Rich queries: General Boolean queries (structured data, free text),

Plus: range, substring, wildcards, phrase, proximity

 Huge DBs: 10 TB, 100M records, 1011 indexed keyword-document pairs

 EDB creation linear in DB size, queries competitive with MySQL

 Single- and Multi-Client models, policy-based delegation of queries

 Authorization w/o learning query (“Outsourced Symmetric PIR”)

 Privacy, insider security, surveillance protection, warrant enforcement

 Imperfect security: Leakage from access- and query-patterns, but

well defined leakage profiles, and simulation-based adaptive security

 Many challenging theoretical and engineering questions

 Going for practice? Don‟t forget simplicity, engineering and… proofs!

35

 Crypto‟2013: Boolean search, single client eprint.iacr.org/2013/169

 CCS‟2013: Multi-client, Blind authorization eprint.iacr.org/2013/720

 NDSS‟2014: Dynamic data, implementation eprint.iacr.org/2014/853

 ESORICS 2015: Range, Substrings, Wildcards, Phrases 2015/927

36

Thanks!

Backup

37

Single Keyword Search (SKS)

1

Graphics courtesy of David Cash

Single-Keyword Search (SKS) in SSE

 SSE (searchable symmetric encryption)

 A client C (both client and data owner) and server E (* Charlie, Eddie *)

 Client C transforms its plaintext DB into “encrypted DB” (EDB) that

includes encrypted records and metadata;

 EDB stored at server E; C only keeps a cryptographic key

 SKS: Given keyword w return indices of documents containing w

 Important: model simplified by abstracting out retrieval (and enc/dec)

of documents (note: variable vs. fixed-length ciphertexts)

 SKS at the basis of all our solutions

2

SKS with Cleartext Lists

3

Inverted index

 1 Encrypted keyword tags

1. Build inverted index (each keyword points to record id’s)

2. Choose key K and replace each keyword with PRF tag F(K,w)

3. Client saves key K

 2 Search protocol

Encrypted index

1. Client sends F(K,w)

2. Server retrieves proper row

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

4

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

‣ additionally encrypt rows under different keys

‣ requires modification of server, but more secure

SKS with encrypted lists

There should no leakage on individual
size of record lists

5

6

How to maps lists into memory

server can observe memory touched during searches:

composition of untouched

regions reveals info about

unopened part of index!

➡ e.g. 7 remaining spots

do not correspond to a

single list

7

Touched on

search 1:

Touched on

search 2:

Keyword Document IDs

Rutgers 4,9,37

Admissions 9,19,93,94,95

Committee 8,76,89,90

Accept 2,35,62,75

1. Search w0,1 = “Rutgers”

2. Search w0,2 = “Admissions”

Keyword Document IDs

Soil 9,19,93,94,95

Plants 4,9,37

Flowers 9

Rose 9,15,42,75,78

Pots 9,37

Index I0 Index I1

1. Search w1,1 = “Plants”

2. Search w1,2 = “Soil”

A distinguishing example

‣ pad all encrypted lists to size N

‣ store lists in rows in random order

‣ pad with extra dummy lists to hide # lists

…

pad to N ⟹ hides list sizes

pad to N

⟹

hides no.

of lists

Secure solution: Maximal Padding [CK]

1. put ciphertexts in random order in array

2. link together lists with encrypted pointers

(example with pointers

for word “Accept”)

10

Secure solution:
Random Access Linked List [CGKO]

Randomness vs. Structure

 We need randomness to avoid leakage to server

 … but we pay with wasted memory (padding solution)

 … or we pay with random access (linked list solution)

 Tradeoff: Random-access lists with multiple elements per entry

 Each entry = fixed-size bucket (wasted space/read in half-filled buckets)

 Lower bound [CT’14]: Cannot be simultaneously optimal in:

 … locality, total space and goodput (read utilization)

 Asharov et al.: asymptotics close to optimal (can it be practical too?)

11

Packed Solution [NDSS’14*]

 Hybrid: Random-access lists with multiple elements per entry

 Each entry = bucket

 But single-size buckets don’t work well with high-variable DB(w) sizes

 Hence we use a two-layer solution: buckets of pointers, each pointing to a

block of identifiers

 Plus: we use two-sized bucket* for optimizing goodput

 Pointer lists implemented w/history-independent dictionary structure

Identifier blocks of arranged in an external array (parallel access!)

 lists incur in storage allocation overhead but array does not

* NDSS’14 in eprint 2014/853; see C’13 eprint 2013/169 for a simpler scheme

12

documents
with w in them

Faster Pre-Processing and Better Goodput

Πpack : Bucket (Paged) Hash (PH) Π2lev: Two Levels (2L)

● Low storage utilization (~60%)
● Cuckoo Hash fix (~90% util):
sensitive to insertion history
● Low goodput

● Multi-modal keyword distribution
● Good storage utilization (92%)
● High goodput.

LEAKAGE

14

Security Formalism (adversarial server)

 Based on the simulation-based definitions given for SKS [CGKO,CK].

 There is an attacker E (acting as the server), a simulator Sim and a

leakage function L(DB, queries):

 Real: Attacker E chooses DB and gets the pre-processed encrypted DB,

then interacts with client on adaptively chosen queries

 Ideal: Attacker E chooses DB and queries (adaptively),

E gets Sim(L(DB)) and Sim(L(DB,queries))

A SSE scheme is semantically secure with leakage L if for all

attackers E, there is a simulator Sim such that the views of E

in both experiments are indistinguishable

 Server learns nothing beyond the specified leakage L even if it knows

(and even if it chooses adaptively) the plaintext DB and queries

 15

SKS Leakage

 In all cases: Result set (matching enc’d documents) + query repetition

 Basic solution: Randomized linked list

 “Minimal” leakage: Only total number of record-keyword pairs

 ∑(𝑤∈𝑊) |𝐷𝐵(𝑤)|

 Better locality: Packed list (lists of blocks of size B)

 Leakage: ∑(𝑤∈𝑊)
|𝐷𝐵(𝑤)|

𝐵
 (incomparable leakage with above)

 2-level implementation (blocks of b pointers, each to a block of size B

 Leakage = Size of external array (function of param’s b and B)

 Adaptive security with ROM (“programmable PRF”) or client interaction

 16

Example for leakage analysis

17

pad to N ⟹ hides list sizes

pad to N

⟹

hides no.

of lists

Proving leakage (toy case)

 Consider a simple strategy where all w’s are assigned equal-length

arrays [Cash-Kamara]

 Memory divided into N arrays, each of size M ; N ≥ |W|, M≥ |DB(w)|, ∀w∈W

 Each w in W is assigned one array (at random) which contains the permuted

and encrypted set of all ind ∈ DB(w).

 Client processes query w by sending (K1,K2)=F(K,w) where K1 points to the

w-array and K2 is used to decrypt each ind ∈ DB(w).

