
2-party Secure
Computation

Bar-Ilan Winter School, Feb 2015
abhi shelat

Malicious Adversaries

Brief Survey

 image credit: http://wikis.zum.de/rmg/Benutzer:Deininger_Matthias/Facharbeit/Alice_Bob_und_Mallory

“...and nothing else”

http://wikis.zum.de/rmg/Benutzer:Deininger_Matthias/Facharbeit/Alice_Bob_und_Mallory

The age of optimism

80s
PKE
SFE

Invented

90s

Practical

PKE

00s

Feasible

SFE

10s

SFE

Practical

20s

SFE

Ubiquit

PKE

Ubiquit

MNPS04 Fairplay
MNPS08

4k gates,
600 gates/secHonest but curious

KS06, K08

MNPS04 Fairplay
MNPS08

4k gates,
600 gates/secHonest but curious

KS06, K08
LP04, LP07, LPS08 Cut-and-choose 1k gates,

4 gates/secMalicious adv

2009
PSSW09 AES circuit 40k gates,

35 gates/secMalicious adv
(2-40 security)

10x

Alice Bob
x yf

AESx(y)

MNPS04 Fairplay
MNPS08

4k gates,

LP04, LP07, LPS08 Cut-and-choose

LP10

1k gates,

600 gates/sec

4 gates/sec

Hybrid, C&C+ZK

Malicious adv

Malicious adv

Honest but curious

JS07 Yao + ZK
Malicious adv

NO09 Lego+
Malicious adv

JKS08

KS06, K08

PSSW09

MNPS04 Fairplay
MNPS08

4k gates,

LP04, LP07, LPS08 Cut-and-choose

LP10

1k gates,

600 gates/sec

4 gates/sec

Hybrid, C&C+ZK

Malicious adv

Malicious adv

Honest but curious

JS07 Yao + ZK
Malicious adv

NO09 Lego+
Malicious adv

IPS08,09, LOP11

HL08, HL08b

Better BB Cut-and-choose
Malicious adv

Tamper proof model

JKS08

KS06, K08

PSSW09

PSSW09

SS11

DPSZ11Am
or

tiz
ed

NNOB11
(2-58 security) 3s/block

AES circuit 40k gates,
35 gates/secMalicious adv

(2-40 security)

Hybrid CC+ZK
Malicious adv

40k gates,
130 gates/sec

GMW + OT Ext
Malicious adv

40k gates,
20k gates/sec

GMW + Beaver
Malicious adv

100k gates,
10 gates/sec
10ms/gate ~ 100 g/s

5000x

2011
HEKM11 40k gates

12k gates/sec

Bottleneck became the Compiler

Pipeline + Circuit Lib
Honest but curious

2011
HEKM11 40k gates

12k gates/sec

660s200x200 edit distance
Bottleneck became the Compiler
JKS08

Pipeline + Circuit Lib
Honest but curious

2011
HEKM11 Pipeline + Circuit Lib 40k gates

12k gates/secHonest but curious

660sJKS08 200x200 edit distance
Bottleneck became the Compiler

HEKM11 1.2B nonxor gates
2k x 10k edit distance
96k g/s

2012
1.2B nonxor gates

2k x 10k edit distance
96k g/s

KSS12 6B gates 4K x 4K edit distance86k gates/sec

260m gate RSA-256 125k gates/sec

330m gate 2k x 2s Edit 123k gates/sec

MNPS04 Fairplay
MNPS08

4k gates,

LP04, LP07, LPS08 Cut-and-choose 1k gates,

600 gates/sec

4 gates/secMalicious adv

LP11 Hybrid, C&C+ZK
Malicious adv

Honest but curious

KS06, K08

SS11

PSSW09 AES circuit 40k gates,
35 gates/secMalicious adv

Hybrid C&C+ZK
Malicious adv 40k gates,

130 gates/sec

KSS12 Hybrid CC+ZK, Parallel
Malicious adv

6B gates,

1M gates/secSS13
Malicious adv
CC, Parallel B gates,

130k gates/sec

More Garbled Circuits work

HEKM11 Pipeline + Circuit Lib 40k- 1.2B gates
12k-96k gates/secHonest but curious

HS13 Less Memory, Parallel
Honest but curious

K08
KS08
CKKZ12

Free XOR-trick
Output Auth

Using circular 2-corr RHF

HMSG13 GPU system
Honest but curious

FN12
35M gates/sec

JS07 Yao + ZK
Malicious adv

NO09 Lego+
Malicious adv

IPS08,09, LOP11 Better BB Cut-and-choose
Malicious adv

JKS08

DPSZ11

Am
or

tiz
ed

NNOB11 GMW + OT Ext
Malicious adv

GMW + Beaver + SHE
Malicious adv

100k ops
10ms/”op” ~ 100 ops/s

DKLPSS12 500 ops/s

SZ13 GMW + OT Ext Fast
??

Lindell13
Huang-Evans-Katz13

Huang-Katz-Kolesnikov-Kumaresan-Malozemoff14

Zahur-Evans-Rosulek14

Advanced Techniques
Cut & choose

Amortization: C&C + LEGO

Garbling

Malkin-Pastro-shelat15

Lindell-Riva14

Algorithmic
Venkatasubramanian-shelat15

- 4 accesses/second to oblivious array of size one million
- Dijkstra's algorithm:
 - 2^11 vertices and 2^12 edges in 10 hours
 - 2^18 vertices and 2^19 edges in 14 months
 (estimated from running a fully functional program)

ORAM Secure Computation

Keller-Scholl14

Wang-Huang-Chan-shelat-Shi14

Wang-Chan-Shi14
SCORAM: 4m gates/ORAM op

Gordon-Katz-Kolesnikov-Krell-Malkin12

BenSasson-Chiesa-Tromer-Virza14
TinyRAM

CORAM: 500k gates/ORAM op

Question: which secure
computation techniques

are preferable?

overhead
2-party Secure computation

Plain HBC Malicious

overhead
2-party Secure computation

Plain HBC Malicious

Assumption Comp
Assumption

CommComm
Comp

Parallelizability is KEY

Basic
Protocols

Garbled
circuits

Y82

Garbled gates

A
N
D

Composition Key Mgmt

Oblivious
Transfer

0 1 c

+ +

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Honest-but-curious

Garbled circuit, keys for x

OT 1st msg

OT 2nd msg

2 round!

