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Class Plan (time permitting) 

 Part 1: Overview/Intro (BIU-hugo-1-overview.pdf) 

 The searchable encryption problem, models and functionalities 

 Dedicated solutions and state of the art (OXT Protocol) 

 Part 2: The OXT single-client protocol 

 Single keyword search  (BIU-hugo-2-SKS.pdf) 

 Conjunctions and Boolean queries (BIU-hugo-3-OXT.pdf) 

 Range and substring queries (BIU-hugo-4-complex.pdf) 

 Part 3: Multi-client and OSPIR settings (BIU-hugo-5-OSPIR.pdf) 

 Part 4: Other solutions, attacks  and research questions                  

     (Slides at the end of BIU-hugo-1-overview.pdf) 
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The Data-in-the-Cloud Conundrum 

 Your data in the cloud: email, backups, financial/medical info, etc. 

 Data is visible to the cloud and to anyone with access (legitimate or not) 

 At best, data is encrypted “at rest” with the server‟s keys and decrypted upon use 

 

 Q: Why not encrypt it with your (data owner) own keys? 

 A: Utility, e.g. allow the cloud to search the data (e.g. gmail) 

 Can we keep the data encrypted and search it too? 
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Can I eat the cake 
and have it too? 

© Webweaver.nu  



SSE: Searchable Symmetric Encryption 

 Owner outsources data to the cloud: Pre-processes data,  stores the 

processed and encrypted data at the cloud server  

 Keeps a small state (e.g. a cryptographic key) 

 Later, sends encrypted queries to be searched by the server  

 e.g. return all emails with Alice as Recipient, not sent by Bob,  and containing    
at least two of the words {searchable, symmetric, encryption} 

 Goal: Server returns the encrypted matching documents w/o learning 

the plaintext query or plaintext data 

 Some forms of statistical leakage allowed:  data access patterns (e.g. repeated 

retrieval, size info), query patterns (e.g., repeated queries),  etc. 

 Plaintext data/queries never directly exposed, but statistical inference possible 

 Protects against break-ins, cloud insiders, even “surveillance attacks” 
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ENCowner(DB) 
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The cloud cannot disclose your data...    not even at gun point! 

With SSE… 



SSE before 2013 

 Generic tools: FHE, ORAM, PIR  

 Expensive  

 BUT ORAM getting closer to practice for moderate size DBs (Benny Pinkas talk)  

 great* security  

 *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns 

 

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB‟11] 

 Practical but significant leakage (Naveed-Kamara-Wright, CCS‟2015) 
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Deterministic and order preserving 
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Name Lastname Age 

Elaine Samuels 24 

Mary  Stein 37 

Jim  Stein 81 

John Sommers 3 

Mary Williams 17 

John Garcia 43 

John Gould 37 

Name Lastname  Age 

Ge5$#u Q*6sh# 223 

E89(%y  2@#3Br 340 

2Tr^#7  2@#3Br 
 

736 

qM@9*h gYv6%t 34 

E89(%y  X%3oL7 160 

qM@9*h wnM7#1 308 

qM@9*h 8vy8$Z 340 



Attack on CryptDB 

 Methodology  

 Input: CryptDB-encrypted medical database DB1 (hundreds of hospitals) 

 Training data: Plaintext medical data from public database DB2 

 Output: Decrypted DB1 data via correlation analysis                                          

using DB2 as training data 

 Basic attacks: frequency, sorting and cumulative analysis  

 Results (for each analyzed column): “at least x% correctly decrypted 

records in y% of the hospitals” (denoted x/y). Examples:  

 Race=60/69  (race guessed correctly for at least 60% of patients               

in 69% of the hospitals – race admits 6 values) 

 Major Diagnostic Category = 40/27 (admits 25 values)  

 Age 95/78  (125 possible values) 

 

 Age (125): 95/78;  

 

 

8 

“Inference Attacks against Property-Preserving Encrypted 
Databases”   Naveed-Kamara-Wright.  CCS‟2015. 



SSE before 2013 

 Generic tools: FHE, ORAM, PIR  

 Expensive (ORAM getting closer to practice for moderate size DBs)  

 great* security  

 *assumes all  raw data is ORAM-encrypted, o/w leakage via access patterns 

 

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB‟11] 

 Practical but significant leakage (Naveed-Kamara-Wright, CCS‟2015) 

 

 Name of the game: Security-Functionality-Performance 
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Tradeoffs 



SSE before 2013 (cont.) 

 Dedicated SSE solutions*:  

 Single-Keyword Search (SKS)  [SWP‟00, Goh‟03, CGKO‟06, ChaKam‟10, …] 

 “privacy optimal“ (if we don‟t count encrypted query results as leakage) 

 Conjunctions: Very little work 

 naive (n single-keyword searches),  

 GSW‟04: structured-data, LINEAR in DB, communication-pairings tradeoff 

 Practicality limitations 

 single-keyword only support, limited support for dynamic data 

 non-scalable design (esp. adaptive solutions), no I/O support for large DBs 

 little experimentation/prototyping 

* Survey: Bosch-Hartel-Jonker-Peter ACM Comput. Surv. 47, 2, Article 18              

 http://eprints.eemcs.utwente.nl/24788/01/a18-bosch.pdf 
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ESPADA/OXT (our technical focus) 

 Joint work IBM-UCI teams:                                        

 David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit Jutla, 

Quan Nguyen, Marcel Rosu, Michael Steiner 

 Crypto‟13, CCS‟13, NDSS‟14, ESORICS‟15 

 IARPA SPAR Program 

 Reduce agencies„ reluctance to share information  (9/11, Boston bombing)  

 Preparing for a post-PATRIOT world (DHS has a “chief privacy officer”) *  

* alturl.com/ot72x 

 Co-performers: Columbia + Bell Labs - Blind Seer [Oakland 14 + 15] 

 Guest presentation: Ben Fisch 
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X 
Snowden 



ESPADA: Extends SSE in 4 dimensions 

1. Functionality (well beyond single-keyword search): 

□ Conjunctions       □ General Boolean expressions (on keywords)                   

□ Range queries      □ Substring/wildcard queries, phrase queries 

Search on structured data (relational DBs) as well as free text 

2. Scalability: 

 terabyte-scale DB,  millions documents/records,                                          

billions indexed document-keyword pairs   

 Dynamic data 

 Validated implementation, tested by a third party (IARPA, Lincoln Labs) 

3. Provability:  “imperfect security” but with provable leakage profiles 

(establishing upper bounds on leakage), well-defined adversarial models 
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This work: extends SSE in 4 dimensions 

4.    New application settings and trust models 

 Multiple clients: Data owner D outsources Encrypted DB to cloud;     

clients run queries at the cloud but only for queries authorized by D 

 Leakage to cloud as in basic SSE, client only learns documents matching 

authorized queries (policy-based authorization enforced by data owner) 

 Blind authorization: As above but authorizer enforces policy without 

learning the queried values (we call it “Outsourced Symmetric PIR”) 

 Assumes non-collusion between cloud and data owner 

 

 Note: multi-reader, single-writer system (no public key encryption) 
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Example Applications 

 Example: Hospital outsources DB, provides access to clients   

(doctors, administrators, insurance companies, etc.) 

 Policy-based authorization on a client/query-basis 

 Hospital doesn‟t need to learn the query, only (blindly) enforce policy 

 Good for security, privacy, regulations 

 Warrant scenario (extended 4-party setting) 

 Judge provides warrant for a client C (e.g. FBI) to query a DB  

 DB owner enables access but only to queries allowed by judge 

 DB owner does not learn warrant content or queries 

 Client C (e.g., FBI) gets the matching documents for the allowed queries 

and  nothing else 
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Obama‟s 3rd Party 
Solution (phone data) 



Large-Scale & Functional Implementation 
(OXT) 

 Support for arbitrary Boolean queries on all 3 (extended) SSE models 

 Validated on synthetic census data: 10Terabytes, 100 million records,                  

> 100,000,000,000=1011 indexed record-keyword pairs ! 

 Equivalent to a DB with one record for each American household and 1000 

keywords  in each record and any boolean query (including textual fields) 

 Smaller DB‟s: Enron email repository, ClueWeb (>> English Wikipedia) 

 Support for range queries, substring/wildcards, phrase queries (5x perf. cost) 

 Dynamic data: Supports additions, deletions and modifications of records 
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Scalability 

 Preprocessing scales linearly w/ DB size (minutes-days for above DBs) 

 Careful data structure, crypto and I/O optimizations 

 Can benefit on any improvement on single-keyword search 

 Search proportional to # documents matching the least frequent 

term: w1 Λ B(w2,…, wn)             (w1 called the s-term) 

 Single round to retrieve matching document indexes  (tokens from client 

to server, matching indices back; retrieve encrypted documents) 

 Query response time: Competitive w/ plaintext queries on indexed DB 
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4 seconds:  fname='CHARLIE' AND sex='Female' AND                                                

          NOT (state='NY' OR state='MA' OR state='PA' OR state='NJ)              

on 100M records/22Billion index entries US-Census DB 



Crypto Design-Engineering Synergy 

 Major effort to build I/O-friendly data structures  

 Critical decision: Do not design for RAM-resident data structures          

(it severely limits scalability) 

 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk) 

 Need randomized data structures to reduce leakage and need 
structured ones to improve I/O performance (locality of access) 

 Cryptographic index based on elliptic curve cryptography      

(optimized for very fast exponentiation, esp. with same-base)                        

Typically: I/O and network latency dominate cost   

 On a midsize storage system: ~300 IOPS (I/O Operations Per Second) 

 ~1000 expon‟s per random I/O access (133 w/o same-base optimization) 

 Data encryption uses regular symmetric crypto (e.g., AES) 
20 

500,000/sec, 8 cores, same-
base opt , 100-1000 per IO  



Security: The challenge of being imperfect 

 
 Good news: Semantic security for data; no deterministic or order 

preserving data encryption 

 But: Security-Performance trade-offs    Leakage to server  

 Leakage in the form of access patterns to retrieved data and queries 

 Data is encrypted but server can see intersections b/w query results (e.g. 
identify popular document, intersection b/w results of two ranges, etc.) 

