
Format-Preserving Encryption
Part I: Introduction and Definitions

Mor Weiss

Technion

Winter School on Cryptography in the Cloud:
Verifiable Computation and Special Encryption

Bar-Ilan University

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Problem (1): encrypted entry incompatible
with database entry structure

Non-solution (1): generate new tables

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Problem (2): encrypted entry incompatible
with applications using data

Non-solution (2): re-write applications

Session I: Outline

• Tweakable ciphers: motivation and definition

• Format Preserving Encryption (FPE):

– Security definitions

– Relations between definitions

• FPE constructions

Tweakable Encryption: Introduction
• In these sessions: all encryption schemes are

deterministic and private-key

• Deterministic Encryption Scheme Π:
– Message space ℳ

– Randomized 𝐾𝑒𝑦𝐺𝑒𝑛: ℕ → 𝒦

– Deterministic 𝐸:𝒦 ×ℳ → 𝒞

– Deterministic 𝐷:𝒦 × 𝒞 → ℳ

• Semantics: correctness and secrecy

• Notation:

– 𝐸𝐾 = 𝐸 𝐾,⋅

– 𝐷𝐾 = 𝐷 𝐾,⋅

• “Unpredictability”: only due to encryption key 𝐾
– For random 𝐾, 𝐸𝐾 “similar” to random permutation on ℳ

Tweakable Encryption: Introduction (2)
• Key-provided “unpredictability” insufficient for small ℳ

– Example: credit card numbers

4385822056110982

Tweakable Encryption: Introduction (2)
• Key-provided “unpredictability” insufficient for small ℳ

– Example: credit card numbers

2056114 38582 0982

Issuer & bank
number

Check digitsAccount
number

Tweakable Encryption: Introduction (2)
• Key-provided “unpredictability” insufficient for small ℳ

– Example: credit card numbers

4 38582 0982

Issuer & bank
number

Check digitsAccount
number

𝐸𝑘 205611

Tweakable Encryption: Introduction (2)
• Key-provided “unpredictability” insufficient for small ℳ

– Example: credit card numbers

4 38582 0982𝐸𝑘 205611

Tweakable Encryption: Introduction (2)
• Key-provided “unpredictability” insufficient for small ℳ

– Example: credit card numbers

4 38582 0982

4 48539 205611 2836

𝐸𝑘 205611

Tweakable Encryption: Introduction (2)
• Key-provided “unpredictability” insufficient for small ℳ

– Example: credit card numbers

• Problem: dictionary attacks allow decrypting unknown
ciphertexts!

• Want: different plaintexts ⇒ encryption uses different
pseudorandom permutations

• Solution: “tweak” encryption using public info!

4 38582 0982

4 48539 2836

𝐸𝑘 205611

𝐸𝑘 205611

Tweakable Encryption: Definition
• Deterministic Tweakable Encryption Scheme Π [LRW`02]:

– Message space ℳ
– Tweak space 𝓣
– Randomized 𝐾𝑒𝑦𝐺𝑒𝑛:ℕ → 𝒦
– Deterministic 𝐸:𝒦 × 𝓣 ×ℳ → 𝒞
– Deterministic 𝐷:𝒦 × 𝓣× 𝒞 →ℳ

• Notation:
– 𝐸𝐾

𝑇 = 𝐸 𝐾, 𝑇,⋅

– 𝐷𝐾
𝑇 = 𝐷 𝐾, 𝑇,⋅

• “Unpredictability”: still only due to encryption key 𝐾, but…

• … for random 𝐾, 𝐸𝐾
𝑇1 ⋅ , 𝐸𝐾

𝑇2 ⋅ “similar” to independent random
permutations

• Tweaks give family of pseudorandom permutations
– Different pseudorandom permutation for every plaintext

• Tweak fundamentally different than key
– Provides variability, NOT unpredictability

Tweakable Encryption: Example
• Deterministic encryption is problematic in small domains

– E.g., credit card numbers

• Before:
2056114 38582 0982

4 48539 205611 2836

4 38582 0982

4 48539 2836

𝐸𝑘 205611

𝐸𝑘 205611

Tweakable Encryption: Example
• Deterministic encryption is problematic in small domains

– E.g., credit card numbers

• Before:
2056114 38582 0982

4 48539 205611 2836

4 38582 0982

4 48539 2836849682

849682

Tweakable Encryption: Example
• Deterministic encryption is problematic in small domains

– E.g., credit card numbers

• Before:

• Tweaks solve the problem

– All available public info used as tweak

• Now:

2056114 38582 0982

4 48539 205611 2836

4 38582 0982

4 48539 2836849682

849682

4 38582 0982

4 48539 2836

𝐸𝐾 205611
4385820982

𝐸𝐾 205611
4485392836

Tweakable Encryption: Example
• Deterministic encryption is problematic in small domains