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

f(x,y)

x y

1. Incrementally construct
maliciously-secure protocol

Definition

2. The parties submit their inputs to the trusted party. If Pi is an honest
party, then it submits the received input xi. If Pi is corrupted, it can
either abort by submitting the input ? or it can send any input
of the same length as xi. Let the pair (w1, w2) represent the inputs
submitted.

3. If the trusted party receives ? as input, then it returns ? to both par-
ties. Otherwise, it evaluates the function y f (w1, w2). The trusted
party sends y to any party in I (i.e., to any of the corrupted parties).

4. If I is non-empty, then A sends either ? or 1 to the trusted party.
5. If the trusted party receives ? then it sends ? to all parties. Other-

wise, it sends y to all parties.
6. An honest party then outputs what it receives from the trusted party.

A corrupted party can output an arbitrary string.

Definition 3 (Ideal execution). For any function f , input pair x1, x2, aux-
iliary string z, adversary A, corrupted set I, and security parameter k 2 N,
the random variable ideal f ,A(z),I(x1, x2, k) consists of the output of parties P1
and P2 from the ideal experiment described above.

In a real execution of p, the parties receive inputs xi as above. The
honest parties then follow the instructions of the protocol p running
on their received input and output what is described in the protocol.
A corrupted party controlled by A also begins to run on received input
can follow any p.p.t. strategy to choose messages to send in the protocol
and to output a string at the end of the protocol.

Definition 4 (Real execution). For any function f , input pair x1, x2, adver-
sary A, corrupted set I, auxiliary string z and security parameter k 2 N, the
random variable real f ,A(z),I(x1, x2, k) consists of the output of parties P1 and
P2 from the real experiment described above.

Definition 5 (Malicious security). Let f be function and p a protocol. Pro-
tocol p securely computes f with aborts in the presence of malicious adversaries
if for every non-uniform probabilistic polynomial time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for
the ideal model such that for every I ⇢ {1, 2}, every balanced vector of inputs
(x1, x2) and every auxiliary string z 2 {0, 1}⇤, the following two distributions
are computationally indistinguishable in the security parameter k:

ideal f ,S(z),I(x1, x2, k) ⇡c real f ,A(z),I(x1, x2, k)

21

8A 9S 8(x1, x2), z

IDEAL

x y

TTP

f(x,y)f(x,y)

out:f(x,y) out:f(x,y)

S,I

IDEAL

x y

TTP

y’

f(x,y’)
f(x,y’)

S,I

out:f(x,y) out:?

abort?

REAL

x y

A,I

out:f(x,y) out:?

Definition

2. The parties submit their inputs to the trusted party. If Pi is an honest
party, then it submits the received input xi. If Pi is corrupted, it can
either abort by submitting the input ? or it can send any input
of the same length as xi. Let the pair (w1, w2) represent the inputs
submitted.

3. If the trusted party receives ? as input, then it returns ? to both par-
ties. Otherwise, it evaluates the function y f (w1, w2). The trusted
party sends y to any party in I (i.e., to any of the corrupted parties).

4. If I is non-empty, then A sends either ? or 1 to the trusted party.
5. If the trusted party receives ? then it sends ? to all parties. Other-

wise, it sends y to all parties.
6. An honest party then outputs what it receives from the trusted party.

A corrupted party can output an arbitrary string.

Definition 3 (Ideal execution). For any function f , input pair x1, x2, aux-
iliary string z, adversary A, corrupted set I, and security parameter k 2 N,
the random variable ideal f ,A(z),I(x1, x2, k) consists of the output of parties P1
and P2 from the ideal experiment described above.

In a real execution of p, the parties receive inputs xi as above. The
honest parties then follow the instructions of the protocol p running
on their received input and output what is described in the protocol.
A corrupted party controlled by A also begins to run on received input
can follow any p.p.t. strategy to choose messages to send in the protocol
and to output a string at the end of the protocol.

Definition 4 (Real execution). For any function f , input pair x1, x2, adver-
sary A, corrupted set I, auxiliary string z and security parameter k 2 N, the
random variable real f ,A(z),I(x1, x2, k) consists of the output of parties P1 and
P2 from the real experiment described above.

Definition 5 (Malicious security). Let f be function and p a protocol. Pro-
tocol p securely computes f with aborts in the presence of malicious adversaries
if for every non-uniform probabilistic polynomial time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for
the ideal model such that for every I ⇢ {1, 2}, every balanced vector of inputs
(x1, x2) and every auxiliary string z 2 {0, 1}⇤, the following two distributions
are computationally indistinguishable in the security parameter k:

ideal f ,S(z),I(x1, x2, k) ⇡c real f ,A(z),I(x1, x2, k)

21

8A 9S 8(x1, x2), z

1. Incrementally construct
maliciously-secure protocol

2. Optimize

What can go wrong?