 Leakage for queries w1,…,wn = {M, N, DB(wi) i=1,…,n, {(i,j): wi=wj} }

 Simulator (static): Given leakage profile: □ creates N arrays of size M;

 chooses key K, and ∀ i, computes (K1,K2)=F(K,wi);

 for ind ∈DB(wi) (in permuted order) stores Enc(K2,ind) under array K1;

 fills all other arrays with random values (assumes pseudorandom ciphertexts)

18

Proving adaptive security

 Same as above but

 All arrays are initially filled in with random values

 PRF replaced with RO which programs the DB(w) entries for each new query w

OR

 The decryption is done by the client sending a decryption pad for each ind in

DB(w) – still a single message from client to server but of length |DB(w)|.

19

SKS Attacks [CGPR’15]

 See Sasha’s presentation (IsraelWinterAB15Parts2,3.pptx #87…)

 Very basic attacks focusing on the following cases:

 Known documents and enc’d keywords  learn per-keyword doc count
which they claim is unique for a large fraction of keywords (use count
to match b/w ptext and enc’d words, use intersection sizes for the rest)

 Unknown documents but encrypted keywords stored in the positions
(w/repetitions) they appear in the document (substitution code)

 Input to attack is a small number of representative ptext docs (w/enough
words in them) and the corresponding encrypted keywords

 Previous item but keywords given w/o order, they use an active chosen-
document attack

 Application to sound SKS (e.g. OXT):

 First attack applies for actually queried keywords (if ptext DB is known);

 last attack will apply only after most of the keywords were actually queried

20

1

Searchable Encryption:

OXT Protocol (Single Client Setting)

Hugo Krawczyk

IBM Research

Winter School – Bar Ilan University – January 2015

Terminology

 Client = Charlie C, Server = EDdie E

 In the multi-client setting (covered later) DB owner called DeBbie

 DB = collection of plaintext records (aka documents) owned by client C

 EDB (encrypted DB): data stored at E (encrypted records + metadata)

 ind = index to plaintext records (whose order is randomized)

 DB(w)={ind1, ind2,…} indices of records containing w

 W(ind) = set of words contained in record ind,

 W = the set of all words in DB, i.e. W(𝑖𝑛𝑑)𝑖𝑛𝑑

2

Single-Keyword Search (SKS) in SSE

 SSE (searchable symmetric encryption)

 A client C (both client and data owner) and server E

 Client C transforms its plaintext DB into “encrypted DB” (EDB) that

includes encrypted records and metadata;

 EDB stored at server E; C only keeps a cryptographic key

 SKS: Given keyword w return indices of documents containing w

 Important: model simplified by abstracting out retrieval (and enc/dec)

of documents (note: variable vs. fixed-length ciphertexts)

 SKS at the basis of all our solutions

3

Conjunctive (and Boolean) Queries

 Cash et al, Crypto 2014, eprint 2013/169

4

Conjunctions: the naïve solution
(conj = w1 Λ w2 Λ … Λ wn)

 Run single-keyword-search on each wi to get ind’s for each wi,

then retrieve ind’s in intersection

 Performance: Work proportional to the sum of matching sets for

each term, i.e. |DB(w1)|+…+|DB(wn)|

 Sum of costs of n single-term searches

 Prohibitive with low entropy terms, e.g. “lastname=Jutla ˄ gender=male”

 Leakage: ind’s for each DB(wi) leaked

 Same effect as if each wi was queried separately

 union of leakages rather than their intersection

 Need to improve both cost and security…

 5

6

Conjunctions via Forward Index
(unencrypted)

 Inverted index: keyword w points to records containing w

 w DB(w) = {ind1, ind2,…, indt}

 Forward index: record points to all its keywords w

 ind  W(ind) = {w1,…,wm }

 Conjunction algorithm (conj = w1 Λ w2 Λ … Λ wn)

 Let w1 be the term with smallest DB(wi) set.

 For each ind in DB(w1) and each wj in conj, check if wj in record ind.

If tests succeeds for all wj , j=2…n, return ind.

 Terminology: s-term vs x-terms

 w1 Λ w2 Λ … Λ wn

w1 

Resolving w1 Λ w2 Λ … Λ wn (w1 least frequent)

with forward indexing

7

indi

? ? ?

indm ind1 … 

? ? ? ? ? ?

… 

w2 w3 … wn
w2 w3 … wn w2 w3 … wn

return indi iff it contains all w2,…,wn

 Implementation trick: Build set XSet of hash values as follows

 For each record ind and each w in W(ind): add H(ind,w) to XSet

 To test if w ∈ W(ind) check if H(ind,w) ∈ XSet

  ∀ ind ∈ DB(w1) return ind iff H(ind,wj) ∈ XSet for all j=2,…,n

inverted index

forward index

s-term

x-terms

return indi iff H(ind,wj) ∈ XSet for all j=2,…,n

Private Forward Indexing

8

xindi

? ? ?

xindt xind1 … 

? ? ? ? ? ?

w1  … 

w2 w3 … wn w2 … wj … wn
w2 w3 … wn

 Implementation: stag1=fk(w1) xtrapj=fk*(wj) k
*≠k two prf keys

 Preprocessing:  xind and w in xind: add H(xind, xtrap(w)) to XSet

 Client hands to E: stag1 and xtrap2 ,…, xtrapn

 E returns record xind in stag1 if for all j>1, H(xind, xtrapj) ∈ Xset

(Basic Cross-Tag Protocol – BXT)

w1 replaced
with fk(w1)

wj replaced
with fk*(wj)

=stag1

=xtrap(wj)

was H(ind,w)

Computational cost of BXT

 E work is proportional to |DB(w1)|: Major improvement over naïve sol’n

 In naïve, cost is |DB(w1)| + |DB(w2)| + … + |DB(wn)|

(min vs max, e.g. gender=male)

 Choosing w1 right is important: Based on DB statistics

 “Non-interactive”: Single short message from C to E and E sends

back results

9

BXT Leakage

 Leakage to E: Substantial improvement over naïve solution –

reduces correlation between x-terms across same or diff queries

 When wi and wj are x-terms in same or diff queries nothing is learned

about DB(wi) and DB(wj) other than via intersections with s-terms

 E learns repeated terms in different queries and learns the sizes of

DB(w1) and of DB(w1˄wi) for each x-term wi in the same query.

 E learns ind’s of all s-terms ( their size and intersections).