 Server learns query function (not values/attrib‟s); identifies repeated query  

 Additional specific leakage (more complex functions of DB and query history): 

 E.g. we leak |Doc(w1)| and in query w1 Λ w2 Λ…Λ wn  we leak |Doc(w1 Λ wi)| 

 E.g. the server learns if two queries have the same w1 (other terms are hidden) 

 Leads to statistical inference based on side information on data 

(effect  depends on application), masking techniques may help 
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Security: The challenge of being imperfect 

 
 Security proofs: Formal model and precise provable leakage profile 

 Security modeling and definitions follow simulation paradigm [CGKO, CK] 

 Leakage profile: provides upper bounds on what‟s learned by the  attacker   

 Syntactic leakage vs “semantic leakage”  

 Need to assess on an application basis and relative to a-priori knowledge  

 For example, formal leakage proven even if attacker can choose data and 
queries – but in practice semantic leakage will be substantial in this case. 

 E.g. Cash, Grubbs, Perry, Ristenpart, CCS‟2015   (Sasha‟s talk) 

 Even the “basic leakage” from access to encrypted results (e.g., sizes and 
intersections) can be very significant in some cases 

 Yet, we expect in many cases to provide meaningful (if imperfect) 

security (in particular, relative to property-preserving solutions) 
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Columbia/Bell Labs Solution (Blind Seer) 

 Parallel work: Same IARPA project – papers at [Oakland‟14, 15] 

 Elegant solution based on Bloom filter trees with Garbled Yao for 

privacy and authorization 

 Conceptually simpler than ours; e.g., no need to choose s-term  

 Symmetric crypto and multi-party computation techniques (Yao) (instead 

of homomorphic operations  in our case)  much faster pre-processing  

 Less scalable: Bloom filters are inherently random access                   

DB sizes limited by the size of RAM 

 Single client, limited negations 

 Many trade-offs with ESPADA (but incomparable leakage)  

 e.g., Bloom filter path vs. w1-related leakage 
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Practice 

 Is CryptDB (and other DetEnc/OPE solutions) sufficient in practice?  

 Is their leakage acceptable? 

 Who is the attacker?     

 What do regulations say? 

 Is it enough to not being the weakest link?   
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Practice 

 CryptDB (and other DetEnc/OPE solutions) are legacy friendly .      

But is their leakage acceptable? 

 Who is the attacker?     

 What do regulations say? 

 Is it enough to not being the weakest link?   
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Need more “privanalysis” – current 
attacks just scratch the surface                           



Closing Remarks and Future Work 
                                     

(following slides will be presented                   

in the closing class) 

26 



Challenges 

 Leakage: how do we characterize, prove, evaluate 

 Tradeoffs: interplay security-performance (asymptotics & concrete) 

 space/computation/privacy  

 Close engineering-theory interaction: keep it simple!  

 can't throw the heavy weapons on the problem  

 Prove! Crypto design w/o proof not worth much (especially if you are 

going to build/use the system) 

 Complicating a proof is fine, complicating a solution is not 
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Lot of… 

 Room for improvement (functionality, privacy, performance) 

 Interesting research questions 

 Trade-offs to resolve 

 Fundamental bounds to be proven 

 Theories and models to be developed 

 Privanalysis attacks to make you famous (easy to get papers accepted…) 

 Dealing with “the challenge of being imperfect”   

 Leaving the “all-but-negligible security guarantees” paradise 

 Is there an acceptable compromise? Should we abandon it to ad-hoc 

practitioners? Too dirty for our souls? 
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Research Questions (partial list) 

 Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp‟n 

 Fundamental limits (leakage-computation tradeoffs), e.g.: 

 leakage from returned ciphertexts (ORAM helps but at significant cost) 

 Frequency of w1 (least frequent term)   (reduction from 3SUM) 

 “Semantic leakage”: Proving formal leakage is nice but how bad is it 

for a given particular application, what forms of masking can help? 

 Can we have a theory to help us reason about it (cf. differential privacy)? 

 A theory of leakage composition? Guidance for masking techniques 

 Attacks welcome!  IKK‟12, KNW‟15, CGPR‟15 just scratched the surface 

 Characterizing privacy-friendly  plaintext search algorithms/data str.  

 A more complete SQL query set (esp. joins) 
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Tradeoffs 

 Tons of privacy-performance trade-offs examples 

 BXT vs OXT vs PXT (computation/communication),  Masking s-terms and 

Xset (space), Bloom filters (false positives), network-latency, and more 

 Fundamental: ??? 

 Privacy/performance bounds?  

 E.g., the intrinsic cost of perfect secrecy 

 But how about bounds in terms of necessary leakage  

 E.g. in the case of perfect secrecy even a 1 bit of leakage can be really bad 

 Any hope for trade-offs between “polynomially-related” objects? 
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Example: s-term leakage 

 OXT leaks the size of |DB(w1)|   (w1 is the least frequent conj. term)  

 Necessary? “Yes”.  Can you prove it? No. 

 Conjecture: any conjunctions algorithm will leak (via running time)     

an upper bound on |DB(w1)|,  except if  

 Search is padded to maxw |DB(w)| size   ( search is linear in |DB|) 

 Or: Conjunctions pre-computed ( pre-processing is super-linear) 

 Why? Consider  2 conjunctions that return the same small # of 

records, one with 2 infrequent terms, one with 2 very frequent terms 

 “name=David and gender=Female” vs “name=Charanjit and lastname=Jutla” 

 We conjecture a lower bd on plaintext search (hence on encrypted) 

 Reduction from 3SUM  (based on [P‟10]) 
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Join the (multi) Party… 

 An exciting & large space to explore with many many research 
opportunities!  

 … and many practical applications  

 Very timely given cloud migration, explosion of private info, and strong 

attackers (including surveillance, espionage, mafia, and just hackers…) 

 An opportunity for sophisticated crypto in the real world? 
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Summary 
 Great progress relative to work on single-keyword single-client SSE 

 Rich queries: General Boolean queries (structured data, free text),      

Plus: range, substring, wildcards, phrase, proximity 

 Huge DBs: 10 TB, 100M records, 1011 indexed keyword-document pairs 

 EDB creation linear in DB size, queries competitive with MySQL 

 Single- and Multi-Client models, policy-based delegation of queries 

 Authorization w/o learning query (“Outsourced Symmetric PIR”) 

 Privacy, insider security, surveillance protection, warrant enforcement 

 Imperfect security: Leakage from access- and query-patterns, but 

well defined leakage profiles, and simulation-based adaptive security 

 Many challenging theoretical and engineering questions 

 Going for practice? Don‟t forget simplicity, engineering and… proofs! 
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 Crypto‟2013: Boolean search, single client    eprint.iacr.org/2013/169 

 CCS‟2013: Multi-client, Blind authorization   eprint.iacr.org/2013/720 

 NDSS‟2014: Dynamic data, implementation   eprint.iacr.org/2014/853 

 ESORICS 2015: Range, Substrings, Wildcards, Phrases     2015/927 
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Thanks! 



Backup 
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Single Keyword Search (SKS) 

1 

Graphics courtesy of David Cash 



Single-Keyword Search (SKS) in SSE 

 SSE (searchable symmetric encryption) 

 A client C (both client and data owner) and server E     (* Charlie, Eddie *) 

 Client C transforms its plaintext DB into “encrypted DB” (EDB) that 

includes encrypted records and metadata;   

 EDB stored at server E; C  only keeps a cryptographic key 

 SKS: Given keyword w return indices of documents containing w 

 Important: model simplified  by abstracting out retrieval (and enc/dec)  

of documents (note: variable vs. fixed-length ciphertexts)  

 SKS at the basis of all our solutions   
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SKS with Cleartext Lists 
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Inverted index 

  1 Encrypted keyword tags 

1. Build inverted index (each keyword points to record id’s) 

2. Choose key K and replace each keyword with PRF tag F(K,w) 

3. Client saves key K 

  2 Search protocol 

Encrypted index 

1. Client sends F(K,w) 

2. Server retrieves proper row 



keyword records 

45e8a 4, 9,37 

092ff 9,37,93,94,95 

f61b5 8,37,89,90 

cc562 4,37,62,75 

4 

keyword records 

45e8a 4, 9,37 

092ff 9,37,93,94,95 

f61b5 8,37,89,90 

cc562 4,37,62,75 

‣ additionally encrypt rows under different keys 

‣ requires modification of server, but more secure 

SKS with encrypted lists 



There should no leakage on individual 
size of record lists 
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How to maps lists into memory 



server can observe memory touched during searches: 

composition of untouched 

regions reveals info about 

unopened part of index! 