– E.g., credit card numbers

• Before:

• Tweaks solve the problem

– All available public info used as tweak

• Now:

2056114 38582 0982

4 48539 205611 2836

4 38582 0982

4 48539 2836849682

849682

4 38582 0982

4 48539 2836

𝛼 𝛽

𝛽′𝛼′

𝐸𝐾
𝛼,𝛽

205611

𝐸𝐾
𝛼′,𝛽′

205611

Tweakable Encryption: Example
• Deterministic encryption is problematic in small domains

– E.g., credit card numbers

• Before:

• Tweaks solve the problem

– All available public info used as tweak

• Now:

2056114 38582 0982

4 48539 205611 2836

4 38582 0982

4 48539 2836849682

849682

4 38582 0982

4 48539 2836

𝛼 𝛽

𝛽′𝛼′

𝐸𝐾
𝛼,𝛽

205611

𝐸𝐾
𝛼′,𝛽′

205611

tweak plaintext

Tweakable Encryption: Example
• Deterministic encryption is problematic in small domains

– E.g., credit card numbers

• Before:

• Tweaks solve the problem

– All available public info used as tweak

• Now:

2056114 38582 0982

4 48539 205611 2836

4 38582 0982

4 48539 2836849682

849682

4 38582 0982

4 48539 2836967395

237849

Tweakable Encryption: History
• Tweakable block ciphers [LRW`02] use tweak to

– Design better “modes of operation”
• Instead of a fixed IV

– Improve efficiency
• Instead of replacing encryption key

• In small domains: tweaks are essential!

• Many formats for which format preserving encryption is
needed are small

– Social security numbers (SSNs), credit card numbers (CCNs),…

Format-Preserving Encryption

Format-Preserving Encryption (FPE):
Introduction

• Standard encryption maps messages to “garbage”, causing

– Applications using data to crash

– Tables designed to store data unsuitable for storing encrypted data

• Sometimes plaintext properties should be preserved

• Want: ℳ = 𝒞

– i.e., 𝐸𝐾
𝑇 is a permutation over ℳ

• ℳ is union of messages over all supported formats

– Supported formats are called “slices”

• Examples:

– ℳ = SSNs ∪ CCNs ∪ Dates ∪ 1,… ,𝑁

– ℳ =∪𝑛∈ℕ 0,1 𝑛

– ℳ =∪𝑛∈ℕ ℤ𝑛

FPE: Syntactic Definition
• Format-Preserving Encryption (FPE) Π [BRRS`09]:

– Format space 𝓝

– Message space ℳ =∪𝑁∈𝒩 ℳ𝑁

• All ℳ𝑁’s are finite

– Tweak space 𝒯

– Randomized 𝐾𝑒𝑦𝐺𝑒𝑛:ℕ → 𝒦

– Deterministic 𝐸:𝒦 × 𝒯 ×𝓝×ℳ →ℳ ∪ ⊥
• ⊥∉ ℳ

• 𝐸 𝐾, 𝑇, 𝑁,𝑚 =⊥ denotes encryption error (𝑚 ∉ℳ𝑁)

– Failure depends only on 𝑁,𝑚 and not on 𝐾, 𝑇

• 𝐸 𝐾, 𝑇, 𝑁,⋅ is a permutation over 𝓜𝑵

– Deterministic 𝐷:𝒦 × 𝒯 ×𝓝×ℳ →ℳ ∪ ⊥

• Notation:

– 𝐸𝐾
𝑇,𝑁 = 𝐸 𝐾, 𝑇, 𝑁,⋅

– 𝐷𝐾
𝑇,𝑁 = 𝐷 𝐾, 𝑇, 𝑁,⋅

FPE: Semantic Definition
• Correctness: for every 𝐾 ∈ 𝒦, every 𝑇 ∈ 𝒯, every 𝑁 ∈ 𝒩

and every 𝑚 ∈ ℳ𝑁

𝐷𝐾
𝑇,𝑁 𝐸𝐾

𝑇,𝑁 𝑚 = 𝑚

• Security:

– Hierarchy of security notions [BRRS`09]