 Since E learns xtrap for each x-term wi , it also learns DB(w1)DB(wi) for

any pair of s-term w1 and x-term wi even across queries

 Next: How to reduce inter-query leakage. Avoid revealing ind’s

(inter s-term leakage) and xtrap’s (inter x-term leakeage)

10

Terminology to remember

 w1 w2 . . . wn

 s-term x-terms

C: strap xtrap (trapdoors: for C only)

E: stag xtag (tags: revealed to E)

xtag = elements of Xset (i.e. xtag = H(xind,xtrap))

Tset(w) (tuple set = inverted index)

 List FK(w)  (EncKw(ind1), … , EncKw(indm)) (SKS solution)

Tset = {Tset(w)}w∈W

TsetSetup(T), TsetRetrieve(Tset,stag), stagTsetGetTag(KT,w)

 14

15

Reducing cross-query leakage
(via oblivious computation)

 Recall (BXT):

 Client computes and hands to E: stag1 and xtrap2 ,…, xtrapn

 E returns record xind in stag1 if for all j>1, H(xind, xtrapj) ∈ Xset

 Goal: reduce cross-query correlations by hiding xtrap’s from E

 Idea 1: Interactive protocol b/w C and E (IXT)

 E sends each xind to C who sends back H(xind,xtrapj), j=1,…,n

 E learns H(xind,xtrap) but not xtrap and can check if conjunction holds

for xind – all xtrap-related leakage avoided

 (i) Extra round of communication; (ii) E can cheat sending xind from diff. s-term

(E learns forbidden intersections); (iii) leakage to client in MC-SSE (s-term inters.)

Yet, for HBC E and single-client SSE, IXT can be a great solution (w/ more latency)

16

Reducing cross-query leakage
(via oblivious computation)

 Recall (BXT):

 Client computes and hands to E: stag1 and xtrap2 ,…, xtrapn

 E returns record xind in stag1 if for all j>1, H(xind, xtrapj) ∈ Xset

 Goal: reduce cross-query correlations by hiding xtrap’s from E

 Idea 2: Replace H(xind, xtrapj) with secure computation (b/w E & C)

 C inputs xtrap, E inputs xind

 E learns H(xind,xtrap) but not xtrap; C learns nothing (e.g. xind)

 Solution: H(xind, xtrap) = xtrapxind mod p

(Group G=<g> of prime order p, xtrap ∈ G, xind ∈ Zp)

Interactive Solution

 H(xind, xtrap) = xtrapxind mod p

 E has “key” xind, C has xtrap

 C to E: a ⃪ xtrapz for z random in Zp

 E to C: b ⃪ axind

 C to E: xtag ⃪ b1/z (= xtrapxind)

 E searches xtag in XSet

 Problems:

1. E knows xind hence it learns xtrap (=xtag1/xind) (didn’t gain much)

2. E learns xind hence it learns relation b/w s-terms (e.g. |DB(s)∩ DB(s’)|)

3. Rounds of interaction

17

Non-Interactive Solution

 Interactive: E has key xind (from stag tuple), C has xtrap (from DB)

 C to E: a ⃪ xtrapz z random in Zp

 E to C: b ⃪ axind

 C to E: xtag ⃪ b1/z (= (xtrapz)xind/z = xtrapxind)

 Non-interactive: store xind blinded with a one-time blinding factor z

1. At setup: y=xind/z is stored at EDB;

2. At search C sends a=xtrapz to E (C derives xtrap from wj and z from w1)

 E retrieves y from EDB and sets xtag ⃪ ay (= (xtrapz)xind/z = xtrapxind)

18

avoids interaction (and prevents E from learning xtrap or xind!)

OXT: Oblivious X-Tags Protocol

 Non-interactive: store xind blinded by a one-time blinding factor z

1. At setup: y=xindz-1 is stored at EDB;

2. At search C sends a=xtrapz to E (C computes xtrap from wj and z from w1)

3. E retrieves y from EDB and sets xtag ⃪ ay

 OXT basics, 2-term conjunction example (w1,w2)

 EDB setup: ∀ w in W, for t=1 .. Tw=|DB(w)|

 store yt=xindzt
-1 in w-list with corresp. encrypted ind (zt=F(w,t) ∈ Zp)

 On query (w1,w2): C computes xtrap (a prf applied to w2)

 C sends to E stag(w1) and the Tw1–long vector {at=xtrap : t=1,…,Tw1 }

 For t=1..Tw1, E retrieves yt from stored w1-list, sets xtagt ⃪ at
Yt (= xtrapxind)

 E returns t-th encrypted ind iff xtagt in Xset

19

zt

OXT Core

 E Setup: For all w in W:

 strapw=F(KS,w); xtrapw= g^{F(Kx,w)}

 For t=1 to T=|DB(w)|:

 Tset(t) = [Enc(Ke,indt), yt=xindt zt
-1] (* where zt = F(strapw, t) *)

 Add xtag=(xtrapw)xind to Xset (* where xtrapw= g^{F(Kx,w)} *)

 Search on (w1,w2,…,wn):

 C computes (using keys KS, KX): strap1, xtrap2,…,xtrapn

 For t=1…|DB(w1)|, C sends to E: {xj=xtrapj
Zt, j=2,…,n } (* zt= F(strapw, t) *)

 For t=1…|DB(w1)|, E sets xtagj,t = xj
Yt, j=2,…,n (* yt stored in Tset *)

 E returns t-th encrypted ind iff for all j=2,…,n, xtagj,t in Xset

 It works because xtagj,t = xj
y = (xtrapj

z)y = (xtrapj
z)xind/z = xtrapj

xind

20

We avoid interaction by
pre-computing and storing
the interactive protocol msgs

Preprocessing: #(w,ind) expon’s*

Search: Per item in DB(w1):

 - Client n-1 expon’s*

- Server: n-1 expon’s

* same-base

OXT Leakage (Improvements on BXT)

 Repetition of s-term still visible to E (stag is deterministic) but

x-term repetition mostly* avoided (see below).

 Most important: OXT solves the bad inter-query leakage where

 E learns intersection DB(w1)DB(wi) for any pair of s-term w1 and

. x-term wi even across queries

 (in OXT can’t combine x-term from one query with an s-term from another)

 The following milder leakage remains:

 For queries w1  x and w1’  x’ , if DB(w1  w1’) ≠ ∅ and x=x’

then E learns that x=x’ and the encrypted ind’s in DB(w1  w1’)

 Leakage unlikely for s-terms chosen as low-frequent terms (w1w1’ would

be usually empty); and it is impossible if both w1,w1’ are, say, last names.

 23

Summary: OXT Leakage to E

 As in BXT:

 Total index size = upper bound on i |DB(wi)| (Tset leakage)

 Number of terms in each conjunction

 Size of s-term set |DB(w1)| (unavoidable? Reduction from 3SUM)

 s-term repetitions

 Encrypted ind’s in the set DB(w1wj) , j=2,…, n (e.g. | DB(w1wj)|)

 NO leakage about intersections of x-terms in same or different queries

 Improvement on BXT:

 For queries w1  x and w1’  x’ , if x=x’ and DB(w1  w1’) ≠ ∅,

then E learns that x=x’ and the encrypted ind’s in DB(w1  w1’)

 Server E can be malicious but trusted to return the correct results

24

OXT non-leakage

 OXT does not reveal

 plaintext data (semantically secured, no det’c enc, no repeated patterns, etc)

 plaintext queried values (s-term and x-terms)

 plaintext ind’s other than those matching the conjunction

 information on intersecting records of different x-terms

(in the same query or across different queries)

 repeated x-terms or intersections between different s-terms,

except for those revealed via last leakage item in previous slide

 This leakage can be reduced substantially with more memory (practical for
moderate number of keywords per document, e.g. 100 keywords/record)

 An example of space-privacy trade-offs

25

OXT Theorem

 Security formalism: Same simulation-based definition as in SKS

 Let L be (a formal description of) the leakage function described

before.