Garbled circuit

OT 1st msg

OT 2nd msg

sending a bad circuit

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

cryption under keys xA
α and xB

β of the output-wire key xC
g(α,β). If σA = 1, σB = 0, then

eachEαβ is a two-key encryption under keys xA
α and xB

β of key xC
g(α,β), and so on. Note

that tuple (σA, σB, α, β) uniquely defines the commitments C1, C2, C that correspond
to the above keys x1, x2, x: C1 = CA

α⊕σA
, C2 = CB

β⊕σB
, and C = CC

g(α⊕σA ,β⊕σB).
The two-key encryption 2KEncx1, x2

(x) is created as follows. The key x ∈ [0, 2k′′

]
is split in two parts, x′

1 and x′
2, by choosing x′

1 at random in [−2k′′+k, 2k′′+k] (re-
call that k′′, k are security parameters, where k′′ = |n|

2 and k can be 80), and setting
x′

2 = x − x′
1 (over integers). S also computes an sCS commitment D to x′

1. Observe
that if C is an sCS commitment to x, then C/D is an sCS commitment to x′

2. The
ciphertext E is a triple ⟨D, F (1), F (2)⟩, where F (i) = sCSencxi

(x′
i). Let Eαβ denote

⟨Dαβ , F (1)
αβ , F (2)

αβ ⟩.
Proving circuit correctness: CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed by conjunction of the following proof systems:

∧
g∈G CorrectGarbleg ∧

∧
w∈W GoodKeysw ∧

∧
w∈WS

CorrectInputw
∧

∧
w∈WR

ZKSw ∧
∧

w∈WO
CorrectOutputw

where
GoodKeysw = ZKNotEq(Cw

0 , Cw
1)

CorrectInputw = (ZKDL(g, Cw
0 /αxw

bw) ∧ ZKDL(g, Cb)) ∨
(ZKDL(g, Cw

1 /αxw

bw) ∧ ZKDL(g, Cb/α)), where Cb is the
sCS commitment inside ComcidSi

if w is the ith input wire ofS
CorrectOutputw = ZKPlainEq2(Ew

0 , Cw
0 , 0) ∧ ZKPlainEq2(Ew

1 , Cw
1 , 1)

Here ZKSw refers to the proof performed by the sender in the instance of the COT
protocol that corresponds to receiver’s wire w ∈ WR. ZKPlainEq2(E, Ck, m) is the
proof system for showing that E is an sCS encryption of plaintextm under key k com-
mitted in Ck, and is a trivial simplification of the ZKPlainEq(E, Ck, Cm) proof system
for proving the same about commitment Cm to m. Finally, CorrectGarbleg proves that
the ciphertext table E00, E01, E10, E11 corresponding to garbled gate g is formed cor-
rectly, where Eαβ = (Dαβ , F (1)

αβ , F (2)
αβ):

CorrectGarbleg = CorrectShuffle(0, 0) ∨ CorrectShuffle(0, 1) ∨
CorrectShuffle(1, 0) ∨ CorrectShuffle(1, 1)

CorrectShuffle(α, β) = CorrectCipher(0, 0, α, β) ∧ CorrectCipher(0, 1, α, β) ∧
CorrectCipher(1, 0, α, β) ∧ CorrectCipher(1, 1, α, β)

CorrectCipher(σA, σB , α, β) = ZKPlainEq(F (1)
αβ , CA

α⊕σA
, Dαβ) ∧

ZKPlainEq(F (2)
αβ , CB

β⊕σB
, (CC

g(α⊕σA,β⊕σB)/Dαβ))

Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and soundness of the proof systems
ensures that for each gate, R decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key corresponding to the gate’s output wire.
Theorem 4. Under the strong RSA and DCR assumptions, the 2PC protocol of fig. 4 is
a UC-secure realization of the Committed 2PC functionality F2PC in the CRS model.

Prove circuit is good

cryption under keys xA
α and xB

β of the output-wire key xC
g(α,β). If σA = 1, σB = 0, then

eachEαβ is a two-key encryption under keys xA
α and xB

β of key xC
g(α,β), and so on. Note

that tuple (σA, σB, α, β) uniquely defines the commitments C1, C2, C that correspond
to the above keys x1, x2, x: C1 = CA

α⊕σA
, C2 = CB

β⊕σB
, and C = CC

g(α⊕σA ,β⊕σB).
The two-key encryption 2KEncx1, x2

(x) is created as follows. The key x ∈ [0, 2k′′

]
is split in two parts, x′

1 and x′
2, by choosing x′

1 at random in [−2k′′+k, 2k′′+k] (re-
call that k′′, k are security parameters, where k′′ = |n|

2 and k can be 80), and setting
x′

2 = x − x′
1 (over integers). S also computes an sCS commitment D to x′

1. Observe
that if C is an sCS commitment to x, then C/D is an sCS commitment to x′

2. The
ciphertext E is a triple ⟨D, F (1), F (2)⟩, where F (i) = sCSencxi

(x′
i). Let Eαβ denote

⟨Dαβ , F (1)
αβ , F (2)

αβ ⟩.
Proving circuit correctness: CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed by conjunction of the following proof systems:

∧
g∈G CorrectGarbleg ∧

∧
w∈W GoodKeysw ∧

∧
w∈WS

CorrectInputw
∧

∧
w∈WR

ZKSw ∧
∧

w∈WO
CorrectOutputw

where
GoodKeysw = ZKNotEq(Cw

0 , Cw
1)

CorrectInputw = (ZKDL(g, Cw
0 /αxw

bw) ∧ ZKDL(g, Cb)) ∨
(ZKDL(g, Cw

1 /αxw

bw) ∧ ZKDL(g, Cb/α)), where Cb is the
sCS commitment inside ComcidSi

if w is the ith input wire ofS
CorrectOutputw = ZKPlainEq2(Ew

0 , Cw
0 , 0) ∧ ZKPlainEq2(Ew

1 , Cw
1 , 1)