– Strongest: Pseudo-Random Permutation (PRP)
security

• 𝐾 random ⇒ 𝐸𝐾
𝑇,𝑁 close to pseudorandom permutation on

ℳ𝑁

Pseudo-Random Permutation (PRP) security

∀𝑇 ∈ 𝒯
∀𝑁 ∈ 𝒩

𝑏′

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

𝑏′

𝑏
𝑏 = 1𝑏 = 0

𝜋𝑇,𝑁 ← 𝑃𝑒𝑟𝑚 ℳ𝑁

Pseudo-Random Permutation (PRP) security

∀𝑇 ∈ 𝒯
∀𝑁 ∈ 𝒩

𝑏′

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

𝑏′

𝑏
𝑏 = 1𝑏 = 0

𝐴𝑑𝑣𝒜
𝑃𝑅𝑃 = 2Pr 𝑏 = 𝑏′ − 1

𝜋𝑇,𝑁 ← 𝑃𝑒𝑟𝑚 ℳ𝑁

FPE: Security Definitions (2)
• Hierarchy of security notions [BRRS`09]

• Strongest: Pseudo-Random Permutation (PRP) security

– 𝐾 random ⇒ 𝐸𝐾
𝑇,𝑁 close to pseudorandom permutation on ℳ𝑁

– Guaranteed security against (improbable) attacks incurs expensive
overhead

– “Overkill” for typical applications

• Single Point Indistinguishability (SPI) security
– Adversary cannot distinguish encryption of single point of its choice

from random

– Analogous to PRF and PRP security notions [GGM`84, DM`00,
MRS`09]

Single Point Indistinguishability (SPI) Security

𝑏′

𝑏
𝑏 = 1𝑏 = 0

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

𝑇∗, 𝑁∗, 𝑚∗

𝑐∗ ←ℳ𝑁∗

𝑐∗

𝑏′

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

𝑇∗, 𝑁∗, 𝑚∗

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝑐∗

Single Point Indistinguishability (SPI) Security

𝑏′

𝑏
𝑏 = 1𝑏 = 0

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

𝑇∗, 𝑁∗, 𝑚∗

𝑐∗ ←ℳ𝑁∗

𝑐∗

𝑏′

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

𝑇∗, 𝑁∗, 𝑚∗

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝑐∗

𝐴𝑑𝑣𝒜
𝑆𝑃𝐼 = 2Pr 𝑏 = 𝑏′ − 1

Why SPI?
• Pseudo-Random Permutation (PRP)

– Adversary cannot distinguish encryption oracle from random
permutations

– 𝐴𝑑𝑣𝒜
𝑃𝑅𝑃 = 2Pr 𝑏 = 𝑏′ − 1

• Single Point Indistinguishability (SPI)
– Adversary cannot distinguish encryption of single point of its

choice from random
• Even given encryption oracle

– 𝐴𝑑𝑣𝒜
𝑆𝑃𝐼 = 2Pr 𝑏 = 𝑏′ − 1

• Equivalent notions, SPI easier to work with

• 𝑷𝑹𝑷 ⇒ 𝑺𝑷𝑰: 𝐴𝑑𝑣𝒜
𝑆𝑃𝐼 ≤ 𝟐 ⋅ 𝐴𝑑𝑣𝒜′

𝑃𝑅𝑃 +
𝒒

𝑴
– 𝑞 = number of queries of PRP adversary
– 𝑀 = minimal size of supported format

• 𝑺𝑷𝑰 ⇒ 𝑷𝑹𝑷: 𝐴𝑑𝑣𝒜
𝑃𝑅𝑃 ≤ 𝒒 ⋅ 𝐴𝑑𝑣𝒜′

𝑆𝑃𝐼 +
𝒒𝟐

𝑴

FPE: Security Definitions (3)
• Hierarchy of security notions [BRRS`09]
• Strongest: Pseudo-Random Permutation (PRP) security

– 𝐾 random ⇒ 𝐸𝐾
𝑇,𝑁 close to pseudorandom permutation on ℳ𝑁

• Single Point Indistinguishability (SPI) security
– Adversary cannot distinguish encryption of single point of its

choice from random

• Message Privacy (MP) security
– “Format-preserving” analog of semantic security
– Challenge ciphertext 𝑐∗ practically no help in computing 𝑓 𝑚∗

– Randomized encryption: “practically” = no help
– Deterministic encryption: “practically” = encryption oracle

equivalent to equality oracle

Message Privacy (MP) Security

𝑓, 𝑧

Yes\No

𝑚?

𝒟

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑇∗, 𝑁∗

𝑓, 𝑧

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

Same as in
real world

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝒟

𝑇∗, 𝑁∗, 𝑐∗

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝒒𝒒

Same as in
real world

Guess for
𝑓 𝑚∗

Message Privacy (MP) Security

𝑓, 𝑧

Yes\No

𝑚?