 Theorem: OXT is semantically secure with leakage L under the DDH

assumption when implemented with a secure PRF and CPA encryption.

 Proof: see paper for painful enjoyment… eprint 2013/169

 Note: No ROM required!

 ROM used in our implementation of the more advanced models and to improve
communication in the adaptive security case.

27

Simulation Ideas
(details in eprint 2013/169)

 Tset simulation (as in SKS)

 y values (=xind z-1) chosen as random elements of Zp

 Tricky part: How to choose Xset values so that (xtrapw)xind ∈ Xset

iff w is in record xind. Note that:

 (i) any w can be queried (even if not in DB);

 (ii) the values x=xtrap1/z sent by the client and the stored random y need to
satisfy that xy is (or is not) in Xset depending on whether “w ∈ ind”;

 (iii) xy values may repeat for different values of x and y

 Solution: Choose Xset values as random elements h in group G; simulate

client values xtrap1/z as h1/y depending on retrieved y (so that (xtrap1/z)y =h)

 Use DDH to claim that random Xset values are indistinguishable from real
(structured) gw xind (note that w and xind may repeat in multiple Xset entries)

28

General Boolean Formulas

 Queries of the form w1 Λ (w2,…,wt) where  is any Boolean

formula (program)

 Similar to the conjunctions mechanism:

 For all ind ∈ DB(w1), set βj=1 if H(ind,wj) ∈ Xset, return ind iff (β2,…, βt) = true

 Same cost as for conjunction

 Any Boolean query via “w1 = True” (linear in worse case)

 More generally: Disjunction of any number of such formulas

 Example: (m out of t)-threshold query  disjunction of (t-m+1) formulas:

(w1 Λ T(m-1,t-1)(w2,…,wt)) or (w2 Λ T(m-1,t-2)(w3,…,wt)) or … or (wt-m+1 Λ T(m-1,…)(wt-m+2,…,wt))

 Leakage:

 As in conjunctive search, plus EDB learns  (not wi’s) and the bits βj for j=2,…,t
29

 SNF = “Searchable Normal Form”

Extensions

 Dynamic DBs: additions, deletions, modifications (and client caching)

 More complex query types

 Range queries: return all records with DOB between 2/3/87 and 3/4/88

 Substring/Wildcard queries: %lope%, enc_clo_ _dia, %cycl_ _ _dia

 Phrase queries: “searchable symmetric encryption”, “Gone _ _ Wind”

 PXT: Very communication-efficient (as in BXT: short client message)

but uses pairings, same leakage as OXT

 Complex operational/trust settings: MC-SSE and PIR-SSE:

 Malicious clients, hiding queries from Debbie (and even hiding policy as in

warrant-based scenarios)

 Tools (all via simple exponentiation): OPRF (for PIR), attribute-based keys for

blind authorization, homomorphic signatures for query authentication by Eddie

30

Updates

31

Dynamic Data (updates)

 Updates: add, delete, modify

 Operational assumption: |DB|>>updates; thus:

 EDB super-optimized for disk access but update structures planned for RAM

 Periodic re-encryption eliminates leakage trails (e.g. new/old records)

 Caching (defense against leakage)

 Client can identify previously retrieved documents in result set before

requesting them

 Will retrieve a previously retrieved document only if the document

changed since last retrieval

 Important defense against server learning intersection b/w queries

 but leakage on the number of matching-but-not-retrieved documents

Data Structures (NDSS’14, eprint 2014/853)

 EDB (Tsets + Xsets) unchanged

 Changes to clear-text DB do not affect EDB

 EDB+ records DB changes between re-processing phases

 RAM resident Hash Tables (dictionaries)

 TSet+ stores new tuples

 XSet+ stores new XTags

 RevID Set stores revocation IDs for deleted records

 Clear-text database enhanced

 |Tset(w)|, for all keywords w

 Seq # of last successful update

 33

Integrating EDB+ into OXT

 Eddie runs OXT on EDB first and on EDB+ next

 EDB+ tuples are labeled separately (not grouped in blocks)

 OXT result set filtered using the RevID Set

 Very efficient

 Charlie and Debbie are unchanged

 Security

 Cannot relate old and new tuples except if keyword was searched (can

avoid with evolving periodic keys)

 Can hide operation (add/del/modify) by always doing a delete+add

 But Eddie knows if returned record (and touched tuple) is new or old

 Caching: Can identify previously cached records and know if they changed
34

Complex Queries
(summary in case I don’t get to do them in

detail)

 Extensions to OXT – reductions to Boolean queries

36

Range Queries

 E.g., return all records with DOB between 2/3/87 and 3/4/88

 Compute a cover of the range by intervals (via a tree cover algorithm)

 Generate a disjunction of values representing each of the intervals

 Range R translated into disjunction of up to 2 log R exact-match terms

 Thus: the Boolean OXT protocol applies AS IS

 The more interesting part: Blind authorization

 Debbie authorizes based on total size of range (eg. query span ≤ one year)

 Needs to let Debbie learn the total size of the range w/o leaking on the

endpoints? (e.g.., # of intervals should be same for any two ranges of same size)

 Two solutions: Canonical covers (all ranges of given size have same-lengths

intervals); 3-node over-covers (always 3 intervals with 40% avg overhead)
37

Substring/Wildcard Queries

 Any combination of _ (“single character wildcard”) and substrings of k

or more consecutive characters (k is a tunable parameter)

 Plus a % (“any string”) at the beginning and/or end of a search

expression

 Examples (return “encyclopedia”):

(i) %cycl_ _ _dia (ii) %lope% (iii) enc_clo_ _dia

 Tunable k: smaller for more general queries; larger for search efficiency

 Variable k: flexibility and efficiency (only “anchor” ≥ k)

38

OXT Protocol (substring extensions)
 Substrings: we treat k-gram’s as keywords, associated to a xind as

well as a position p in xind – we thus extend the function H to:

 We want to know if “charan” is in record xind:

 We find (encrypted) values of y=xind and v=xindp in Tset(“cha”)

(which means: “cha” is in pos p in xind),

 We then check if “ran” is in position p+3 in xind by checking that

 Computed via a non-interactive 2-party secure function evaluation:
Charlie has (“ran”,∆), Eddie has encrypted (y,v) and ∆

39

H(“cha”, xind, p) = (prf(“cha”))
(xind)

p

v y3 (prf(“ran”)) = (prf(“ran”) in Xset (xind)
P+3

Generalization: Proximity Queries

 A generalization of our substring technique

 Can do search of the form (e1,e2,∆) meaning

 Return all records where element e1 is at distance ∆ from e2 (∆ can be

negative)

 Examples:

 ei are k-grams: resolves substrings and wildcards

 ei are textual words: resolves phrases (e.g., “Bar Ilan University”)

 Multi-dimensional distances (e.g., grid), etc.