➡ e.g. 7 remaining spots 

do not correspond to a  

single list 
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Touched on 

search 1: 

Touched on 

search 2: 



Keyword Document IDs 

Rutgers 4,9,37 

Admissions 9,19,93,94,95 

Committee 8,76,89,90 

Accept 2,35,62,75 

1. Search w0,1 = “Rutgers” 

2. Search w0,2 = “Admissions” 

Keyword Document IDs 

Soil 9,19,93,94,95 

Plants 4,9,37 

Flowers 9 

Rose  9,15,42,75,78 

Pots 9,37 

Index I0 Index I1 

1. Search w1,1 = “Plants” 

2. Search w1,2 = “Soil” 

A distinguishing example 



‣   pad all encrypted lists to size N 

‣   store lists in rows in random order 

‣   pad with extra dummy lists to hide #  lists 

…
 

pad to N ⟹ hides list sizes 

pad to N 

⟹  

hides no.  

of lists 

Secure solution: Maximal Padding [CK] 



1. put ciphertexts in random order in array  

2. link together lists with encrypted pointers 

(example with pointers  

for word “Accept”) 
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Secure solution:                              
Random Access Linked List [CGKO] 



Randomness vs. Structure 

  We need randomness to avoid leakage to server 

       … but we pay with wasted memory (padding solution) 

       … or we pay with random access (linked list solution) 

 

 Tradeoff: Random-access lists with multiple elements per entry 

  Each entry = fixed-size bucket (wasted space/read in half-filled buckets) 

 

 Lower bound [CT’14]: Cannot be simultaneously optimal in: 

        … locality, total space and goodput (read utilization) 

  Asharov et al.: asymptotics close to optimal  (can it be practical too?) 
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Packed Solution [NDSS’14*] 

 Hybrid: Random-access lists with multiple elements per entry 

 Each entry =  bucket  

 But single-size buckets don’t work well with high-variable DB(w) sizes 

 Hence we use a two-layer solution: buckets of pointers, each pointing to a 

block of identifiers 

 Plus: we use two-sized bucket* for optimizing goodput 

 Pointer lists implemented w/history-independent dictionary structure 

Identifier blocks of arranged in an external array (parallel access!)                 

 lists incur in storage allocation overhead but array does not 

 

* NDSS’14 in eprint 2014/853; see C’13 eprint 2013/169 for a simpler scheme 

 

 

12 

# documents  
with w in them 



Faster Pre-Processing and Better Goodput 

Πpack : Bucket (Paged) Hash (PH) Π2lev: Two Levels (2L) 

● Low storage utilization (~60%) 
● Cuckoo Hash fix (~90% util):  
sensitive to insertion history 
● Low goodput 

● Multi-modal keyword distribution 
● Good storage utilization (92%) 
● High goodput. 



LEAKAGE 
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Security Formalism (adversarial server) 

 Based on the simulation-based definitions given for SKS [CGKO,CK].  

 There is an attacker E (acting as the server), a simulator Sim and a 

leakage function L(DB, queries): 

 Real: Attacker E chooses DB and gets the pre-processed encrypted DB,     

then interacts with client on adaptively chosen queries  

 Ideal: Attacker E chooses DB and queries (adaptively),                                     

E gets Sim(L(DB)) and Sim(L(DB,queries)) 

A SSE scheme is semantically secure with leakage L if for all 

attackers E,  there is a simulator Sim such that the views of E           

in both experiments are indistinguishable 

 Server learns nothing beyond the specified leakage L even if it knows 

(and even if it chooses adaptively) the plaintext DB and queries 
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SKS Leakage 

 In all cases: Result set (matching enc’d documents) + query repetition 

 Basic solution: Randomized linked list  

          “Minimal” leakage: Only total number of record-keyword pairs 

                 ∑(𝑤∈𝑊) |𝐷𝐵(𝑤)| 

 Better locality: Packed list  (lists of blocks of size B)  

            Leakage: ∑(𝑤∈𝑊) 
|𝐷𝐵(𝑤)|

𝐵
           (incomparable leakage with above) 

 2-level implementation (blocks of b pointers, each to a block of size B 

       Leakage = Size of external array (function of param’s b and B) 

 Adaptive security with ROM (“programmable PRF”) or client interaction 
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Example for leakage analysis 
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pad to N ⟹ hides list sizes 

pad to N 

⟹  

hides no.  

of lists 



Proving leakage (toy case) 

 Consider a simple strategy where all w’s are assigned equal-length 

arrays  [Cash-Kamara] 

 Memory divided into N arrays, each of size M ; N ≥ |W|, M≥ |DB(w)|, ∀w∈W 

 Each w in W is assigned one array (at random) which contains the permuted 

and encrypted set of all ind ∈ DB(w). 

 Client processes query w by sending (K1,K2)=F(K,w) where K1 points to the     

w-array and K2 is used to decrypt each ind ∈ DB(w). 

 Leakage for queries w1,…,wn =  {M, N, DB(wi) i=1,…,n, {(i,j): wi=wj} } 

 Simulator (static): Given leakage profile: □ creates N arrays of size M; 

 chooses key K, and ∀ i, computes (K1,K2)=F(K,wi);                                      

 for ind ∈DB(wi) (in permuted order) stores Enc(K2,ind) under array K1;  

 fills all other arrays with random values (assumes pseudorandom ciphertexts) 
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Proving adaptive security 

 

 Same as above but  

 All arrays are initially filled in with random values  

 PRF replaced with RO which programs the DB(w) entries for each new query w  

OR 

 The decryption is done by the client sending a decryption pad for each ind in 

DB(w) – still a single message from client to server but of length |DB(w)|. 
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SKS Attacks [CGPR’15] 

 See Sasha’s presentation (IsraelWinterAB15Parts2,3.pptx #87…) 

 Very basic attacks focusing on the following cases: 

 Known documents and enc’d keywords  learn per-keyword doc count 
which they claim is unique for a large fraction of  keywords  (use count   
to match b/w ptext and enc’d words, use intersection sizes for the rest) 

 Unknown documents but encrypted keywords stored in the positions 
(w/repetitions)  they appear in the document (substitution code)  

 Input to attack is a small number of representative ptext docs (w/enough 
words in them) and the corresponding encrypted keywords 

 Previous item but keywords given w/o order, they use an active chosen-
document attack 

 Application to sound SKS (e.g. OXT):  

 First attack applies for actually queried keywords (if ptext DB is known);  

 last attack will apply only after most of the keywords were actually queried  
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Searchable Encryption: 
 

OXT Protocol (Single Client Setting) 

 

Hugo Krawczyk 

IBM Research 

Winter School – Bar Ilan University – January 2015 



Terminology 

 Client = Charlie C,  Server = EDdie E     

 In the multi-client setting (covered later) DB owner called  DeBbie  

 DB = collection of plaintext records (aka documents) owned by client C 

 EDB (encrypted DB): data stored at E (encrypted records + metadata) 

 ind = index to plaintext records  (whose order is randomized) 

 DB(w)={ind1, ind2,…} indices of records containing w 

 W(ind) = set of words contained in record ind,  

 W = the set of all words in DB, i.e.  W(𝑖𝑛𝑑)𝑖𝑛𝑑  
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Single-Keyword Search (SKS) in SSE 

 SSE (searchable symmetric encryption) 

 A client C (both client and data owner) and server E 

 Client C transforms its plaintext DB into “encrypted DB” (EDB) that 

includes encrypted records and metadata;   

 EDB stored at server E; C  only keeps a cryptographic key 

 SKS: Given keyword w return indices of documents containing w 

 Important: model simplified  by abstracting out retrieval (and enc/dec)  

of documents (note: variable vs. fixed-length ciphertexts)  

 SKS at the basis of all our solutions   
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Conjunctive (and Boolean) Queries 

         Cash et al, Crypto 2014, eprint 2013/169 
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Conjunctions: the naïve solution  
(conj = w1 Λ w2 Λ … Λ wn ) 

 Run single-keyword-search on each wi to get ind’s for each wi,                 

then retrieve ind’s in intersection 

 Performance: Work proportional to the sum of matching sets for 

each term, i.e. |DB(w1)|+…+|DB(wn)| 

 Sum of costs of n single-term searches 

 Prohibitive with low entropy terms, e.g. “lastname=Jutla ˄ gender=male” 

 Leakage: ind’s for each DB(wi) leaked 

 Same effect as if each wi was queried separately   

 union of leakages rather than their intersection 

 Need to improve both cost and security… 

 5 
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Conjunctions via Forward Index 
(unencrypted) 

 Inverted index: keyword w points to records containing w 

 w  DB(w) = {ind1, ind2,…, indt} 

 Forward index: record points to all its keywords w 

 ind  W(ind) = {w1,…,wm } 

 Conjunction algorithm   (conj = w1 Λ w2 Λ … Λ wn) 

 Let w1 be the term with smallest DB(wi) set.      

 For each ind in DB(w1) and each wj in conj, check if wj in record ind.                                  

If tests succeeds for all wj , j=2…n,  return ind. 

 Terminology: s-term vs x-terms 

          w1 Λ w2 Λ … Λ wn 



w1    

Resolving w1 Λ w2 Λ … Λ wn (w1 least frequent) 

with forward indexing 

7 

indi 

? ? ? 

indm ind1 …  

? ? ? ? ? ? 