𝒟

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑇∗, 𝑁∗

𝑓, 𝑧

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

Same as in
real world

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝒟

𝑇∗, 𝑁∗, 𝑐∗

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝒒𝒒

Same as in
real world

Guess for
𝑓 𝑚∗

𝐴𝑑𝑣𝒜
𝑀𝑃 = Pr

𝑟𝑒𝑎𝑙
𝑧 = 𝑓 𝑚∗ − max

𝑖𝑑𝑒𝑎𝑙 𝐿𝑢𝑐𝑦
Pr[𝑧 = 𝑓 𝑚∗]

FPE: Security Definitions (4)
• Hierarchy of security notions [BRRS`09]
• Strongest: Pseudo-Random Permutation (PRP)

security
– 𝐾 random ⇒ 𝐸𝐾

𝑇,𝑁 close to pseudorandom permutation on
ℳ𝑁

• Single Point Indistinguishability (SPI) security
– Adversary cannot distinguish encryption of single point of

its choice from random

• Message Privacy (MP) security
– “Format-preserving” analog of semantic security
– Challenge ciphertext 𝑐∗ practically no help in computing
𝑓 𝑚∗

• Weakest: Message Recovery (MR) security
– Adversary cannot completely recover challenge plaintext

Message Recovery (MR) Security

𝒎′

Yes\No

𝑚?

𝒟

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑇∗, 𝑁∗

𝒎′

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

Same as in
real world

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝒟

𝑇∗, 𝑁∗, 𝑐∗

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝒒𝒒

Message Recovery (MR) Security

𝒎′

Yes\No

𝑚?

𝒟

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑇∗, 𝑁∗

𝒎′

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

Same as in
real world

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝒟

𝑇∗, 𝑁∗, 𝑐∗

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝒒𝒒

𝐴𝑑𝑣𝒜
𝑀𝑅 = Pr

𝑟𝑒𝑎𝑙
𝑚′ = 𝑚∗ − max

𝑖𝑑𝑒𝑎𝑙 𝐿𝑢𝑐𝑦
Pr[𝑚′ = 𝑚∗]

FPE: Security Definitions (5)
• Hierarchy of security notions [BRRS`09]

– Pseudo-Random Permutation (PRP)

– Single Point Indistinguishability (SPI)

– Message Privacy (MP)

– Message Recovery (MR)

• Similar to IND-DistinctCPA security

• Extends to stronger IND-DistinctCCA security:
– Strong-PRP:

• Real world: adversary given 𝐷𝐾
𝑇,𝑁

• Ideal world: adversary given 𝜋𝑇,𝑁 −1

– Strong SPI, MP, MR:

• Real world: adversary given 𝐷𝐾
𝑇,𝑁

• Ideal world: simulator given no additional oracle

• We will work with IND-CPA notions (no decryption oracle)

Relations Between Security Definitions
𝑷𝑹𝑷 ⇔ 𝑺𝑷𝑰 ⇒ 𝑴𝑷 ⇒ 𝑴𝑹

• 𝑃𝑅𝑃 ⇒ 𝑆𝑃𝐼: 𝐴𝑑𝑣𝒜
𝑆𝑃𝐼 ≤ 2 ⋅ 𝐴𝑑𝑣𝒜′

𝑃𝑅𝑃 +
𝑞

𝑀

• 𝑆𝑃𝐼 ⇒ 𝑃𝑅𝑃: 𝐴𝑑𝑣𝒜
𝑃𝑅𝑃 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝒜′

𝑆𝑃𝐼 +
𝑞2

𝑀

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

Relations Between Security Definitions (2)
𝑷𝑹𝑷 ⇔ 𝑺𝑷𝑰 ⇒ 𝑴𝑷 ⇒ 𝑴𝑹

• 𝑀𝑃 ⇒ 𝑀𝑅: 𝐴𝑑𝑣𝒜
𝑀𝑅 ≤ 𝐴𝑑𝑣𝒜′

𝑀𝑃

– MR special case of MP: 𝒜′ chooses 𝑓 = identity function

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

𝑀𝑅 𝑀𝑃

Relations Between Security Definitions (3)
𝑷𝑹𝑷 ⇔ 𝑺𝑷𝑰 ⇒ 𝑴𝑷 ⇒ 𝑴𝑹

• 𝑆𝑃𝐼 ⇒ 𝑀𝑃: 𝐴𝑑𝑣𝒜
𝑀𝑃 ≤ 𝐴𝑑𝑣𝒜′

𝑆𝑃𝐼

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

𝑀𝑃𝑆𝑃𝐼

Relations Between Security Definitions (4)
𝑷𝑹𝑷 ⇔ 𝑺𝑷𝑰 ⇍ 𝑴𝑷 ⇍ 𝑴𝑹

• 𝑀𝑅 ⇏ 𝑀𝑃:
– E.g., ℳ𝑁 = 0,1 𝑁 for all 𝑁 ∈ ℕ, and encryption is:

• Identity on first plaintext bit

• Pseudorandom on other plaintext bits

– 𝐴𝑑𝑣𝑀𝑃 𝒜 = 1/2

– 𝐴𝑑𝑣𝑀𝑅 𝒜 ≈ 2− 𝑁−1

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

Compare 𝒜 to “best possible” ideal 𝒜

𝑀𝑃𝑀𝑅

Relations Between Security Definitions (5)
𝑷𝑹𝑷 ⇔ 𝑺𝑷𝑰 ⇍ 𝑴𝑷 ⇍ 𝑴𝑹

• 𝑀𝑃 ⇏ 𝑆𝑃𝐼:

– e.g., encryption has “fixed point” 𝑚𝑁 ∈ ℳ𝑁 for every 𝑁 and every 𝐾, 𝑇:

• 𝜋𝐾
𝑇,𝑁 is pseudorandom permutation over ℳ𝑁 ∖ 𝑚𝑁

• 𝑚 ≠ 𝑚𝑁 ⇒ 𝐸𝐾
𝑇,𝑁 𝑚 = 𝜋𝐾

𝑇,𝑁 𝑚

• 𝐸𝐾
𝑇,𝑁 𝑚𝑁 = 𝑚𝑁

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

Relations Between Security Definitions (6)
𝑷𝑹𝑷 ⇔ 𝑺𝑷𝑰 ⇍ 𝑴𝑷 ⇍ 𝑴𝑹

• 𝑀𝑃 ⇏ 𝑆𝑃𝐼:

– e.g., encryption has “fixed point” 𝑚𝑁 ∈ ℳ𝑁 for every 𝑁 and every 𝐾, 𝑇

– 𝒜𝑆𝑃𝐼 chooses challenge plaintext 𝑇,𝑁,𝑚𝑁 for maximal ℳ𝑁

• Has advantage 1 −
1

ℳ𝑁

– “Best” 𝒜𝑀𝑃: choose “easy to guess” 𝑓 or 𝑚

• Also “easy to guess” in ideal world

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

𝑀𝑃𝑆𝑃𝐼

Recap

• Tweakable ciphers: parameterized by key 𝐾 and tweak 𝑇

– Tweak “equivalent” to using pseudorandom permutation family

– Essential when encrypting small domains

• Format Preserving Encryption: preserves message format

– Hierarchy of security definitions: 𝑃𝑅𝑃 ⇔ 𝑆𝑃𝐼 ⇒ 𝑀𝑃 ⇒ 𝑀𝑅

• 𝑃𝑅𝑃 ⇒ 𝑆𝑃𝐼: 𝐴𝑑𝑣𝒜
𝑆𝑃𝐼 ≤ 2 ⋅ 𝐴𝑑𝑣𝒜′

𝑃𝑅𝑃 +
𝑞

𝑀

• 𝑆𝑃𝐼 ⇒ 𝑃𝑅𝑃: 𝐴𝑑𝑣𝒜
𝑃𝑅𝑃 ≤ 𝑞 ⋅ 𝐴𝑑𝑣𝒜′

𝑆𝑃𝐼 +
𝑞2

𝑀

• 𝑆𝑃𝐼 ⇒ 𝑀𝑃 ⇒ 𝑀𝑅 with tight bounds

• 𝑀𝑅 ⇏ 𝑀𝑃 ⇏ 𝑆𝑃𝐼

PRP: Pseudo Random Permutation
SPI: Single Point Indistinguishability

MP: Message Privacy
MR: Message Recovery

Constructions

What We Know About FPE
• First* FPE

• AES
• Term coined by Terence Spies, Voltage Security’s CTO
• First formal definitions due to [BRRS`09]
• Constructions for specific formats

– Social Security Numbers (SSNs) [Hoo`11]
– Credit Card Numbers (CCNs)
– Dates [LJLC`10]
– …

• Drawbacks:
– Designed for specific formats
– New encryption techniques, little (if any) security analysis
– Often inconsistent with syntactic definition

• Interested in schemes for general formats
– Starting point: schemes for integral domains

Format-Preserving Encryption
Part II: Integral Domains

Session II: Outline

• Integral and “almost-integral” domains

• Feistel Networks and Generalized Feistel Network

• Integer-FPE constructions from Feistel Networks

• Integer-FPE standards

Integer-FPEs
• In many cases, interested in encrypting integral domains

– E.g., credit-card numbers

• FPEs for integral (and “almost integral”) domains useful
for encrypting general formats

– Stay tuned…

• Int-FPE: FPE for integral domain ℤ𝑀 [BR`02,BRRS`09]

• Also interested in FPEs for “almost integral” domains

ℳ = 0,1,… ,𝑚 − 1 𝑛 for 𝑛,𝑚 ∈ ℕ

– Methods described as early as 1981

– FFX [BRS`10], BPS [BPS`10] under NIST consideration

• We will refer to both as “int-FPE”