40

Subsequences Leakage to Eddie
Reminder: Leakage from conjunctions w1  …  wn

1. Index size = upper bound on i |Doc(wi)|

2. Number of terms in each conjunction

3. Size of s-term set |Rec(w1)| and whether s-term repeats

4. Size of Rec(w1wj) , j=2,…, n

5. For queries w1  x and w1’  x’ , if x=x’ and Rec(w1  w1’) ≠ ,
then E learns that x=x’ and the encrypted rind’s in Rec(w1  w1’)

Leakage is similar for subsequence queries with s-term k-gram w1 and

x-term grams w2,..,wn except for more involved 5’ (stated for 2-term query)

 For queries w1  x and w1’  x’, with offsets 1, 2 ,

if x=x’ and there exist ind in Rec(w1  w1’) and p, p’ such that

w1 is in position p in ind and w1’ in position p’ in ind, and p-p’= 1- 2

then E learns that x=x’, and the encrypted pairs (ind,p), (ind,p’).

 Plus: offset  leaks – can be avoided with a round of communication C-E
41

Leakage from Range Queries

For Debbie:

 The total size of the queried range (necessary to apply policy)

For Eddie:

 Leakage for atomic range query with cover w1=(h1,c1) … , wn =(hn,cn) is

same as for OXT disjunction “w1 or … or wn”

 |DB(wi)| for i=1,…,n , DB(w1 or … or wn)

 For composite queries, leakage is same as OXT where the range query

is replaced with “w1 or … or wn”

For Client:

 Mask(|DB(wi)|) for i=1,…,n if range query acts as s-term

42

1

Searchable Encryption:

Multi-client and OSPIR Settings

Hugo Krawczyk

IBM Research

Winter School – Bar Ilan University – January 2015

Encrypted Search I (SSE)

 Owner of database DB (= client) outsources its Encrypted Data to a

server (EDdie) such that:

 Owner/Client:

 pre-processes data, outsources to Eddie, keeps only a cryptographic key,

later runs queries at Eddie, retrieves/decrypts matching documents

 Eddie:

 gets all DB documents in encrypted form

 keeps index information (metadata) in encrypted form

 responds to client‟s queries (returns matching encrypted doc‟s)

 does not learn the searched terms or DB plaintext information

- but leakage on data-access patterns and query patterns allowed

 2

Encrypted Search II (Multi-Client SSE)

 Owner of DB (DeBbie) outsources DB to Eddie such that

Eddie (as before):

 keeps all records and index information in encrypted form

 can accurately respond to any boolean query (returning matching records)

 does not learn the searched terms or any plaintext information on the DB

(some leakage allowed)

 While Debbie:

 can delegate search to clients (via search tokens)

 such that clients can search through queries authorized by Debbie

but learn nothing about data not matching the authorized queries

 multiple and adversarial clients (fully malicious in our solutions)

3

Encrypted Search III

(OSPIR=Outsourced Symmetric PIR)

 As scenario II

 PLUS

 Debbie can authorize clients to perform queries according to a

prescribed policy

(i.e., determine the query compliance and provide the corresponding tokens)

 ... but she has to do so without learning the searched terms

 Assumption: Debbie and Eddie do not collude (otherwise the strong

performance limitations of PIR apply)

4

The MC-SSE Setting

D gives the tokens to C and authorizes according to a policy

 (leakage to C: anything beyond the results to authorized queries)

8

OXT Core

 EDB Setup: For all w in W:

 strapw=F(KS,w); xtrapw= g^{F(Kx,w)}

 For t=1 to T=|DB(w)|:

 Tset(t) = [Enc(Ke,indt), yt=xindt zt
-1] (* where zt = F(strapw, t) *)

 Add xtag=(xtrapw)xind to Xset (* where xtrapw= g^{F(Kx,w)} *)

 Search on (w1,w2,…,wn):

 C computes (using keys KS, KX): strap1, xtrap2,…,xtrapn

 For t=1..T, C sends to E: {xj=xtrapj
Zt, j=2,…,n } (* where zt= F(strapw, t) *)

 For t=1..T, E sets xtagj,t = xj
Yt, j=2,…,n (* yt stored in Tset *)

 E returns t-th encrypted ind iff for all j=2,…,n, xtagj,t in Xset

 It works because xtagj,t = xj
y = (xtrapj

z)y = (xtrapj
z)xind/z = xtrapj

xind

9

MC-OXT

 In OXT: Search on (w1,w2,…,wn):

 C computes (using keys KS, KX): strap1, xtrap2,…,xtrapn

 For t=1…|DB(w1)|, C sends to E: {xj=xtrapj
Zt, j=2,…,n } (* zt= F(strapw, t) *)

 For t=1…|DB(w1)|, E sets xtagj,t = xj
Yt, j=2,…,n (* yt stored in Tset *)

 Adapting to the MC-SSE setting – initial ideas:

 D (using keys KS, KX) provides C with strap1, xtrap2,…,xtrapn

 Fails: C can combine strap from one query with xtrap‟s from another to obtain
an unauthorized query

 Solution: D signs (strap1, xtrap2,…,xtrapn) so that E can verify binding

 Fails: C does not pass xtrap values to E but rather xtrapz and revealing z
values to E is insecure: allows E to do unauthorized searches (back to BXT)

 D needs to sign (strap1, xtrap2
z,…,xtrapn

z) for many z‟s (but how many?)

10

MC-OXT

 In OXT: Search on (w1,w2,…,wn):

 C computes (using keys KS, KX): strap1, xtrap2,…,xtrapn

 For t=1..T, C sends to E: {xj=xtrapj
Zt, j=2,…,n } (* where zt= F(strapw, t) *)

 For t=1..T, E sets xtagj,t = xj
Yt, j=2,…,n (* yt stored in Tset *)

 Adapting to the MC-SSE setting (“homomorphic signature”):

 D needs to sign (strap1, xtrap2
z,…,xtrapn

z) for many z‟s (but how many?)

 Solution: D provides C with (strap1, xtrap2
r2

 ,…,xtrapn
rn) for random r2,…,rn,

and also AuthEnc(KM; r2,…,rn) where KM is key shared between D and E.

 C will send xj=(xtrapj
rj)Zt (* instead of xtrapj

Zt *)

 E decrypts and verifies r2,…,rn , then it computes xtagj,t = xj
Yt/rj

 Note: E does not verify the signature on xj‟s, but by raising to the rj
-1 it ensures

that if C is cheating, the xtag will result in a random value (w.h.p not in Xset)

11

The OSPIR Setting

As in MC-SSE but D authorizes queries according to

a policy without learning the queried values (a la PIR*)

 OSPIR = “Outsourced Symmetric PIR”

 (*PIR = Private Information Retrieval CGKS‟95)

12

13

Multi-Client SSE with Blind Authorization
(OSPIR)

 We call this setting “outsourced symmetric PIR (OSPIR)”

 Parties: Client C, DB owner D (authorizer), EDB holder E

 Keywords are attribute-value pairs, e.g. (“name”,Joe), (“text”, I am happy)

 Attribute-based policies (“Is client C authorized for query Q?”)