Here ZKSw refers to the proof performed by the sender in the instance of the COT
protocol that corresponds to receiver’s wire w ∈ WR. ZKPlainEq2(E, Ck, m) is the
proof system for showing that E is an sCS encryption of plaintextm under key k com-
mitted in Ck, and is a trivial simplification of the ZKPlainEq(E, Ck, Cm) proof system
for proving the same about commitment Cm to m. Finally, CorrectGarbleg proves that
the ciphertext table E00, E01, E10, E11 corresponding to garbled gate g is formed cor-
rectly, where Eαβ = (Dαβ , F (1)

αβ , F (2)
αβ):

CorrectGarbleg = CorrectShuffle(0, 0) ∨ CorrectShuffle(0, 1) ∨
CorrectShuffle(1, 0) ∨ CorrectShuffle(1, 1)

CorrectShuffle(α, β) = CorrectCipher(0, 0, α, β) ∧ CorrectCipher(0, 1, α, β) ∧
CorrectCipher(1, 0, α, β) ∧ CorrectCipher(1, 1, α, β)

CorrectCipher(σA, σB , α, β) = ZKPlainEq(F (1)
αβ , CA

α⊕σA
, Dαβ) ∧

ZKPlainEq(F (2)
αβ , CB

β⊕σB
, (CC

g(α⊕σA,β⊕σB)/Dαβ))

Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and soundness of the proof systems
ensures that for each gate, R decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key corresponding to the gate’s output wire.
Theorem 4. Under the strong RSA and DCR assumptions, the 2PC protocol of fig. 4 is
a UC-secure realization of the Committed 2PC functionality F2PC in the CRS model.

GMW,Jarecki-Shmatikov07

cryption under keys xA
α and xB

β of the output-wire key xC
g(α,β). If σA = 1, σB = 0, then

eachEαβ is a two-key encryption under keys xA
α and xB

β of key xC
g(α,β), and so on. Note

that tuple (σA, σB, α, β) uniquely defines the commitments C1, C2, C that correspond
to the above keys x1, x2, x: C1 = CA

α⊕σA
, C2 = CB

β⊕σB
, and C = CC

g(α⊕σA ,β⊕σB).
The two-key encryption 2KEncx1, x2

(x) is created as follows. The key x ∈ [0, 2k′′

]
is split in two parts, x′

1 and x′
2, by choosing x′

1 at random in [−2k′′+k, 2k′′+k] (re-
call that k′′, k are security parameters, where k′′ = |n|

2 and k can be 80), and setting
x′

2 = x − x′
1 (over integers). S also computes an sCS commitment D to x′

1. Observe
that if C is an sCS commitment to x, then C/D is an sCS commitment to x′

2. The
ciphertext E is a triple ⟨D, F (1), F (2)⟩, where F (i) = sCSencxi

(x′
i). Let Eαβ denote

⟨Dαβ , F (1)
αβ , F (2)

αβ ⟩.
Proving circuit correctness: CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed by conjunction of the following proof systems:

∧
g∈G CorrectGarbleg ∧

∧
w∈W GoodKeysw ∧

∧
w∈WS

CorrectInputw
∧

∧
w∈WR

ZKSw ∧
∧

w∈WO
CorrectOutputw

where
GoodKeysw = ZKNotEq(Cw

0 , Cw
1)

CorrectInputw = (ZKDL(g, Cw
0 /αxw

bw) ∧ ZKDL(g, Cb)) ∨
(ZKDL(g, Cw

1 /αxw

bw) ∧ ZKDL(g, Cb/α)), where Cb is the
sCS commitment inside ComcidSi

if w is the ith input wire ofS
CorrectOutputw = ZKPlainEq2(Ew

0 , Cw
0 , 0) ∧ ZKPlainEq2(Ew

1 , Cw
1 , 1)

Here ZKSw refers to the proof performed by the sender in the instance of the COT
protocol that corresponds to receiver’s wire w ∈ WR. ZKPlainEq2(E, Ck, m) is the
proof system for showing that E is an sCS encryption of plaintextm under key k com-
mitted in Ck, and is a trivial simplification of the ZKPlainEq(E, Ck, Cm) proof system
for proving the same about commitment Cm to m. Finally, CorrectGarbleg proves that
the ciphertext table E00, E01, E10, E11 corresponding to garbled gate g is formed cor-
rectly, where Eαβ = (Dαβ , F (1)

αβ , F (2)
αβ):

CorrectGarbleg = CorrectShuffle(0, 0) ∨ CorrectShuffle(0, 1) ∨
CorrectShuffle(1, 0) ∨ CorrectShuffle(1, 1)

CorrectShuffle(α, β) = CorrectCipher(0, 0, α, β) ∧ CorrectCipher(0, 1, α, β) ∧
CorrectCipher(1, 0, α, β) ∧ CorrectCipher(1, 1, α, β)

CorrectCipher(σA, σB , α, β) = ZKPlainEq(F (1)
αβ , CA

α⊕σA
, Dαβ) ∧

ZKPlainEq(F (2)
αβ , CB

β⊕σB
, (CC

g(α⊕σA,β⊕σB)/Dαβ))

Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and soundness of the proof systems
ensures that for each gate, R decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key corresponding to the gate’s output wire.
Theorem 4. Under the strong RSA and DCR assumptions, the 2PC protocol of fig. 4 is
a UC-secure realization of the Committed 2PC functionality F2PC in the CRS model.

32-clause Sigma-protocol PER gate

Given com(K0
x

), com(K1
x

), com(K0
y

), com(K1
y

), com(K0
w

), and com(K1
w

), P2

needs P1 to prove that the AND gate (�, T4, T5,�, T�

) is correctly computed.
More specifically,
(a) P1 sends com(�; r) to P2, and P1 proves that com(�; r) = g

�

h

r.
(b) For every (b0, b1) 2 {0, 1}2, let i = 2 ⇤ b0 + b1, P1 sends com(T

i

) to P2

and proves that⇣
com(Kb0

x

)com(Kb1
y

)com(�) = com(Kb0
x

+Kb1
y

+ �)
⌘
^

⇣
com(T

i

) = com(Kb0
x

+Kb1
y

+ �)K
b0
x

+K

b1
y

+�

⌘
.