• Many constructions based on Feistel Networks

Integer-FPE: Constructions
• “Tiny” domains ℤ𝑴: spending 𝑂 𝑀 time\space is feasible

– Using card shuffles [Dur`98,FY`38,Knu`69,MO`63,San`98]

– Using block ciphers [BR`02]

• “Small” domains ℤ𝑴 or 𝟎, 𝟏,… ,𝒎 − 𝟏 𝒏:

𝑀,𝑚𝑛 ≤ domain of underlying block cipher
– Based on Feistel networks for

• ℤ𝑎𝑏 [BR`02,BRRs`09]

• 0,1 𝑛 [Fei`74,AB`96,Luc`96,SK`96]

• 0,1, … ,𝑚 − 1 𝑛 [BRS`10,BPS`10])

– Based on card shuffling for ℤ𝑀
• Obtained as special case of Feistel network, or inefficient [Tho`73,GP`07]

• “Huge” domains 𝟎, 𝟏 𝒏:

2𝑛 > domain of underlying block cipher
– Constructions based on block ciphers, e.g.,

[ZMI`89,Hal`04,HR`04,MF`07,CS`08,Sar`08,SAR`11]

Feistel-Based Integer FPEs

𝑹𝟎𝑳𝟎

𝑹𝟒𝑳𝟒

Feistel Networks [Smi`71,Fei`74,FNS`75]

𝑹𝟏

𝑹𝟐

𝑹𝟑

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑹𝟎𝑳𝟎

𝑹𝟒𝑳𝟒

𝐿0 𝑅0

𝐿1
′ 𝑅1

′

𝐿0 𝑅0

𝐿1 𝑅1

Feistel Networks [Smi`71,Fei`74,FNS`75]

Balanced:
𝑳𝒊 = 𝑹𝒊

Unbalanced:
𝑳𝒊 ≠ 𝑹𝒊

𝑅1𝐿1

𝑹𝟏

𝑹𝟐

𝑹𝟑

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑹𝟏 = 𝑭𝒌𝟏 𝑹𝟎 ⊕𝑳𝟎
𝑳𝟏 = 𝑹𝟎

𝐿0 𝑅0

𝐿1
′ 𝑅1

′

𝐿0 𝑅0

𝐿1 𝑅1

Feistel Networks (2)

Balanced:
𝑳𝒊 = 𝑹𝒊

Unbalanced:
𝑳𝒊 ≠ 𝑹𝒊

𝑅1𝐿1

Alternating:
𝑳𝒊 ≠ 𝑹𝒊

𝐿0 𝑅0

𝐿1

𝑅2

𝑅1

𝐿2

𝑹𝟎𝑳𝟎

𝑹𝟒𝑳𝟒

123 456

572

Generalized Feistel Networks
• Classic Feistel networks defined over bit strings

• First generalized to integral domains ℤ𝑎𝑏 by [BR`02]
– Used alternating Feistel

• Tweakable Feistel for ℤ𝑎𝑏 described in [BRRS`09] (FE1 and FE2)
– Tweakable round function 𝐹

– Tweak of 𝐹 includes all public info (round #, provided tweak, format)

– Use either alternating of unbalanced Feistel

• Operations computed modulo 𝑏

• Example: 𝑎 = 500, 𝑏 = 200 (generally, 𝑏 ≤ 𝑎), input 61956

95456
5 7 2

0101 0111 0010

ℤ𝑏

∈

ℤ𝑎

∈
695 mod 200

𝐹
𝐾
𝑇

0100 0101 0110

4 5 6

61956 = 123 ⋅ 𝑎 + 456

𝑋′ = 456 ⋅ 𝑏 + 95
𝑿′

123 456

572

Generalized Feistel Networks
• Classic Feistel networks defined over bit strings

• First generalized to integral domains ℤ𝑎𝑏 by [BR`02]
– Used alternating Feistel

• Tweakable Feistel for ℤ𝑎𝑏 described in [BRRS`09] (FE1 and FE2)
– Tweakable round function 𝐹

– Tweak of 𝐹 includes all public info (round #, provided tweak, format)

– Use either alternating of unbalanced Feistel

• Operations computed modulo 𝑏

• Example: 𝑎 = 500, 𝑏 = 200 (generally, 𝑏 ≤ 𝑎), input 61956

5 7 2

0101 0111 0010

ℤ𝑏

∈

ℤ𝑎

∈
695 mod 200

𝐹
𝐾
𝑇

0100 0101 0110

4 5 6

61956 = 123 ⋅ 𝑎 + 456

𝑋′ = 456 ⋅ 𝑏 + 95
= 182 ⋅ 𝑎 + 295

𝑿′

295182

12345 67890

block-wise: mod 105

57294

12345 67890

coordinate-wise: mod 10

Generalized Feistel Networks (2)
• Feistel for ℤ𝑀, 𝑀 = 𝑎𝑏: given format size 𝑀, requires factoring 𝑀

– Highly inefficient for large 𝑀!