 Policy decisions based on attributes not values

 E.g. can query name and lastname but only with one of (zipcode, town, school)

 Permissions set by D and can depend on client and type of boolean query

 D enforces policy w/o learning the queried values, only the attrib‟s

 or less, e.g. a class of attrib‟s a term belongs to, not the specific attrib

14

Basic Tool: Oblivious PRF (OPRF)
[NR’04,FIPR’05]

 OPRF Instantiation: fk(x)=[H(x)]k (DH OPRF)

 Oblivious computation via “Blind DH Computation”:

 C sends a = [H(x)] r to D, D replies with b = ak, C computes fk(x) as b 1/r

D(k) C(x)

fk(x) 丄

fk(x) is a Pseudo-Random
Function (PRF) if

 OPRF protocol

x

fk(x) or $
fk-or-$ Adv

?

Warm-Up: Single-Keyword Search

 DB: Collection of inverted indexes pointed by each keyword (i,val)

 (i,val)  {list of doc‟s containing (i,val)}

 EDB: Collection of inverted indexes using PRF-computed pointers

(for hiding the keyword from Eddie)

 fK(i,val)  { encrypted list of records containing (i,val) }

 Policy: For each client C, Debbie has a list AC of allowed attributes
(i.e., C can search for any (i,val) such that i ∈ AC)

 Case 1: Debbie is allowed to learn the query

 1. C  D: (i, val) 2. D  C: if i ∈ AC then return fK(i,val)

 3. C  E: fK(i,val) 4. E  C: Records pointed by fK(i,val)

15

Single-keyword / Query hidden from Debbie

 Case 1: Debbie learns query (fK = PRF)

 1. C  D: (i, val) 2. D  C: if i ∈ AC then return fK(i,val)

 3. C  E: fK(i,val) 4. E  C: Records pointed by fK(i,val)

 Case 2: Debbie learns attribute i but not value val

 Replace PRF fk with Oblivious PRF fk:

 D enters k, C enters (i,val), C learns fK(i,val), D only learns i

 But how does D know if attribute i was authorized for C?

 C can disclose i but then how does D knows that input (i,val) has same i?

 Need a “conditional OPRF” (return output to C only if i ∈ AC)

 Simple solution: per-attribute OPRF key Ki: C learns FKi(i,val)

 If C claims attrib i but enters (j,val), he learns FKi(j,val) which will

return nothing at Eddie (e.g. zipcode=michael)

16

Conjunctions Case

 Given (i1,v1), (i2,v2),…,(in,vn), return all records containing all these words

 Policy: AC = subsets of {1,…,N}, e.g. if {1,3,8} ∈ AC then C is allowed a

conjunction of the form (1,v1), (3,v2), (8,v3) for any v1, v2, v3

(can have more compact representations, e.g. any 2-out-of-{1,3,8,11})

 Extension from the single-keyword case (example (i,u) ˄ (j,v))

 D provides C with FKi(i,u) and FKj(j,v) via OPRF

 But then C can combine two allowed queries into a non-compliant one

 Given pair FKi(i,u), FKj(j,v) and pair FKi‟(i‟,u‟), FKj‟(j‟,v‟), C can query (i,u) ˄ (j‟,v‟)

 Solution: Let D sign the tokens FKi(i,u), FKj(j,v) given to C, Eddie will

verify the signature before serving the query

 But how can D sign OPRF output values she does not (and should not) know?

 17

Signing tokens against mix & match

 Solution via “homomorphic signatures”

 Exploit the homomorphic properties of the DH OPRF

18

Recall DH OPRF

 Cyclic group G of prime order q; H hash function from {0,1}* to G

 OPRF: Zq x {0,1}*  G, FK(w) = H(w)k

 Two party computation of FK(w): (* similar to a blind signature *)

 D has key K in Zq , C has input w in {0,1}*

 C to D: a=H(w)b for b random in Zq

 D to C: c=ak

 C: FK(w)  c1/b (* = (((H(w)b)K)1/b = (H(w))K *)

19

Signing tokens against mix & match

 Solution via “homomorphic signatures”

 Exploit the homomorphic properties of the DH OPRF

 C  D: a1 = (H(i1,v1))b1 , a2 = (H(i2,v2))b2 (b1,b2 random in Zq)

 D  C: c1=a1
Ki1r1, c2=a2

Ki2r2 (r1,r2 random in Zq)

 env = AEncDE(r1, r2) (* AEnc key shared between D & E *)

 C  E: (H(i1,v1))Ki1r1 , (H(i2,v2))Ki2r2, env (*C de-blinds by raising to 1/b *)

 E: Verifies and decrypts r1, r2, computes (H(i1,v1))Ki1, (H(i2,v2))Ki2 and

serves the query

 To mix (H(i1,v1))
Ki1r1, (H(i2,v2))

Ki2r2 with (H(i1„,v1„))
Ki1„r1„, (H(i2„,v2„))

Ki2„r2„,

C would need to forge env = AuthEncDE(r1, r2‟).

 Otherwise, if C uses a valid env, E derives random values not in EDB.

20

Cost and Extension to Boolean Queries

 Authorization mechanism *very* cheap: one round of communication,

2n+1 exponentiations for the client and n+1 for Debbie (on n terms)

 Base SSE protocol (OXT) already uses exponentiations for search,

much more intensively and very optimized

 Boolean queries: Same as conjunctions but env includes description

of expression  (query type) plus “signatures” r1,…,rn

 E.g. “x1 and (not x2 or x3)”, r1, r2, r3

21

symbolic expression

Security

 OSPIR-OXT leakage

 To D: Query type and input attributes (values are info-theoretic protected)

 To C: Size of s-term (or an upper bound if E sends dummy values - unavoidable)

 To E: No extra leakage relative to basic OXT

 Security proven against malicious clients

 I.e., no behavior by clients (even collusion between multiple clients)

can lead to authorization of non-compliant queries or to learning policy

 assumes “one-more DH” and ROM for OPRF implementation

 … and malicious Debbie, but assumes non-collusions with E

 No behavior by Debbie can lead to learn information on queried values

 Note: Can add replay protection to env (one-time use, exp. date, etc.)