Moreover, P1 proves that T
i

2 Z⇤
N

for i = 0, 1, 2, 3.
(c) Let Mask(b0, b1) denote the case that (K0

x

)
N

= b0 and (K0
y

)
N

= b1. P1

proves to P2 that

mask(0, 0) _ mask(0, 1) _ mask(1, 0) _ mask(1, 1).

In particular, for case mask(b0, b1), let
⇢
a0 = 2 · b0 + b1

a1 = 2 · b0 + (1� b1)
and

⇢
a2 = 2 · (1� b0) + b1

a3 = 2 · (1� b0) + (1� b1).

It is defined that

mask(b0, b1) = (P (a0) = T0)^(P (a1) = T1)^(P (a2) = T2)^(Q(a3) = T3),

where P (x) is the Lagrange polynomial coincides at points (�1,K0
w

),
(4, T4), (5, T5), and (�, T

�

); and Q(x) is the Lagrange polynomial coin-
cides at points (�1,K1

w

), (4, T4), (5, T5), and (�, T
�

).
4. P1’s input: P1 gives the five-tuples for all the AND gates to P2. Moreover,

for P1’s i-th input wire w
i

, P1 sends P2 the group element Kx

i

w

i

corresponding
to P1’s i-th input bit x

i

, and for each w of P2’s output wires, P1 sends (K
0
w

)
N

to P2.
5. Oblivious transfer for P2’s input: For P2’s i-th input wire w

i

, P1 with
input (K0

w

i

,K

1
w

i

) and P2 with input y
i

conduct an OT so that P2 gets Ky

i

w

i

in the end.
6. Circuit evaluation: P2 evaluates the garbled circuit as follows.

(a) If both input keys K
x

and K

y

to an XOR gate are available, let K
w

K

x

·K
y

(mod N) be the output key.
(b) If both input keys K

x

and K

y

to an AND gate (�, T4, T5,�, T�

) are avail-
able, compute

(a, T) ((K
x

)
N

· 2 + (K
y

)
N

, (K
x

+K

y

+ �)2 (mod N)).

Then reconstruct the Lagrange polynomial F (x) that coincides at points
(a, T), (4, T4), (5, T5), and (�, T

�

). Let K

w

 F (�1) (mod N) be the
output key.

(c) If the key K

w

for P2’s output wire w is available, let (K
w

)
N

� (K0
w

)
N

be the output.
(d) If the key K

w

for P1’s output wire w is available, simply send K

w

back
to P1.

Can optimize to ~19-clauses PER gate

Open problem to
optimize so as to
outperform C&C

Cut &
Choose

First Idea: Cut & Choose

OT 1st msg

OT 2nd msg
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Send k fresh garbled circuits

First Idea: Cut & Choose

OT 1st msg

OT 2nd msg
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

“open” challenge set of t circuits

random coins for challenge

Send k fresh garbled circuits

Cut and Choose

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge
response

Garbler sends k circuits to Evaluator.
Evaluator selects t to test.

G asks E for
random coins

used to garble.

Evaluator verifies that all t circuits are valid.

What does this
cut&choose test

accomplish?

Balls & Bins

Evaluator picks c circuits to corrupt.
Garbler picks t circuits to test.

k circuits in total

of ways to pick only good:

of ways to pick t:
✓
k

t

◆

✓
k � c

t

◆

Given that evaluator checks t,
Pr that garbler succeeds in passing test:

(k�c
t)

(k
t)

setting t=k/2

Given that evaluator checks t,
Pr that garbler succeeds in passing test:

(k�c
t)

(k
t)

setting t=k/2

=
(k/2)(k/2 � 1) · · · (k/2 � c)

k(k � 1)(k � 2) · · · (k � c)

Given that evaluator checks t,
Pr that garbler succeeds in passing test:

(k�c
t)

(k
t)

setting t=k/2

=
(k/2)(k/2 � 1) · · · (k/2 � c)

k(k � 1)(k � 2) · · · (k � c) < 2�c

NEGL probability that
test passes if

O(k) circuits are bad

setting t=k/2

(k�c
t)

(k
t)

=
(k/2)(k/2 � 1) · · · (k/2 � c)

k(k � 1)(k � 2) · · · (k � c)
2�c >

k/2 � c
k � c

� k/2 � c
k

�
✓

1
2
� c

k

◆

�
✓

1
2
� c

k

◆c

Noticeable probability that
O(1) circuits are corrupted

What do we do with
the remaining

circuits?

First idea:
Abort if outputs are
not all the same.

First idea:
Abort if outputs are
not all the same.

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

If y1=0, output f(x,y)
else output f(x,y)+1

Test

2. The parties submit their inputs to the trusted party. If Pi is an honest
party, then it submits the received input xi. If Pi is corrupted, it can
either abort by submitting the input ? or it can send any input
of the same length as xi. Let the pair (w1, w2) represent the inputs
submitted.

3. If the trusted party receives ? as input, then it returns ? to both par-
ties. Otherwise, it evaluates the function y f (w1, w2). The trusted
party sends y to any party in I (i.e., to any of the corrupted parties).

4. If I is non-empty, then A sends either ? or 1 to the trusted party.
5. If the trusted party receives ? then it sends ? to all parties. Other-

wise, it sends y to all parties.
6. An honest party then outputs what it receives from the trusted party.

A corrupted party can output an arbitrary string.