• Can we avoid factoring?

• Feistel for 0,1,… ,𝑚 − 1 𝑛 for 𝑛,𝑚 ∈ ℕ [BRS`10,BPS`10]

– Operations computed coordinate-wise or block-wise (mod 𝑚 𝑅)

• Example: 𝑚 = 𝑛 = 10, 𝐿 = 𝑅 = 5, input 1234567890

57294

6953967890 6963967890

1 5 7 2 9 4

0001 0101 0111 0010 1001 0100

𝐹
𝐾
𝑇

0110 0111 1000 1001 0000
6 7 8 9 0

5 7 2 9 4

mod 105

Generalized Feistel Networks (3)
• Feistel for ℤ𝑀, 𝑀 = 𝑎𝑏: given format size 𝑀, requires factoring 𝑀

– Highly inefficient for large 𝑀!

• Can we avoid factoring?

• Feistel for 0,1,… ,𝑚 − 1 𝑛 for 𝑛,𝑚 ∈ ℕ [BRS`10,BPS`10]

– Operations computed coordinate-wise of block-wise (mod 𝑚 𝑅)

• Efficiency: no factoring

• Generalized Feistel networks ⇒ int-FPE for domains ℤ𝑀, 𝑀 = 𝑎𝑏
and 0,1,… ,𝑚 − 1 𝑛

– Main issue: choosing network parameters

• Round function, # rounds, operation and network type…

Security of Feistel Networks
• Main approach for block cipher constructions

• Intensively studied for over 3 decades
– Security proofs (e.g.,

[LR`88, Mau`92, NR`97, Vau`98, Pat`98, MP`03, Pat`03, MRS`09, Pat`10, LP`12])

– Attacks (e.g., [Pat`01, Pat`04, PNB`06, PNB`07])

• Security measure: PRP or strong-PRP security (random round
functions)
– Also: attacks exploiting round function structure, or allowing adversary

oracle access to round functions

• Parameters of interest:
– # queries

– Running time

• Parameters of interest influence choice of round number

• Huge gap between security guarantees and known attacks
– In part due to highly inefficient information theoretic attacks

– Major open problem!

Security of Generalized Feistel Networks
• Generalized Feistel (almost) as secure as standard Feistel

– But not as well studied

• Standard Feistel: security follows from pseudo-randomness of 𝐹

• Generalized Feistel:
– Output 𝑧 of 𝐹 pseudorandom in 2𝑛 > |ℤ𝑎|

– Output used in generalized Feistel is 𝒛 𝐦𝐨𝐝 𝒂

• Mod operation preserves pseudo-randomness [BRRS`09]:

𝑧 mod 𝑎 is
𝑎

2𝑛−2
-statistically close to random 𝑧′ ∈𝑅 ℤ𝑎

𝐿0 𝑅0

𝐿1 𝑅1

ℤ𝑏

∈

ℤ𝑎

∈

𝐿0 𝑅0

𝐿1 𝑅1

𝑘 𝑛

𝑛 𝑘

Security of Generalized Feistel Networks (2)
Number rounds 𝒓Number queries 𝒒Network typeDomain

𝑟 = 𝑂
log𝑏 𝑎

𝜖

𝑞 ≈ 𝑎1−𝜖unbalanced,
contracting

ℤ𝑀, 𝑀 = 𝑎𝑏
𝑎 > 𝑏

𝑟 = 𝑂
log𝑎 𝑏

𝜖

𝑞 ≈ 𝑎1−𝜖unbalanced,
expanding

ℤ𝑀, 𝑀 = 𝑎𝑏
𝑎 ≤ 𝑏

𝑟 = 𝑂
1

𝜖

𝑞 ≈ 𝑚𝑛 1−𝜖balanced0,1, … ,𝑚 − 1 𝑁

𝑁 = 2𝑛

𝑟 = 𝑂
𝑛

𝜖𝑘
𝑞 ≈ 𝑚𝑛 1−𝜖unbalanced,

contracting*
0,1, … ,𝑚 − 1 𝑁

𝑁 = 𝑛 + 𝑘, 𝑛 > 𝑘

𝑟 = 𝑂
𝑛

𝜖𝑘
𝑞 ≈ 𝑚𝑛 1−𝜖unbalanced,

expanding**
0,1, … ,𝑚 − 1 𝑁

𝑁 = 𝑛 + 𝑘, 𝑛 ≤ 𝑘

Security bounds from [HR`10]
*bound improves with imbalance
** bound deteriorates with imbalance