22

Authorization Extensions/Enhancements

 Debbie learns class of attributes, not individual attributes

 E.g.: Debbie authorizes any conjunction with attribute 1 and any attribute

from {2,3,4}, then Debbie does not need to learn which of 2,3,4 used

 Solution: Debbie raises H(i1,v1) to K1 and H(i2,v2) to K2,K3,K4, C chooses one

 Role of Debbie can be split:

 Holder of plaintext DB generates EDB; outsources EDB to Eddie and

delegates the per-attribute authorization keys to Authorizer

 The former needs not know the policy, the latter does not need DB

 Policy Manager: A 3rd party that holds policy, authorizes queries, but

can‟t provide search tokens without Debbie‟s participation (“warrant”)

23

1

Searchable Encryption:

Extending the OXT Protocol with
Substring and Range Queries

Hugo Krawczyk

IBM Research

Winter School – Bar Ilan University – January 2015

Substring Search

2

 Preprocessing: Tag each text by all its 3-grams (k=3)

 e.g. Charanjit  “cha” , “har” , “ara” , “ran” , ”anj” , ”nji” , ”jit”

 Search by Substring:

 Search on a conjunction of all 3-grams in the substring

 e.g. *charan*  “cha” & “har” & “ara” & “ran”

Problem: False Positives

 e.g. Search on (“cha” & “har” & “ara” & “ran”) returns:

 ”... Harry chased the oranges rolling around in his garage ...”

Idea: Represent substring as conjunction of k-grams

Substring Search

3

Idea: Represent substring as conjunction of k-grams

 Problem: False Positives

Refinement: Account for k-gram positions

 Preprocessing: Tag each text by (3-grams,position) pairs

e.g. Charanjit  (1,“cha”), (2,“har”), (3,“ara”), (4,“ran”), (5,”anj”), (6,”nji”), (7,”jit”)

 Search by conjunction of (3-gram,shift) pairs

e.g. *charan*  (0,“cha”) & (1,“har”) & (2,“ara”) & (3,“ran”))

Problem:  Positions in DB keywords are absolute

  Positions in query are relative

Substring Search

4

Goal: match relative pos. (query) to absolute pos. (keyword)

W(ind) contains “cha” at pos. p and “ran” at pos. p+3

 TSet(”cha”) = {, E(ind,p), }

 XSet contains , H(”ran”,ind,p+3) , ...

Client parses query *charan* as (“cha” & (“ran”,3))

 s-term = “cha”  Eddie retrieves E(ind,p) from TSet(“cha”)

ind indt ind1 …  w1  …  TSet(“cha”)
E(ind,p)

… “ran” at

 (ind, p+3)?

…

w2 w3 … wn w2 w3 wn

? ? ? ? ? ? ? ? ?

Substring Search

5

Goal: match relative pos. (query) to absolute pos. (keyword)

W(ind) contains “cha” at pos. p and “ran” at pos. p+3

 TSet(”cha”) = {, E(ind,p), }

 XSet contains , H(”ran”,ind,p+3) , ...

Client parses query *charan* as (“cha” & (“ran”,3))

 s-term = “cha”  Eddie retrieves E(ind,p) from TSet(“cha”)

We need two-party computation:

Client Input: xtrap(“ran”,3) Server (Eddie) Input: E(ind,p)

 Eddie’s Output: H(“ran”,ind,p+3)

Client: strap(“cha”), xtrap(“ran”, ) Eddie: Estrap(“cha”)(ind,p)

 Eddie’s Output: H(“ran”, ind, p+)

Substring Search: Conjunction Protocol

H(“ran”, ind) = (PRF2(“ran”))
ind

y = ind / zctr , where otp zctr derived from PRF1(“cha”)

Client: PRF1(“cha”) , PRF2(“ran”)

6

Recall Our Regular Conjunctive Protocol (w/o positions):

Eddie: y = EncPRF1(“cha”)(ind)

2. S computes Ay = ((PRF2(“ran”))
(zctr)) (ind/zctr) = (PRF2(“ran”))

ind

1. C sends to S : A = (PRF2(“ran”))
(zctr)

2. S computes Ay = ((PRF2(“ran”))
(zctr)) (ind/zctr) = (PRF2(“ran”))

ind

1. C sends to S : A = (PRF2(“ran”))
(zctr)

Client: PRF1(“cha”) , PRF2(“ran”)

7

Modifications to account for positions:

Eddie: y = EncPRF1(“cha”)(ind)

Substring Search: Conjunction Protocol

, 

 Server:y’ = EncPRF1(“cha”)(ind

p)

H(“ran”, ind) = (PRF2(“ran”))
ind

y = ind / zctr , where zctr derived from PRF1(“cha”)

Client: strap(“cha”), xtrap(“ran”, ) Eddie: Estrap(“cha”)(ind,p)

 Eddie’s Output: H(“ran”, ind, p+)

“cha” at pos p

in record ind

 H(“ran”, ind, p) = (PRF2(“ran”))
(ind

p
)

y = ind / zctr , where zctr derived from PRF1(“cha”)

8

Substring Search: Conjunction Protocol

Client: PRF1(“cha”) , PRF2(“ran”)

Eddie: y = EncPRF1(“cha”)(ind)

, 

 Server:y’ = EncPRF1(“cha”)(ind

p)

H PRF under q-DDH for

q = max p

q-DDH: given g,gx,gx2,gx3,….,gx
q
 cannot tell gx

q+1
 from $

Modifications to account for positions:

Client: strap(“cha”), xtrap(“ran”, ) Eddie: Estrap(“cha”)(ind,p)

 Eddie’s Output: H(“ran”, ind, p+)

2. S computes Ay = ((PRF2(“ran”))
(zctr)) (ind/zctr) = (PRF2(“ran”))

ind

1. C sends to S : A = (PRF2(“ran”))
(zctr)

9

Substring Search: Conjunction Protocol

Client: strap(“cha”), xtrap(“ran”, ) Eddie: Estrap(“cha”)(ind,p)

 Eddie’s Output: H(“ran”, ind, p+)

 H(“ran”, ind, p) = (PRF2(“ran”))
(ind

p
)

y = ind / zctr , where zctr derived from PRF1(“cha”)

Client: PRF1(“cha”) , PRF2(“ran”)

Eddie: y = EncPRF1(“cha”)(ind)

, 

 Server:y’ = EncPRF1(“cha”)(ind

p)

y’ = ind

p/vctr , where vctr derived from PRF1(“cha”)

Modifications to account for positions:

2. S computes Ay = ((PRF2(“ran”))
(zctr)) (ind/zctr) = (PRF2(“ran”))

ind

1. C sends to S : A = (PRF2(“ran”))
(zctr)

10

Modifications to account for positions:

Substring Search: Conjunction Protocol

 H(“ran”, ind, p) = (PRF2(“ran”))
(ind

p
)

y = ind / zctr , where zctr derived from PRF1(“cha”)

Client: PRF1(“cha”) , PRF2(“ran”)

Eddie: y = EncPRF1(“cha”)(ind)

, 

 Server:y’ = EncPRF1(“cha”)(ind

p)

2. S computes Ay = ((PRF2(“ran”))
(zctr)) (ind/zctr) = (PRF2(“ran”))

ind

1. C sends to S : A = (PRF2(“ran”))
((zctr)  vctr) ; and 

y’ = ind

p/vctr , where vctr derived from PRF1(“cha”)

Client: strap(“cha”), xtrap(“ran”, ) Eddie: Estrap(“cha”)(ind,p)

 Eddie’s Output: H(“ran”, ind, p+)

11

Modifications to account for positions:

Substring Search: Conjunction Protocol

 H(“ran”, ind, p) = (PRF2(“ran”))
(ind

p
)

y = ind / zctr , where zctr derived from PRF1(“cha”)

Client: PRF1(“cha”) , PRF2(“ran”)

Eddie: y = EncPRF1(“cha”)(ind)

, 

 Server:y’ = EncPRF1(“cha”)(ind

p)

2. S computes Ayy’ = ((PRF2(“ran”))
((zctr)  vctr)) (ind/zctr)

 (indp/vctr)

1. C sends to S : A = (PRF2(“ran”))
((zctr)  vctr) ; and 

Y’ = ind

p/vctr , where vctr derived from PRF1(“cha”)

= (PRF2(“ran”))
ind p+ = H(“ran”, ind, p+)

Client: strap(“cha”), xtrap(“ran”, ) Eddie: Estrap(“cha”)(ind,p)

 Eddie’s Output: H(“ran”, ind, p+)

Extensions

 Wildcards: immediate application of above technique:

 cha _ _ _ jit: same as (s-term = cha, x-term = jit,  =6)

 The described solution assumes s-term is a k-gram, but how about

 “lname = Jutla” and “name like %ara _ jit” ?

 We add a data structure XTset which encodes all positions of a given

k-gram in a record

 Can mix grams of different sizes, e.g. 3-grams as s-terms with

1-grams as x-terms for more flexibility

 no pre-processing/EDB cost, moderate online overhead (more conjuncts)

 Proximity queries: Phrase queries “Bar Ilan University”

 12

Range Queries

13

14

000 001 010 011 100 101 110 111

00 01 10 11

0 1

root

v = 101

• Attribute valued 0..K=2k (or any other range)

• Build binary tree with values as leaves (tree height = k = log max range)

• Add k columns: i-th column describes nodes of height i

• Each new column acts as a new attribute in DB

• Attribute-value pairs: (height,node)

• Record w/ value v  columns include nodes from v to the root

(0,101) (1,10) (2,1)

Preprocessing DB

15

000 001 010 011 100 101 110 111

00 01 10 11

0 1

root

v = 101

• Query [q0,q1] : Client chooses cover of [q0,q1] interval, namely:

 (h1,c1),…, (ht,ct) (ci describes a node, hi describes its height)

• Client queries a regular disjunction

• “exact-match(h1,c1)” OR … OR “exact-match(ht,ct)”

q0 = 001 q1 = 111

Query

0 1

16

000 001 010 011 100 101 110 111

00 01 10 11

root

v = 101 q0 = 001 q1 = 111

• Query [q0,q1] : Client chooses cover of [q0,q1] interval, namely:

 (h1,c1),…, (ht,ct) (ci describes a node, hi describes its height)

• Client queries “exact-match(h1,c1) OR … OR exact-match(ht,ct)”

• e.g. (0,001) OR (1,01) OR (2,1)

Query

0 1

17

000 001 010 011 100 101 110 111

00 01 10 11

root

v = 101 q0 = 001 q1 = 111

Range Query Authorization

• Our policy authorizes range query based on total size of range

• Client discloses heights to Debbie (the attributes) with which

 Debbie computes total size (e.g. 20+21+22=7)

• Client is allocated a max allowed range by policy

• we do not guarantee contiguous range

0 1

18

000 001 010 011 100 101 110 111

00 01 10 11

root

Privacy Concern

• Assume client always chooses a minimal cover (min # nodes)

• Client discloses heights (the query attributes) to Debbie

• Debbie learns total size (good) but…

• … can distinguish b/w different ranges of a given size (bad)

• E.g. [4,7] has cover w/single node while [1,4] needs 3 nodes

19

Privacy-Preserving Covers

Universal Covers

• Def: The profile of a cover is the set of heights: eg. {0, 0, 1} vs {2}

• Are there universal covers? I.e. a way to choose covers such that

 all ranges of a given size have the same profile?

• Answer is yes (e.g. set of leaves). More interesting (minimal universal)

• Size 20 = 15+5  (1+2+4+8) + (1+4)  profile (0,1,2,3,0,2)

• We use universal covers to hide anything but total size from Debbie

• We call these “canonical covers”
.

3-node universal covers

• Canonical covers: up to 2 log n nodes – can we have them smaller ?

• Not possible in general, except if we’re willing to expand the range

• 3-node universal over-covers exist for all ranges (40% avg overhead)

• Offers tradeoffs in performance and leakage

Leakage from Range Queries

For Debbie:

 The total size of the queried range (necessary to apply policy)

For Eddie:

 Leakage for atomic range query with cover w1=(h1,c1) … , wn =(hn,cn) is

same as for OXT disjunction “w1 or … or wn”

 |DB(wi)| for i=1,…,n , DB(w1 or … or wn) (3-node solution better here)

 For composite queries, leakage is same as OXT where the range query

is replaced with “w1 or … or wn”

For Client:

 Mask(|DB(wi)|) for i=1,…,n if range query acts as s-term

20

Time/Space Overhead
for Substring and Range Queries

 Both are non-interactive as any other queries in OXT (one msg from C,

matching encrypted ind’s from E)

 Substring/wildcards queries

 Space: ~1.8 times tuple size (Ph 1), O(n) tuples for each n length field

 Online: n/4 exponentiations for n-long substring/wildcard query

 “4” is from 4-grams

 Range queries

 log N new columns per range-searchable attribute

 N=max searchable range size

 ~N Tset’s

 Online: (log n)-term disjunction (n = size of queried range), or 3 in 3-node

21

Subsequence Generalization:
Proximity Queries

 A generalization of our substring technique

 Can do search of the form (e1,e2,∆) meaning

 Return all records where element e1 is at distance ∆ from e2 (∆ can be

negative)

 Examples:

 ei are k-grams: resolves substrings and wildcards

 ei are textual words: resolves phrases (e.g., “Bar Ilan University”)

 Multi-dimensional distances (e.g., grid), etc.

22

Subsequences Leakage to Eddie
Reminder: Leakage from conjunctions w1  …  wn

1. Index size = upper bound on i |Doc(wi)|

2. Number of terms in each conjunction

3. Size of s-term set |Rec(w1)| and whether s-term repeats

4. Size of Rec(w1wj) , j=2,…, n

5. For queries w1  x and w1’  x’ , if x=x’ and Rec(w1  w1’) ≠ ,
then E learns that x=x’ and the encrypted rind’s in Rec(w1  w1’)

Leakage is similar for subsequence queries with s-term k-gram w1 and

x-term grams w2,..,wn except for more involved 5’ (stated for 2-term query)

 For queries w1  x and w1’  x’, with offsets 1, 2 ,

if x=x’ and there exist ind in Rec(w1  w1’) and p, p’ such that

w1 is in position p in ind and w1’ in position p’ in ind, and p-p’= 1- 2

then E learns that x=x’, and the encrypted pairs (ind,p), (ind,p’).

 Plus: offset  leaks – can be avoided with a round of communication C-E
23