Definition 3 (Ideal execution). For any function f , input pair x1, x2, aux-
iliary string z, adversary A, corrupted set I, and security parameter k 2 N,
the random variable ideal f ,A(z),I(x1, x2, k) consists of the output of parties P1
and P2 from the ideal experiment described above.

In a real execution of p, the parties receive inputs xi as above. The
honest parties then follow the instructions of the protocol p running
on their received input and output what is described in the protocol.
A corrupted party controlled by A also begins to run on received input
can follow any p.p.t. strategy to choose messages to send in the protocol
and to output a string at the end of the protocol.

Definition 4 (Real execution). For any function f , input pair x1, x2, adver-
sary A, corrupted set I, auxiliary string z and security parameter k 2 N, the
random variable real f ,A(z),I(x1, x2, k) consists of the output of parties P1 and
P2 from the real experiment described above.

Definition 5 (Malicious security). Let f be function and p a protocol. Pro-
tocol p securely computes f with aborts in the presence of malicious adversaries
if for every non-uniform probabilistic polynomial time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for
the ideal model such that for every I ⇢ {1, 2}, every balanced vector of inputs
(x1, x2) and every auxiliary string z 2 {0, 1}⇤, the following two distributions
are computationally indistinguishable in the security parameter k:

ideal f ,S(z),I(x1, x2, k) ⇡c real f ,A(z),I(x1, x2, k)

21

8A 9S 8(x1, x2), z

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

If y1=0, output f(x,y)
else output f(x,y)+1

IDEAL

x y

TTP

y’

f(x,y’)

abort?

f(x,y’)

S,I

out:f(x,y) out:?

Comment
In practice, all circuits
must have same # of
gates & same wiring.

Cheating restricted to
changing gates.

Hard to analyze.

Second idea:

Eval all remaining circuits,
take majority output.

Third idea:

Eval all remaining circuits,
exploit cheating later.

state-of-the-art [L13]

OT

challenge set of t circuits

random coins for challenge

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Send k fresh garbled circuits

majority of Eval

Garbled circuit
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

In basic protocol,
garblers’ input wires

sent in this step.

Problem: Garblers’ inputs

OT

OT
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

challenge response

Send k fresh garbled circuits

majority of Eval

Can’t send garblers’
inputs in this step

anymore!

OT
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

Send k fresh garbled circuits

majority of Eval

Can’t send garblers’
inputs in this step

anymore!

Send here instead.G keyschallenge response

OT
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

challenge response

Send k fresh garbled circuits

majority of Eval
K1in, K2in,…,Klin

Problem: Input Consistency

l=k-t circuits
Needs all input
keys.

OT
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

challenge response

Send k fresh garbled circuits

majority of Eval
K1in, K2in,…,Klin

Problem: Input Consistency

What if keys do not correspond to same input?

l=k-t circuits
Needs all input
keys.

Input Consistency Attack

f(x,y) = <x,y>
(inner product)

Gen

x y

Eval

[Mohassel-Franklin06, Kiraz-Schoenmakers06, Lindell-Pinkas07]

Input Consistency Attack

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

y y y y0001 0010 0100 1000

y1 y2 y3 y4

[Mohassel-Franklin06, Kiraz-Schoenmakers06, Lindell-Pinkas07]

Input Consistency Attack

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

y y y y0001 0010 0100 1000

y1 y2 y3 y4

[Mohassel-Franklin06, Kiraz-Schoenmakers06, Lindell-Pinkas07]

Majority(y1,y2,y3,y4)

Test

2. The parties submit their inputs to the trusted party. If Pi is an honest
party, then it submits the received input xi. If Pi is corrupted, it can
either abort by submitting the input ? or it can send any input
of the same length as xi. Let the pair (w1, w2) represent the inputs
submitted.

3. If the trusted party receives ? as input, then it returns ? to both par-
ties. Otherwise, it evaluates the function y f (w1, w2). The trusted
party sends y to any party in I (i.e., to any of the corrupted parties).

4. If I is non-empty, then A sends either ? or 1 to the trusted party.
5. If the trusted party receives ? then it sends ? to all parties. Other-

wise, it sends y to all parties.
6. An honest party then outputs what it receives from the trusted party.

A corrupted party can output an arbitrary string.

Definition 3 (Ideal execution). For any function f , input pair x1, x2, aux-
iliary string z, adversary A, corrupted set I, and security parameter k 2 N,
the random variable ideal f ,A(z),I(x1, x2, k) consists of the output of parties P1
and P2 from the ideal experiment described above.

In a real execution of p, the parties receive inputs xi as above. The
honest parties then follow the instructions of the protocol p running
on their received input and output what is described in the protocol.
A corrupted party controlled by A also begins to run on received input
can follow any p.p.t. strategy to choose messages to send in the protocol
and to output a string at the end of the protocol.

Definition 4 (Real execution). For any function f , input pair x1, x2, adver-
sary A, corrupted set I, auxiliary string z and security parameter k 2 N, the
random variable real f ,A(z),I(x1, x2, k) consists of the output of parties P1 and
P2 from the real experiment described above.

Definition 5 (Malicious security). Let f be function and p a protocol. Pro-
tocol p securely computes f with aborts in the presence of malicious adversaries
if for every non-uniform probabilistic polynomial time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for
the ideal model such that for every I ⇢ {1, 2}, every balanced vector of inputs
(x1, x2) and every auxiliary string z 2 {0, 1}⇤, the following two distributions
are computationally indistinguishable in the security parameter k:

ideal f ,S(z),I(x1, x2, k) ⇡c real f ,A(z),I(x1, x2, k)

21

8A 9S 8(x1, x2), z

<x,y>
(inner

product)

x

Majority(y1,y2,y3,y4)

Input Consistency Attack

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

<x,y>
(inner

product)

x

y y y y0001 0010 0100 1000

y1 y2 y3 y4

[Mohassel-Franklin06, Kiraz-Schoenmakers06, Lindell-Pinkas07]

Majority(y1,y2,y3,y4) Bad!