…  

w2             w3      …    wn 
w2             w3      …    wn w2             w3      …    wn 

return indi iff it contains all w2,…,wn 

 Implementation trick: Build set XSet of hash values as follows 

     For each record ind and each w in W(ind): add H(ind,w) to XSet 

 To test if w ∈ W(ind) check if H(ind,w) ∈ XSet 

      ∀  ind ∈ DB(w1) return ind iff H(ind,wj) ∈ XSet for all j=2,…,n 

inverted index 

forward index 

s-term 

x-terms 

return indi iff H(ind,wj) ∈ XSet for all j=2,…,n 



Private Forward Indexing 
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xindi 

? ? ? 

xindt xind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2     …      wj      …    wn 
w2             w3      …    wn 

 Implementation: stag1=fk(w1)    xtrapj=fk*(wj)    k
*≠k two prf keys  

 Preprocessing:  xind and w in xind: add H(xind, xtrap(w)) to XSet 

 Client hands to E: stag1 and xtrap2 ,…, xtrapn  

 E returns record xind in stag1 if for all j>1, H(xind, xtrapj) ∈ Xset 

(Basic Cross-Tag Protocol – BXT) 

w1 replaced 
with  fk(w1)  

wj replaced  
with fk*(wj)  

=stag1 

=xtrap(wj) 

was H(ind,w) 



Computational cost of BXT 

 E work is proportional to |DB(w1)|: Major improvement over naïve sol’n 

 In naïve, cost is |DB(w1)| + |DB(w2)| + … + |DB(wn)|                               

(min vs max, e.g. gender=male)  

 Choosing w1 right is important: Based on DB statistics 

 “Non-interactive”: Single short message from C to E and E sends 

back results 
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BXT Leakage 

 Leakage to E: Substantial improvement over naïve solution –    

reduces correlation between x-terms across same or diff queries 

 When wi and wj are x-terms in same or diff queries nothing is learned 

about DB(wi) and DB(wj) other than via intersections with s-terms 

 E learns repeated terms in different queries and learns the sizes of 

DB(w1) and of DB(w1˄wi)  for each x-term wi in the same query.  

 E learns ind’s of all s-terms ( their size and intersections).  

 Since E learns xtrap for each x-term wi , it also learns DB(w1)DB(wi) for 

any pair of s-term w1 and x-term wi even across queries 

 Next: How to reduce inter-query leakage. Avoid revealing ind’s    

(inter s-term leakage) and xtrap’s (inter x-term leakeage) 
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Terminology to remember 

        w1        w2 . . . wn 

     s-term     x-terms 

C:    strap      xtrap          (trapdoors: for C only) 

E:    stag        xtag            (tags: revealed to E) 

xtag = elements of Xset (i.e. xtag = H(xind,xtrap) ) 

Tset(w)   (tuple set  =  inverted index) 

       List FK(w)  (EncKw(ind1), … , EncKw(indm))  (SKS solution)  

Tset = {Tset(w)}w∈W    

TsetSetup(T), TsetRetrieve(Tset,stag), stagTsetGetTag(KT,w) 

 14 
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Reducing cross-query leakage          
(via oblivious computation) 

 Recall (BXT): 

 Client computes and hands to E: stag1 and xtrap2 ,…, xtrapn  

 E returns record xind in stag1 if for all j>1, H(xind, xtrapj) ∈ Xset 

 Goal: reduce cross-query correlations by hiding xtrap’s from E 

 Idea 1: Interactive protocol b/w C and E     (IXT) 

 E sends each xind to C who sends back H(xind,xtrapj), j=1,…,n 

 E learns H(xind,xtrap) but not xtrap and can check if conjunction holds 

for xind – all xtrap-related leakage avoided 

 (i) Extra round of communication; (ii) E can cheat sending xind from diff. s-term 

(E learns forbidden intersections); (iii) leakage to client in MC-SSE (s-term inters.)  

Yet, for HBC E and single-client SSE, IXT can be a great solution (w/ more latency) 
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Reducing cross-query leakage          
(via oblivious computation) 

 Recall (BXT): 

 Client computes and hands to E: stag1 and xtrap2 ,…, xtrapn  

 E returns record xind in stag1 if for all j>1, H(xind, xtrapj) ∈ Xset 

 Goal: reduce cross-query correlations by hiding xtrap’s from E 

 Idea 2: Replace H(xind, xtrapj) with secure computation (b/w E & C)      

 C inputs xtrap, E inputs xind 

 E learns H(xind,xtrap) but not xtrap; C learns nothing (e.g. xind) 

 Solution: H(xind, xtrap)  = xtrapxind mod p 

( Group G=<g> of prime order p, xtrap ∈ G,  xind ∈ Zp ) 

 



Interactive Solution 

 H(xind, xtrap) = xtrapxind mod p 

 E has “key” xind, C has xtrap 

 C to E:   a ⃪ xtrapz  for z random in Zp 

 E to C:   b ⃪ axind 

 C to E:    xtag ⃪ b1/z  (= xtrapxind) 

 E searches xtag in XSet 

 Problems:  

1. E knows xind hence it learns xtrap (=xtag1/xind)  (didn’t gain much)   

2. E learns xind hence it learns relation b/w s-terms (e.g. |DB(s)∩ DB(s’)|) 

3. Rounds of interaction 
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Non-Interactive Solution  

 Interactive: E has key xind (from stag tuple), C has xtrap (from DB) 

 C to E:   a ⃪ xtrapz   z random in Zp 

 E to C:   b ⃪ axind 

 C to E:    xtag ⃪ b1/z (= (xtrapz)xind/z = xtrapxind ) 

 

 Non-interactive: store xind blinded with a one-time blinding factor z  

1. At setup: y=xind/z is stored at EDB;  

2. At search C sends a=xtrapz to E   (C derives xtrap from wj and z from w1)  

     E retrieves y from EDB and sets xtag ⃪ ay    ( = (xtrapz)xind/z = xtrapxind ) 
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avoids interaction (and prevents E from learning xtrap or xind!)  



OXT: Oblivious X-Tags Protocol 

 Non-interactive: store xind blinded by a one-time blinding factor z  

1. At setup: y=xindz-1 is stored at EDB;  

2. At search C sends a=xtrapz to E      (C computes xtrap from wj and z from w1) 

3. E retrieves y from EDB and sets xtag ⃪ ay 

 OXT basics, 2-term conjunction example (w1,w2) 

 EDB setup: ∀ w in W, for t=1 .. Tw=|DB(w)| 

  store yt=xindzt
-1 in w-list with corresp. encrypted ind  (zt=F(w,t) ∈ Zp ) 

 On query (w1,w2): C computes xtrap   (a prf applied to w2) 

 C sends to E stag(w1) and the Tw1–long vector {at=xtrap   : t=1,…,Tw1 }  

 For t=1..Tw1, E retrieves yt from stored w1-list, sets xtagt ⃪ at
Yt   (= xtrapxind) 

                  E returns t-th encrypted ind iff xtagt in Xset  
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OXT Core 

 E Setup: For all w in W:  

 strapw=F(KS,w);  xtrapw= g^{F(Kx,w)}  

 For t=1 to T=|DB(w)|: 

 Tset(t) = [ Enc(Ke,indt), yt=xindt zt
-1 ]   (* where zt = F(strapw, t) *) 

 Add  xtag=(xtrapw)xind to Xset               (* where xtrapw= g^{F(Kx,w)} *) 

 Search on (w1,w2,…,wn): 

 C computes (using keys KS, KX):  strap1, xtrap2,…,xtrapn 

 For t=1…|DB(w1)|,  C sends to E:  {xj=xtrapj
Zt,  j=2,…,n }  (*  zt= F(strapw, t)  *) 

 For t=1…|DB(w1)|, E sets xtagj,t = xj
Yt, j=2,…,n  (* yt stored in Tset *) 

 E returns t-th encrypted ind iff for all j=2,…,n,   xtagj,t in Xset 

 It works because xtagj,t = xj
y = (xtrapj

z)y = (xtrapj
z)xind/z = xtrapj

xind   
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We avoid interaction by 
pre-computing and storing 
the interactive protocol msgs 

Preprocessing:  #(w,ind)  expon’s* 

Search: Per item in DB(w1): 

 - Client n-1 expon’s* 

- Server: n-1 expon’s  

* same-base  



OXT Leakage (Improvements on BXT) 

 Repetition of s-term still visible to E (stag is deterministic) but         

x-term repetition mostly* avoided (see below). 

 Most important: OXT solves the bad inter-query leakage where 

 E learns intersection DB(w1)DB(wi) for any pair of s-term w1 and         

.    x-term wi even across queries 

 (in OXT can’t combine x-term from one query with an s-term from another) 

 The following milder leakage remains: 

 For queries w1  x and w1’  x’ , if DB(w1  w1’) ≠ ∅ and x=x’         

then E learns that x=x’ and the encrypted ind’s in DB(w1  w1’) 

 Leakage unlikely for s-terms chosen as low-frequent terms (w1w1’ would   

be usually empty);  and it is impossible if both w1,w1’ are, say, last names. 
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Summary: OXT Leakage to E 

 As in BXT: 

 Total index size = upper bound on i |DB(wi)|    (Tset leakage) 

 Number of terms in each conjunction 

 Size of s-term set |DB(w1)|       (unavoidable? Reduction from 3SUM) 

 s-term repetitions 

 Encrypted ind’s in the set DB(w1wj) , j=2,…, n   (e.g. | DB(w1wj)| ) 

 NO leakage about intersections of x-terms in same or different queries 

 Improvement on BXT:  

 For queries w1  x and w1’  x’ , if x=x’ and  DB(w1  w1’) ≠ ∅,               

then E learns that x=x’ and the encrypted ind’s in DB(w1  w1’) 

 Server E can be malicious but trusted to return the correct results 
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OXT non-leakage 

 OXT does not reveal 

 plaintext data (semantically secured, no det’c enc, no repeated patterns, etc) 

 plaintext queried values (s-term and x-terms) 

 plaintext ind’s other than those matching the conjunction 

 information on intersecting records of different x-terms                     

(in the same query or across different queries) 

 repeated x-terms or intersections between different s-terms,                           

except for those revealed via last leakage item in previous slide 

 This leakage can be reduced substantially with more memory (practical for  
moderate  number of keywords per document, e.g. 100 keywords/record)  

 An example of space-privacy trade-offs 
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OXT Theorem 

 Security formalism: Same simulation-based definition as in SKS 

 Let L be (a formal description of) the leakage function described 

before. 

 Theorem: OXT is semantically secure with leakage L under the DDH 

assumption when implemented with a secure PRF and CPA encryption. 

 Proof: see paper for painful enjoyment… eprint 2013/169 

 Note: No ROM required!    

 ROM used in our implementation of the more advanced models and to improve 
communication in the adaptive security case. 
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Simulation Ideas                                  
(details in eprint 2013/169) 

 Tset simulation (as in SKS) 

 y values (=xind z-1) chosen as random elements of Zp 

 Tricky part: How to choose Xset values so that (xtrapw)xind ∈ Xset   

iff w is in record xind.  Note that:  

 (i) any w can be queried (even if not in DB);                          

 (ii) the values x=xtrap1/z  sent by the client and the stored random y need to 
satisfy that xy  is (or is not) in Xset  depending on whether “w ∈ ind”;   

 (iii) xy values may repeat for different values of x and y 

 Solution: Choose Xset values as random elements h in group G; simulate 

client values xtrap1/z as  h1/y depending on retrieved y (so that (xtrap1/z)y =h) 

 Use DDH to claim that random Xset values are indistinguishable from real 
(structured) gw xind  (note that w and xind may repeat in multiple Xset entries) 
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General Boolean Formulas 

 Queries of the form  w1  Λ  (w2,…,wt)   where  is any Boolean 

formula (program) 

 Similar to the conjunctions mechanism:  

 For all ind ∈ DB(w1), set βj=1 if H(ind,wj) ∈ Xset, return ind iff (β2,…, βt) = true 

 Same cost as for conjunction 

 Any Boolean query via “w1 = True” (linear in worse case) 

 More generally: Disjunction of any number of such formulas 

 Example: (m out of t)-threshold query  disjunction of (t-m+1) formulas: 

(w1 Λ T(m-1,t-1)(w2,…,wt)) or (w2 Λ T(m-1,t-2)(w3,…,wt)) or … or (wt-m+1 Λ T(m-1,…)(wt-m+2,…,wt)) 

 Leakage:   

 As in conjunctive search, plus EDB learns  (not wi’s)  and the bits βj for j=2,…,t 
29 

 SNF = “Searchable Normal Form” 



Extensions 

 Dynamic DBs: additions, deletions, modifications  (and client caching) 

 More complex query types 

 Range queries: return all records with DOB between 2/3/87 and 3/4/88 

 Substring/Wildcard queries:  %lope%,    enc_clo_ _dia,   %cycl_ _ _dia  

 Phrase queries: “searchable symmetric encryption”, “Gone _ _ Wind” 

 PXT: Very communication-efficient (as in BXT: short client message)    

but uses pairings, same leakage as OXT 

 Complex operational/trust settings: MC-SSE and PIR-SSE: 

 Malicious clients, hiding queries from Debbie (and even hiding policy as in 

warrant-based scenarios)  

 Tools (all via simple exponentiation): OPRF (for PIR), attribute-based keys for 

blind authorization, homomorphic signatures for query authentication by Eddie 
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Updates 
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Dynamic Data (updates) 

 Updates: add, delete, modify 

 Operational assumption: |DB|>>updates; thus: 

 EDB super-optimized for disk access but update structures planned for RAM 

 Periodic re-encryption eliminates leakage trails (e.g.  new/old records) 

 Caching (defense against leakage) 

 Client can identify previously retrieved documents in result set before 

requesting them 

 Will retrieve a previously retrieved document only if the document  

changed since last retrieval 

 Important defense against server learning intersection b/w queries 

 but leakage on the number of matching-but-not-retrieved documents 



Data Structures (NDSS’14, eprint 2014/853) 

 EDB (Tsets + Xsets) unchanged 

 Changes to clear-text DB do not affect EDB 

 EDB+ records DB changes between re-processing phases 

 RAM resident Hash Tables (dictionaries) 

 TSet+ stores new tuples 

 XSet+ stores new XTags 

 RevID Set stores revocation IDs for deleted records 

 Clear-text database enhanced 

 |Tset(w)|, for all keywords w 

 Seq # of last successful update 

 33 



Integrating EDB+ into OXT 

 Eddie runs OXT on EDB first and on EDB+ next 

 EDB+ tuples are labeled separately (not grouped in blocks) 

 OXT result set filtered using the RevID Set 

 Very efficient 

 Charlie and Debbie are unchanged 

 Security 

 Cannot relate old and new tuples except if keyword was searched (can 

avoid with evolving periodic keys) 

 Can hide operation (add/del/modify) by always doing a delete+add 

 But Eddie knows if returned record (and touched tuple) is new or old  

 Caching: Can identify previously cached records and know if they changed 
34 



Complex Queries  
(summary in case I don’t get to do them in 

detail) 

 

 

 

    Extensions to OXT – reductions to Boolean queries 
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Range Queries 

 E.g., return all records with DOB between 2/3/87 and 3/4/88 

 Compute a cover of the range by intervals (via a tree cover algorithm) 

 Generate a disjunction of values representing each of the intervals 

 Range R translated into disjunction of up to 2 log R exact-match terms 

 Thus: the Boolean OXT protocol applies AS IS 

 The more interesting part: Blind authorization 

 Debbie authorizes based on total size of range (eg. query span ≤ one year) 

 Needs to let Debbie learn the total size of the range w/o leaking on the 

endpoints? (e.g.., # of intervals should be same for any two ranges of same size)  

 Two solutions: Canonical covers (all ranges of given size have same-lengths 

intervals); 3-node over-covers (always 3 intervals with 40% avg overhead) 
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Substring/Wildcard Queries 

 Any combination of _ (“single character wildcard”) and substrings of k     

or more consecutive characters (k is a tunable parameter) 

 Plus a % (“any string”) at the beginning and/or end of a search 

expression 

 Examples (return “encyclopedia”):                                                             

(i) %cycl_ _ _dia    (ii) %lope%      (iii) enc_clo_ _dia 

 Tunable k: smaller for more general queries; larger for search efficiency                 

 Variable k: flexibility and efficiency (only “anchor” ≥ k) 
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OXT Protocol (substring extensions) 
 Substrings: we treat k-gram’s as keywords, associated to a xind as 

well as a position p in xind – we thus extend the function H to: 

 

 

 We want to know if “charan” is in record xind: 

 We find (encrypted) values of y=xind and v=xindp in Tset(“cha”)                          

(which means: “cha” is in pos p in xind),    

  We then check if “ran” is in position p+3 in xind by checking that  

 

 

 Computed via a non-interactive 2-party secure function evaluation: 
Charlie has (“ran”,∆), Eddie has encrypted (y,v) and ∆ 
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H(“cha”, xind, p) = (prf(“cha”)) 
(xind) 

p 

v y3 (prf(“ran”))      = (prf(“ran”)             in Xset (xind) 
P+3 



Generalization: Proximity Queries 

 A generalization of our substring technique 

 Can do search of the form (e1,e2,∆) meaning 

 Return all records where element e1 is at distance ∆ from e2 (∆ can be 

negative) 

 Examples:  

 ei are k-grams: resolves substrings and wildcards 

 ei are textual words: resolves phrases (e.g., “Bar Ilan University”) 

 Multi-dimensional distances (e.g., grid), etc. 
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Subsequences Leakage to Eddie 
Reminder: Leakage from conjunctions w1  …  wn 

1. Index size = upper bound on i |Doc(wi)| 

2. Number of terms in each conjunction 

3. Size of s-term set |Rec(w1)| and whether s-term repeats 

4. Size of Rec(w1wj) , j=2,…, n 

5. For queries w1  x and w1’  x’ , if x=x’ and  Rec(w1  w1’) ≠ ,                  
then E learns that x=x’ and the encrypted rind’s in Rec(w1  w1’) 

Leakage  is similar for subsequence queries with s-term k-gram w1 and          

x-term grams w2,..,wn except for more involved 5’  (stated for 2-term query) 

 For queries w1  x and w1’  x’, with offsets 1, 2 ,                                   

if x=x’  and there exist ind in Rec(w1  w1’)  and p, p’ such that                 

w1 is in position p in ind and w1’ in position p’ in ind, and p-p’= 1- 2                                               

then E learns that x=x’, and the encrypted pairs (ind,p),  (ind,p’).  