K1in, K2in,…,Klin

How to handle
inconsistent inputs?

Prove consistency

OT

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

challenge resp

Send k fresh garbled circuits

majority of Eval
K1in,…,Klin

⇡1

⇡2

LP07 OWF
OT +

Kiraz08 DLOG

Input Consistency 2-Outputs
sym pke sym pke

OWFSS13

LP11
SS11

KSS12 “ “ “

DLOG
DLOG
DLOG

“blackbox”

OT
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

challenge resp

Send k fresh garbled circuits

majority of Eval
K1in,…,Klin

⇡1

⇡2

Problem: Malicious OT
Use Malic-secure OT
here. Is that enough?

input {0,1}
Oblivious
Transfer

0 1 c

Input OT
“Key management”

keys for yi=0

n

w(j)
i,0

o

j2[k]

n

w(j)
i,0

o

j2[k]

keys for yi=0

Oblivious
Transfer

0 1 c

bogus keys

n

w(j)
i,0

o

j2[k]

keys for yi=0

Selective Failure attack

{0}j2[k]

What are the possible outcomes?

input {0,1}

Oblivious
Transfer

0 1 c

bogus keys

n

w(j)
i,0

o

j2[k]

keys for yi=0

Selective Failure attack

{0}j2[k]

What are the possible outcomes?

Input yi = 0

Input yi = 1

OK

FAIL: Cannot Eval

input {0,1}

Selective Failure Solutions

Encode inputs

Prove consistency

OT

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

challenge set of t circuits

challenge resp

Send k fresh garbled circuits

majority of Eval
K1in,…,Klin

⇡1

⇡2

p0
1

p0
2

Committing OT

Garbled Circuit

Coin flip, Cut&choose

P1 Consistency check

Circuit Eval

Committing
OT

0 1 c

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Coin Flipping

Open Circuits, send

Com(Alice’s inputs)

Eval

Key problems for
Malicious Security

Output Authentication

Input Consistency

Selective Failure

Circuit Consistency

(2-output case)

Circuit
Consistency

Given that evaluator checks t,
Pr that garbler succeeds in passing test:

(k�c
t)

(k
t)

k=10. Suppose evaluator checks 1.

Garbler can choose how many to corrupt.

0 1 2 3 4 5 6 7 8 9 10

Garbler can choose how many to corrupt.

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 1/2 2/5 3/10 1/5 1/10 0

k=10. Suppose evaluator checks 1.

Garbler can choose how many to corrupt.

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 1/3

k=10. Suppose evaluator checks 2.

Garbler can choose how many to corrupt.

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 1/3 2/9 2/15 1/15 1/45 0 0

k=10. Suppose evaluator checks 2.

1 2 3 4 5 6 7 8 9
1 0 0 0 0 1/2 2/5 3/10 1/5 1/10
2 0 0 0 1/3 2/9 2/15 1/15 1/45 0
3 0 0 0 1/6 1/12 1/30 1/120 0 0
4 0 0 1/6 1/14 1/42 1/210 0 0 0
5 0 0 1/12 1/42 1/252 0 0 0 0
6 0 2/15 1/30 1/210 0 0 0 0 0
7 0 1/15 1/120 0 0 0 0 0 0
8 1/5 1/45 0 0 0 0 0 0 0
9 1/10 0 0 0 0 0 0 0 0

of circuits garbler corrupts
eval checks

Pr garbler succeeds in corrupting
a majority of evaluated circuits

k=10

If eval checks t circuits,
garbler should corrupt

�
(k � t) + 1

2

⌫

majority of evaluated should be corrupt, no more

Evaluator should thus
check t* circuits to

minimize

(
k�

j
(k�t)+1

2

k

t)

(k
t)

mint []

2�0.32s
s copies of the circuit can yield

[SS11]

if t* ~ 3/5s

Optimal for single
choice of t.

But Eval can
randomize choice of t.

Value of game
If Garbler wins, payoffs are (1,-1)

If Garbler looses, payoffs are (-1,1)

Both parties can run probabilistic strategies.

Game is zero-sum.

min payoff that Evaluator can force =
max payoff that Garbler can achieve

We want to solve

ei : Pr that evaluator checks i

xj : Pr that garbler corrupts j

min

e

1

,...e

k

max

x

1

,...,x

k

’ e

t

x

c

(k�c

t

)

(k

t

)

!

Linear Program
Variables xi : Pr that garbler corrupts i circuits

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 1/2 2/5 3/10 1/5 1/10 0

(x1, x2, . . . , x

n

)

Table for Eval checking 1 circuit:

v1 = (x1, x2, . . . , x

n

) · (0, 0, 0, 0, 0,
1
2

,
2
5

,
3

10
,

1
5

,
1

10
, 0)

Expected payoff if Eval check 1 circuit.

2

6666666666664

0 0 0 0 1/2 2/5 3/10 1/5 1/10
0 0 0 1/3 2/9 2/15 1/15 1/45 0
0 0 0 1/6 1/12 1/30 1/120 0 0
0 0 1/6 1/14 1/42 1/210 0 0 0
0 0 1/12 1/42 1/252 0 0 0 0
0 2/15 1/30 1/210 0 0 0 0 0
0 1/15 1/120 0 0 0 0 0 0

1/5 1/45 0 0 0 0 0 0 0
1/10 0 0 0 0 0 0 0 0

3

7777777777775

2

6666666666664

x1
x2
x3
x4
x5
x6
x7
x8
x9

3

7777777777775

Evaluator chooses min row
To express as LP, add variable v.