 Plus: offset  leaks – can be avoided with a round of communication C-E 
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Leakage from Range Queries 

For Debbie: 

 The total size of the queried range (necessary to apply policy) 

For Eddie: 

 Leakage for atomic range query with cover w1=(h1,c1)  … , wn =(hn,cn) is 

same as for OXT disjunction “w1 or … or wn”   

 |DB(wi)|  for i=1,…,n ,      DB(w1 or … or wn) 

 For composite queries, leakage is same as OXT where the range query 

is replaced with “w1 or … or wn”  

For Client: 

 Mask(|DB(wi)|)  for i=1,…,n if range query acts as s-term 
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Searchable Encryption: 
 

Multi-client and OSPIR Settings 

 

Hugo Krawczyk 

IBM Research 
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Encrypted Search I (SSE) 

 Owner of database DB (= client) outsources its Encrypted Data to a 

server (EDdie) such that: 

 Owner/Client: 

 pre-processes data, outsources to Eddie, keeps only a cryptographic key, 

later runs queries at Eddie, retrieves/decrypts matching documents 

 Eddie: 

 gets all DB documents in encrypted form 

 keeps index information (metadata) in encrypted form 

 responds to client‟s queries (returns matching encrypted doc‟s)   

 does not learn the searched terms or DB plaintext information                    

- but leakage on data-access patterns and query patterns allowed 
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Encrypted Search II (Multi-Client SSE) 

 Owner of DB (DeBbie) outsources DB to Eddie such that                                       

Eddie (as before): 

 keeps all records and index information in encrypted form  

 can accurately respond to any boolean query (returning matching records)  

 does not learn the searched terms or any plaintext information on the DB 

(some leakage allowed) 

 While Debbie: 

 can delegate search to clients  (via search tokens) 

 such that clients can search through queries authorized by Debbie                  

but learn nothing about data not matching the authorized queries 

 multiple and adversarial clients (fully malicious in our solutions) 
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Encrypted Search III  

(OSPIR=Outsourced Symmetric PIR) 

 As scenario II    

 PLUS 

 Debbie can authorize clients to perform queries according to a 

prescribed policy  

(i.e., determine the query compliance and provide  the corresponding tokens) 

   ... but she has to do so without learning the searched terms 

 

 Assumption: Debbie and Eddie do not collude (otherwise the strong 

performance limitations of PIR apply) 
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The MC-SSE Setting 

D gives the tokens to C and authorizes according to a policy 

  (leakage to C: anything beyond the results to authorized queries) 

8 



OXT Core 

 EDB Setup: For all w in W:  

 strapw=F(KS,w);  xtrapw= g^{F(Kx,w)}  

 For t=1 to T=|DB(w)|: 

 Tset(t) = [ Enc(Ke,indt), yt=xindt zt
-1 ]   (* where zt = F(strapw, t) *) 

 Add  xtag=(xtrapw)xind to Xset               (* where xtrapw= g^{F(Kx,w)} *) 

 Search on (w1,w2,…,wn): 

 C computes (using keys KS, KX):  strap1, xtrap2,…,xtrapn 

 For t=1..T,  C sends to E:  {xj=xtrapj
Zt,  j=2,…,n }  (* where zt= F(strapw, t)  *) 

 For t=1..T, E sets xtagj,t = xj
Yt, j=2,…,n  (* yt stored in Tset *) 

 E returns t-th encrypted ind iff for all j=2,…,n,   xtagj,t in Xset 

 It works because xtagj,t = xj
y = (xtrapj

z)y = (xtrapj
z)xind/z = xtrapj

xind   
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MC-OXT 

 In OXT: Search on (w1,w2,…,wn): 

 C computes (using keys KS, KX):  strap1, xtrap2,…,xtrapn 

 For t=1…|DB(w1)|,  C sends to E:  {xj=xtrapj
Zt,  j=2,…,n }  (* zt= F(strapw, t) *) 

 For t=1…|DB(w1)|,  E sets xtagj,t = xj
Yt, j=2,…,n             (* yt stored in Tset *) 

 Adapting to the MC-SSE setting – initial ideas: 

 D (using keys KS, KX) provides C with strap1, xtrap2,…,xtrapn     

 Fails: C can combine strap from one query with xtrap‟s from another to obtain 
an unauthorized query 

 Solution:  D signs (strap1, xtrap2,…,xtrapn ) so that E can verify binding 

 Fails: C does not pass xtrap values to E but rather xtrapz  and revealing z 
values to E is insecure: allows E to do unauthorized searches (back to BXT) 

 D needs to sign (strap1, xtrap2
z,…,xtrapn

z ) for many z‟s  (but how many?) 

10 



MC-OXT 

 In OXT: Search on (w1,w2,…,wn): 

 C computes (using keys KS, KX):  strap1, xtrap2,…,xtrapn 

 For t=1..T,  C sends to E:  {xj=xtrapj
Zt,  j=2,…,n }  (* where zt= F(strapw, t)  *) 

 For t=1..T, E sets xtagj,t = xj
Yt, j=2,…,n  (* yt stored in Tset *) 

 Adapting to the MC-SSE setting (“homomorphic signature”): 

 D needs to sign (strap1, xtrap2
z,…,xtrapn

z ) for many z‟s  (but how many?) 

 Solution: D provides C with (strap1, xtrap2
r2

 ,…,xtrapn
rn) for random r2,…,rn, 

and also AuthEnc(KM; r2,…,rn)  where KM is key shared between D and E. 

 C will send xj=(xtrapj
rj)Zt    (* instead of xtrapj

Zt *) 

 E decrypts and verifies r2,…,rn , then it computes xtagj,t = xj
Yt/rj  

 Note: E does not verify the signature on xj‟s, but by raising to the rj
-1 it ensures 

that if C is cheating, the xtag will result in a random value (w.h.p not in Xset) 
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The OSPIR Setting 

As in MC-SSE but D authorizes queries according to              

a policy without learning the queried values (a la PIR*) 

        

          OSPIR = “Outsourced Symmetric PIR” 

    (*PIR = Private Information Retrieval CGKS‟95) 

12 
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Multi-Client SSE with Blind Authorization 
(OSPIR) 

 We call this setting “outsourced symmetric PIR (OSPIR)” 

 Parties: Client C, DB owner D (authorizer), EDB holder E 

 Keywords are attribute-value pairs, e.g. (“name”,Joe), (“text”, I am happy) 

 Attribute-based policies (“Is client C authorized for query Q?”)  

 Policy decisions based on attributes not values 

 E.g. can query name and lastname but only with one of (zipcode, town, school) 

 Permissions set by D and can depend on client and type of boolean query  

 D enforces policy w/o learning the queried values, only the attrib‟s 

 or less,  e.g. a class of attrib‟s a term belongs to, not the specific attrib 
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Basic Tool: Oblivious PRF (OPRF) 
[NR’04,FIPR’05]  

 OPRF Instantiation:  fk(x)=[H(x)]k      (DH OPRF) 

 Oblivious computation via “Blind DH Computation”:  

 C sends a = [H(x)] r to D, D replies with b = ak, C computes fk(x) as b 1/r 

D(k) C(x) 

fk(x) 丄 

fk(x) is a Pseudo-Random 
Function (PRF) if  

         OPRF protocol 

x 

fk(x) or $ 
fk-or-$ Adv 

? 



Warm-Up: Single-Keyword Search 

 DB: Collection of inverted indexes pointed by each keyword (i,val) 

 (i,val)  {list of doc‟s containing (i,val)} 

 EDB: Collection of inverted indexes using PRF-computed pointers    

(for hiding the keyword from Eddie) 

 fK(i,val)  { encrypted list of records containing (i,val) } 

 Policy: For each client C, Debbie has a list AC of allowed attributes   
(i.e., C can search for any (i,val) such that i ∈ AC ) 

 Case 1: Debbie is allowed to learn the query 

 1. C  D: (i, val)        2. D  C: if i ∈ AC then return  fK(i,val) 

 3. C  E: fK(i,val)      4. E  C: Records pointed by fK(i,val) 

15 



Single-keyword / Query hidden from Debbie 

 Case 1: Debbie learns query (fK = PRF) 

 1. C  D: (i, val)         2.  D  C: if i ∈ AC then return  fK(i,val) 

 3. C  E: fK(i,val)       4.  E  C: Records pointed by fK(i,val) 

 Case 2: Debbie learns attribute i but not value val 

 Replace PRF fk with Oblivious PRF  fk:  

 D enters k, C enters (i,val), C learns fK(i,val), D only learns i 

 But how does D know if attribute i was authorized for C?     

 C can disclose i but then how does D knows that input (i,val) has same i?  