2

6666666666664

0 0 0 0 1/2 2/5 3/10 1/5 1/10 �1
0 0 0 1/3 2/9 2/15 1/15 1/45 0 �1
0 0 0 1/6 1/12 1/30 1/120 0 0 �1
0 0 1/6 1/14 1/42 1/210 0 0 0 �1
0 0 1/12 1/42 1/252 0 0 0 0 �1
0 2/15 1/30 1/210 0 0 0 0 0 �1
0 1/15 1/120 0 0 0 0 0 0 �1

1/5 1/45 0 0 0 0 0 0 0 �1
1/10 0 0 0 0 0 0 0 0 �1

3

7777777777775

2

666666666666664

x1
x2
x3
x4
x5
x6
x7
x8
x9
v

3

777777777777775



2

666666666666664

0
0
0
0
0
0
0
0
0
0

3

777777777777775

maximize v

subject to

0  x

i

 1

Â x

i

= 1

H-representation
begin
20 11 rational
0 0 0 0 0 1/2 2/5 3/10 1/5 1/10 -1
0 0 0 0 1/3 2/9 2/15 1/15 1/45 0 -1
0 0 0 0 1/6 1/12 1/30 1/120 0 0 -1
0 0 0 1/6 1/14 1/42 1/210 0 0 0 -1
0 0 0 1/12 1/42 1/252 0 0 0 0 -1
0 0 2/15 1/30 1/210 0 0 0 0 0 -1
0 0 1/15 1/120 0 0 0 0 0 0 -1
0 1/5 1/45 0 0 0 0 0 0 0 -1
0 1/10 0 0 0 0 0 0 0 0 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
-1 1 1 1 1 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
end
maximize
0 0 0 0 0 0 0 0 0 0 1

* cdd+: Double Description Method in C++:Version 0.77(August 19, 2003)
* Copyright (C) 1999, Komei Fukuda, fukuda@ifor.math.ethz.ch
* Compiled for Rational Exact Arithmetic with GMP
*cdd LP Result
*cdd input file : 10.ine (20 x 11)
*LP solver: Dual Simplex
*LP status: a dual pair (x, y) of optimal solutions found.
*maximization is chosen.
*Objective function is
 0 + 0 X[1] + 0 X[2] + 0 X[3] + 0 X[4] +
 0 X[5] + 0 X[6] + 0 X[7] + 0 X[8] + 0 X[9] +
 1 X[10]
*LP status: a dual pair (x, y) of optimal solutions found.
begin
 primal_solution
 1 : 60/247
 2 : 575/1729
 3 : 440/1729
 4 : 30/247
 5 : 12/247
 6 : 0
 7 : 0
 8 : 0
 9 : 0
 10 : 6/247
 dual_solution
 19 : 23/1235
 20 : 53/2470
 17 : 23/2470
 18 : 147/9880
 1 : 7/247
 3 : 27/247
 5 : 63/247
 7 : 90/247
 9 : 60/247
 10 : 6/247
 optimal_value : 6/247
end
*number of pivot operations = 5
*Computation starts at Sun Feb 15 06:50:05 2015
* terminates at Sun Feb 15 06:50:05 2015
*Total processor time = 0 seconds
* = 0h 0m 0s

6/247 ~ .02429
2-5.3

1 2 3 4 5 6 7 8 9
1 0 0 0 0 1/2 2/5 3/10 1/5 1/10
2 0 0 0 1/3 2/9 2/15 1/15 1/45 0
3 0 0 0 1/6 1/12 1/30 1/120 0 0
4 0 0 1/6 1/14 1/42 1/210 0 0 0
5 0 0 1/12 1/42 1/252 0 0 0 0
6 0 2/15 1/30 1/210 0 0 0 0 0
7 0 1/15 1/120 0 0 0 0 0 0
8 1/5 1/45 0 0 0 0 0 0 0
9 1/10 0 0 0 0 0 0 0 0

60/247 575/1729 440/1729 30/247 12/247

7/247

27/247

63/247

90/247

60/247

Solution for k=10

primal_solution
 1 : 10645508192981161500/20055554759628164776001
 2 : 311397613586611188434870/96407051729532588078236807
 3 : 1160462119873878916970070/96407051729532588078236807
 4 : 161244094440834884924757/5074055354185925688328253
 5 : 325255554436935813832401/5074055354185925688328253
 6 : 95452384789288218166605/922555518942895579696046
 7 : 1398734699891587882768035/10148110708371851376656506
 8 : 786108086596520648697555/5074055354185925688328253
 9 : 68900733695195588092725/461277759471447789848023
 10 : 57701938641754468976460/461277759471447789848023
 11 : 42391924836751780371900/461277759471447789848023
 12 : 27537371265736096865100/461277759471447789848023
 13 : 15916990323524614014600/461277759471447789848023
 14 : 8228586854967489164700/461277759471447789848023
 15 : 3820473545668824762900/461277759471447789848023
 16 : 1598383883392727312700/461277759471447789848023
 17 : 604090345871550037500/461277759471447789848023
 18 : 206458340712361920000/461277759471447789848023
 19 : 2765067063111990000/20055554759628164776001
 20 : 1013857923141063000/20055554759628164776001
 21 : 0
 22 : 0
 23 : 0
 24 : 0
 25 : 0
 26 : 0
 27 : 0
 28 : 0
 29 : 0
 30 : 0
 31 : 0
 32 : 0
 33 : 0
 34 : 0
 35 : 0
 36 : 0
 37 : 0
 38 : 0
 39 : 0
 40 : 0
 41 : 10645508192981161500/822277745144754755816041
 dual_solution

k=41

2-16.2

.00000000000034624553k=117 2-41.3

k=125 in SS11

versus