 Need a “conditional OPRF” (return output to C only if i ∈ AC ) 

 Simple solution: per-attribute OPRF key Ki:  C learns FKi(i,val)  

 If C claims attrib i but enters (j,val), he learns FKi(j,val) which will 

return nothing at Eddie   (e.g. zipcode=michael) 
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Conjunctions Case 

 Given (i1,v1), (i2,v2),…,(in,vn), return all records containing all these words 

 Policy: AC = subsets of {1,…,N}, e.g. if {1,3,8} ∈ AC then C  is allowed a 

conjunction of the form (1,v1), (3,v2), (8,v3) for any v1, v2, v3                  

(can have more compact representations, e.g. any 2-out-of-{1,3,8,11}) 

 Extension from the single-keyword case (example (i,u) ˄ (j,v)) 

 D provides C with FKi(i,u) and FKj(j,v) via OPRF  

 But then C can combine two allowed queries into a non-compliant one 

 Given pair FKi(i,u), FKj(j,v) and pair FKi‟(i‟,u‟), FKj‟(j‟,v‟), C can query (i,u) ˄ (j‟,v‟)   

 Solution: Let D sign the tokens FKi(i,u), FKj(j,v) given to C, Eddie will 

verify the signature before serving the query 

 But how can D sign OPRF output values she does not (and should not) know? 
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Signing tokens against mix & match 

 Solution via “homomorphic signatures”  

 Exploit the homomorphic properties of the DH OPRF 
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Recall DH OPRF 

 Cyclic group G of prime order q; H hash function from {0,1}* to G 

 OPRF: Zq x {0,1}*  G,     FK(w) = H(w)k 

 Two party computation of FK(w):    (* similar to a blind signature *) 

 D has key K in Zq , C has input w in {0,1}*  

 C to D:  a=H(w)b for b random in Zq  

 D to C: c=ak 

 C: FK(w)  c1/b    (* = (((H(w)b)K)1/b = (H(w))K  *) 

19 



Signing tokens against mix & match 

 Solution via “homomorphic signatures”  

 Exploit the homomorphic properties of the DH OPRF 

 C  D: a1 = (H(i1,v1))b1 , a2 = (H(i2,v2))b2    (b1,b2 random in Zq) 

 D  C:  c1=a1
Ki1r1, c2=a2

Ki2r2      (r1,r2 random in Zq)  

                 env = AEncDE( r1, r2 )   (* AEnc key shared between D & E *)  

 C  E: (H(i1,v1))Ki1r1 , (H(i2,v2))Ki2r2,  env  (*C de-blinds by raising to 1/b *) 

 E: Verifies and decrypts r1, r2, computes (H(i1,v1))Ki1, (H(i2,v2))Ki2 and 

serves the query 

 To mix (H(i1,v1))
Ki1r1, (H(i2,v2))

Ki2r2 with  (H(i1„,v1„))
Ki1„r1„, (H(i2„,v2„))

Ki2„r2„,       

C would need to forge env = AuthEncDE(r1, r2‟).               

 Otherwise, if C uses a valid env, E derives random values not in EDB. 
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Cost and Extension to Boolean Queries 

 Authorization mechanism *very* cheap: one round of communication, 

2n+1 exponentiations for the client and n+1 for Debbie (on n terms) 

 Base SSE protocol (OXT) already uses exponentiations for search,    

much more intensively and very optimized 

 

 Boolean queries: Same as conjunctions but env includes description  

of expression  (query type) plus “signatures” r1,…,rn 

 E.g. “x1 and (not x2 or x3)”, r1, r2, r3 
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Security 

 OSPIR-OXT leakage  

 To D: Query type and input attributes (values are info-theoretic protected) 

 To C: Size of s-term   (or an upper bound if E sends dummy values - unavoidable) 

 To E: No extra leakage relative to basic OXT  

 Security proven against malicious clients 

 I.e., no behavior by clients (even collusion between multiple clients)       

can lead to authorization of non-compliant queries or to learning policy  

 assumes “one-more DH” and ROM for OPRF implementation 

 … and malicious Debbie, but  assumes non-collusions with E  

 No behavior by Debbie can lead to learn information on queried values 

 Note: Can add replay protection to env (one-time use, exp. date, etc.) 
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Authorization Extensions/Enhancements 

 Debbie learns class of attributes, not individual attributes 

 E.g.: Debbie authorizes any conjunction with attribute 1 and any attribute 

from {2,3,4}, then Debbie does not need to learn which of 2,3,4 used 

 Solution: Debbie raises H(i1,v1) to K1 and H(i2,v2) to K2,K3,K4, C chooses one 

 Role of Debbie can be split:  

 Holder of plaintext DB generates EDB; outsources EDB to Eddie and    

delegates the per-attribute authorization keys to Authorizer  

 The former needs not know the policy, the latter does not need DB 

 Policy Manager: A 3rd party that holds policy, authorizes queries, but 

can‟t provide search tokens without Debbie‟s participation (“warrant”) 
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Substring Search 

2 

 Preprocessing:  Tag each text by all its 3-grams (k=3) 

  e.g.   Charanjit        “cha” , “har” , “ara” , “ran” , ”anj” , ”nji” , ”jit” 

 

 Search by Substring: 

  Search on a conjunction of all 3-grams in the substring 

  e.g.    *charan*        “cha”  &  “har”  &  “ara”  &  “ran” 

Problem:  False Positives 

   e.g.   Search on (“cha” & “har” & “ara” & “ran”) returns: 

 ”... Harry chased the oranges rolling around in his garage ...” 

Idea: Represent substring as conjunction of k-grams 

 



Substring Search 

3 

Idea: Represent substring as conjunction of k-grams 

 Problem:  False Positives 

Refinement: Account for k-gram positions 

 Preprocessing:  Tag each text by (3-grams,position) pairs 

e.g. Charanjit  (1,“cha”), (2,“har”), (3,“ara”), (4,“ran”), (5,”anj”), (6,”nji”), (7,”jit”) 

 Search by conjunction of (3-gram,shift) pairs 

e.g. *charan*  (0,“cha”) & (1,“har”) & (2,“ara”) & (3,“ran”) ) 

 

 

Problem:      Positions in DB keywords are absolute 

    Positions in query are relative 



Substring Search 

4 

Goal: match relative pos. (query) to absolute pos. (keyword) 

W(ind) contains “cha” at pos. p and “ran” at pos. p+3 

   TSet(”cha”) = { ...., E(ind,p), .... }  

   XSet contains .... ,   H(”ran”,ind,p+3)  ,  ... 

Client parses query *charan* as (“cha” &  (“ran”,3) ) 

   s-term = “cha”    Eddie retrieves E(ind,p) from TSet(“cha”) 

ind  indt ind1 …  w1    …  TSet(“cha”) 
E(ind,p) 

…               “ran” at           

  (ind, p+3)?     

…     

w2          w3     …    wn w2             w3        wn 

? ? ? ? ? ? ? ? ? 



Substring Search 
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Goal: match relative pos. (query) to absolute pos. (keyword) 

W(ind) contains “cha” at pos. p and “ran” at pos. p+3 

   TSet(”cha”) = { ...., E(ind,p), .... } 

   XSet contains .... ,   H(”ran”,ind,p+3)  ,  ... 

Client parses query *charan* as (“cha” &  (“ran”,3) ) 

   s-term = “cha”    Eddie retrieves E(ind,p) from TSet(“cha”) 

We need two-party computation: 

Client Input: xtrap(“ran”,3)        Server (Eddie) Input:   E(ind,p) 

           Eddie’s Output:  H(“ran”,ind,p+3) 



Client: strap(“cha”), xtrap(“ran”, )          Eddie:   Estrap(“cha”)(ind,p) 

           Eddie’s Output:  H(“ran”, ind, p+) 

Substring Search: Conjunction Protocol 

H(“ran”, ind) = (PRF2(“ran”)) 
ind  

y = ind / zctr , where otp zctr derived from PRF1(“cha”) 

Client: PRF1(“cha”) , PRF2(“ran”) 
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Recall Our Regular Conjunctive Protocol (w/o positions): 

Eddie:  y = EncPRF1(“cha”)(ind) 

 

2. S computes     Ay  = ( (PRF2(“ran”)) 
(zctr) )  (ind/zctr)  = (PRF2(“ran”)) 

ind  

1. C sends to S :  A   = (PRF2(“ran”)) 
(zctr) 



2. S computes     Ay  = ( (PRF2(“ran”)) 
(zctr) )  (ind/zctr)  = (PRF2(“ran”)) 

ind  

1. C sends to S :  A   = (PRF2(“ran”)) 
(zctr) 

Client: PRF1(“cha”) , PRF2(“ran”) 
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Modifications to account for positions: 

Eddie:  y = EncPRF1(“cha”)(ind) 

 

Substring Search: Conjunction Protocol 

,  

 Server:y’ = EncPRF1(“cha”)(ind 

p) 

H(“ran”, ind) = (PRF2(“ran”)) 
ind  

y = ind / zctr , where zctr derived from PRF1(“cha”) 

Client: strap(“cha”), xtrap(“ran”, )          Eddie:   Estrap(“cha”)(ind,p) 

           Eddie’s Output:  H(“ran”, ind, p+) 

“cha” at pos p 

in record ind 



         H(“ran”, ind, p) = (PRF2(“ran”)) 
( ind 

p
 ) 

y = ind / zctr , where zctr derived from PRF1(“cha”) 
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Substring Search: Conjunction Protocol 

Client: PRF1(“cha”) , PRF2(“ran”) 

 

Eddie:  y = EncPRF1(“cha”)(ind) 

 

,  

 Server:y’ = EncPRF1(“cha”)(ind 

p) 

H PRF under q-DDH for 

q = max p 

q-DDH: given g,gx,gx2,gx3,….,gx
q
 cannot tell gx

q+1
 from $ 

Modifications to account for positions: 

Client: strap(“cha”), xtrap(“ran”, )          Eddie:   Estrap(“cha”)(ind,p) 

           Eddie’s Output:  H(“ran”, ind, p+) 

2. S computes     Ay  = ( (PRF2(“ran”)) 
(zctr) )  (ind/zctr)  = (PRF2(“ran”)) 

ind  

1. C sends to S :  A   = (PRF2(“ran”)) 
(zctr) 
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Substring Search: Conjunction Protocol 

Client: strap(“cha”), xtrap(“ran”, )          Eddie:   Estrap(“cha”)(ind,p) 

           Eddie’s Output:  H(“ran”, ind, p+) 

         H(“ran”, ind, p) = (PRF2(“ran”)) 
( ind 

p
 ) 

y = ind / zctr , where zctr derived from PRF1(“cha”) 

Client: PRF1(“cha”) , PRF2(“ran”) 

 

Eddie:  y = EncPRF1(“cha”)(ind) 

 

,  

 Server:y’ = EncPRF1(“cha”)(ind 

p) 

y’ = ind 

p/vctr , where vctr derived from PRF1(“cha”) 

 

Modifications to account for positions: 

2. S computes     Ay  = ( (PRF2(“ran”)) 
(zctr) )  (ind/zctr)  = (PRF2(“ran”)) 

ind  

1. C sends to S :  A   = (PRF2(“ran”)) 
(zctr) 
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Modifications to account for positions: 

Substring Search: Conjunction Protocol 

         H(“ran”, ind, p) = (PRF2(“ran”)) 
( ind 

p
 ) 

y = ind / zctr , where zctr derived from PRF1(“cha”) 

Client: PRF1(“cha”) , PRF2(“ran”) 

 

Eddie:  y = EncPRF1(“cha”)(ind) 

 

,  

 Server:y’ = EncPRF1(“cha”)(ind 

p) 

2. S computes     Ay  = ( (PRF2(“ran”)) 
(zctr) )  (ind/zctr)  = (PRF2(“ran”)) 

ind  

1. C sends to S :  A  = (PRF2(“ran”)) 
((zctr)  vctr) ; and  

y’ = ind 

p/vctr , where vctr derived from PRF1(“cha”) 

Client: strap(“cha”), xtrap(“ran”, )          Eddie:   Estrap(“cha”)(ind,p) 

           Eddie’s Output:  H(“ran”, ind, p+) 
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Modifications to account for positions: 

Substring Search: Conjunction Protocol 

         H(“ran”, ind, p) = (PRF2(“ran”)) 
( ind 

p
 ) 

y = ind / zctr , where zctr derived from PRF1(“cha”) 

Client: PRF1(“cha”) , PRF2(“ran”) 

 

Eddie:  y = EncPRF1(“cha”)(ind) 

 

,  

 Server:y’ = EncPRF1(“cha”)(ind 

p) 

2. S computes   Ayy’  = ( (PRF2(“ran”)) 
((zctr)  vctr) ) (ind/zctr) 

 (indp/vctr) 

1. C sends to S :   A = (PRF2(“ran”)) 
((zctr)  vctr) ; and  

Y’ = ind 

p/vctr , where vctr derived from PRF1(“cha”) 

= (PRF2(“ran”)) 
ind p+ =  H(“ran”, ind, p+) 

 

Client: strap(“cha”), xtrap(“ran”, )          Eddie:   Estrap(“cha”)(ind,p) 

           Eddie’s Output:  H(“ran”, ind, p+) 



Extensions 

 Wildcards: immediate application of above technique: 

 cha _ _ _ jit:  same as (s-term = cha, x-term = jit,  =6) 

 The described solution assumes s-term is a k-gram, but how about  

 “lname = Jutla”  and “name like %ara _  jit” ? 

 We add a data structure XTset which encodes all positions of a given 

k-gram in a record   

 Can mix grams of different sizes, e.g. 3-grams as s-terms with     

1-grams as x-terms for more flexibility  

 no pre-processing/EDB cost, moderate online overhead (more conjuncts) 

 Proximity queries: Phrase queries “Bar Ilan University” 
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Range Queries 
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000 001 010 011 100 101 110 111 

00  01  10  11 

0    1 

root 

v = 101 

• Attribute valued 0..K=2k  (or any other range) 

• Build binary tree with values as leaves (tree height = k = log max range) 

• Add k columns: i-th column describes nodes of height i  

• Each new column acts as a new attribute in DB 

• Attribute-value pairs:  (height,node) 

• Record w/ value v  columns include nodes from v to the root 

(0,101) (1,10) (2,1) 

Preprocessing DB 
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000 001 010 011 100 101 110 111 

00  01  10  11 

0    1 

root 

v = 101 

• Query [q0,q1] : Client chooses cover of [q0,q1] interval, namely: 

      (h1,c1),…, (ht,ct)  (ci describes a node, hi describes its height) 

 

• Client queries a regular disjunction  

• “exact-match(h1,c1)” OR … OR “exact-match(ht,ct)” 

 

 

 

q0  = 001 q1  = 111 

Query  



0    1  
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000 001 010 011 100 101 110 111 

00  01  10  11 

root 

v = 101 q0  = 001 q1  = 111 

• Query [q0,q1] : Client chooses cover of [q0,q1] interval, namely: 

      (h1,c1),…, (ht,ct)  (ci describes a node, hi describes its height) 

 

• Client queries “exact-match(h1,c1) OR … OR exact-match(ht,ct)” 

• e.g. (0,001) OR (1,01) OR (2,1) 

 

Query  



0    1  
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000 001 010 011 100 101 110 111 

00  01  10  11 

root 

v = 101 q0  = 001 q1  = 111 

Range Query Authorization 

• Our policy authorizes range query based on total size of range 

• Client discloses heights to Debbie (the attributes) with which  

     Debbie computes total size  (e.g. 20+21+22=7) 

• Client is allocated a max allowed range by policy  

• we do not guarantee contiguous range 

 



0    1  
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000 001 010 011  100  101 110 111 

00  01  10  11 

root 

Privacy Concern 

• Assume client always chooses a minimal cover (min # nodes) 

• Client discloses heights (the query attributes) to Debbie 

• Debbie learns total size (good) but… 

• … can distinguish b/w different ranges of a given size (bad) 

• E.g.  [4,7] has cover w/single node while [1,4] needs 3 nodes  
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Privacy-Preserving Covers 

Universal Covers 

• Def: The profile of a cover is the set of heights: eg. {0, 0, 1} vs {2} 

• Are there universal covers? I.e. a way to choose covers such that 

     all ranges of a given size have the same profile? 

• Answer is yes (e.g. set of leaves). More interesting (minimal universal) 

• Size 20 = 15+5  (1+2+4+8) + (1+4)  profile (0,1,2,3,0,2) 

• We use universal covers to hide anything but total size from Debbie  

• We call these “canonical covers”                                                      
. 

3-node universal covers 

• Canonical covers: up to 2 log n nodes – can we have them smaller ? 

• Not possible in general, except if we’re willing to expand the range  

• 3-node universal over-covers exist for all ranges (40% avg overhead) 

• Offers tradeoffs in performance and leakage  



Leakage from Range Queries 

For Debbie: 

 The total size of the queried range (necessary to apply policy) 

For Eddie: 

 Leakage for atomic range query with cover w1=(h1,c1)  … , wn =(hn,cn) is 

same as for OXT disjunction “w1 or … or wn”   

 |DB(wi)|  for i=1,…,n ,      DB(w1 or … or wn)       (3-node solution better here) 

 For composite queries, leakage is same as OXT where the range query 

is replaced with “w1 or … or wn”  

For Client: 

 Mask(|DB(wi)|)  for i=1,…,n if range query acts as s-term 
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Time/Space Overhead                          
for Substring and Range Queries 

 Both are non-interactive as any other queries in OXT (one msg from C, 

matching encrypted ind’s from E) 

 Substring/wildcards queries 

 Space: ~1.8 times tuple size (Ph 1),  O(n) tuples for each n length field 

 Online: n/4 exponentiations for n-long substring/wildcard query 

 “4” is from 4-grams 

 Range queries 

 log N new columns per range-searchable attribute  

 N=max searchable range size   

 ~N Tset’s 

 Online: (log n)-term disjunction (n = size of queried range), or 3 in 3-node 
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Subsequence Generalization:    
Proximity Queries 

 A generalization of our substring technique 

 Can do search of the form (e1,e2,∆) meaning 

 Return all records where element e1 is at distance ∆ from e2 (∆ can be 

negative) 

 Examples:  

 ei are k-grams: resolves substrings and wildcards 

 ei are textual words: resolves phrases (e.g., “Bar Ilan University”) 

 Multi-dimensional distances (e.g., grid), etc. 
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Subsequences Leakage to Eddie 
Reminder: Leakage from conjunctions w1  …  wn 

1. Index size = upper bound on i |Doc(wi)| 

2. Number of terms in each conjunction 

3. Size of s-term set |Rec(w1)| and whether s-term repeats 

4. Size of Rec(w1wj) , j=2,…, n 

5. For queries w1  x and w1’  x’ , if x=x’ and  Rec(w1  w1’) ≠ ,                  
then E learns that x=x’ and the encrypted rind’s in Rec(w1  w1’) 

Leakage  is similar for subsequence queries with s-term k-gram w1 and          

x-term grams w2,..,wn except for more involved 5’  (stated for 2-term query) 

 For queries w1  x and w1’  x’, with offsets 1, 2 ,                                   

if x=x’  and there exist ind in Rec(w1  w1’)  and p, p’ such that                 

w1 is in position p in ind and w1’ in position p’ in ind, and p-p’= 1- 2                                               

then E learns that x=x’, and the encrypted pairs (ind,p),  (ind,p’).  

 Plus: offset  leaks – can be avoided with a round of communication C-E 
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