Int-FPE (Soon To Be*) Standards
• Recall: generalized Feistel networks ⇒ int-FPE for

domains ℤ𝑀 , 𝑀 = 𝑎𝑏 and 0,1, … ,𝑚 − 1 𝑛

– Main issue: choosing network parameters

• Round function, # rounds, operation and network
type…

• Two Feistel-based int-FPE schemes for 0,1, … ,𝑚 − 1 𝑛

currently under NIST consideration:

– FFX [BRS`10]

– BPS [BPS`10]

FFX [BRS`10]
• Highly parameterized:

– Format structure: 𝑚, 𝑛 (100 ≤ 𝑚𝑛 ≤ 2128)
• No mode of operation

– Round function 𝐹 (and key space)
• E.g., CBC-MAC, CMAC, HMAC

– # rounds, tweak space
• Tweak should include all public info

– Network structure: alternating\unbalanced; block\coordinate-wise
operation; imbalance factor

• Security goal: strong-PRP against 𝑚𝑛 − 2 queries in
time < exhaustive key search
– “Suggested” (conservative) # rounds based on known results
– Shorter input ⇒ more rounds

• Variants for useful domains:
– FFX-A2: bit strings, lengths 8-128 (12-36 rounds)
– FFX-A10: decimal strings, lengths 4-36 (12-24 rounds)

BPS [BPS`10]
• Construction parameters:

– Format structure: 𝑚, 𝑛 for any 𝑚, 𝑛 ∈ ℕ

• Mode of operation for long messages (# blocks ≤ 216)

– Round function 𝐹 (and key space)

• E.g., AES, TDES, SHA-2

– # rounds (even ≥ 8)

• Construction constants:
– Tweak space: 0,1 64

• Tweak should include all public info (long tweaks hashed)

– Network structure:

• Alternating, maximally balanced

• Coordinate-wise operation in Feistel, block-wise in mode of operation

– Mode of operation: CBC (block size = 2 × log𝑚 2input length to 𝐹minus 32)

• Security goal: PRP-security against 𝑚𝑛 queries (no time bound)
– “Suggested” # rounds based on known attacks and security analysis

– # rounds fixed to 8 for all input lengths

Int-FPE (Soon To Be*) Standards (2)

BPS [BPS`10]FFX [BRS`10]

arbitrary𝑀 ≤ 2128 (*)Domain size 𝑴 = 𝒎𝒏

PRP
𝑞 = 𝑚𝑛

no time bound

strong-PRP
𝑞 = 𝑚𝑛 − 2

𝑇 < exhaustive key search

Security goal

8 rounds
(less conservative)

less calls to 𝐹
(strong attacks outside of

security goal)

more rounds
(conservative bounds)

more calls to 𝐹
(defeat strong attacks)

Efficiency

AES, TDES, SHA-2CBC-MAC, CMAC, HMACSuggested 𝑭

fixeduser defined
Flexibility
(tweak space and
network structure)

Format-Preserving Encryption
Part III: General Formats

Post-Lunch Recap
• Format Preserving Encryption (FPE):

– Preserves message format

– Tweakable, deterministic, private key

– Useful for:
• Storing data at remote servers

• Running applications for (unencrypted data) on encrypted data

• Hierarchy of security notions: 𝑃𝑅𝑃 ⇔ 𝑆𝑃𝐼 ⇒ 𝑀𝑃 ⇒ 𝑀𝑅

• Int-FPE based on generalized Feistel networks

– For ℤ𝑀, 𝑀 = 𝑎𝑏

– For 0,1,… ,𝑚 − 1 𝑛

Session III: Outline

• Techniques for general-format FPE

• Natural FPE construction: analysis and insecurities

• FPE constructions for general formats:

– From regular expressions and relaxed ranking

– From bottom-up framework and (standard) ranking

Techniques for General-Format FPE (Part 1)

• How to encrypt social security numbers (SSNs)?

– Subset of 0,1,… , 9 9

– Additional constraints

• We have FPE for ℳ = 0,1, … , 9 9

• Can get FPE for SSNs from FPE for ℳ:

• Use cycle walking [SO`98,BR`02]
“if at first you don’t succeed, pick yourself up and try again”

– Use “standard” FPE for ℳ = 0,1,… , 9 9

– Repeat until ciphertext is valid SSN

Cycle Walking

Message space 𝓜= 𝟎, 𝟏,… , 𝟗 𝟗

Valid SSNs

Cycle Walking: Security Analysis
• Want: FPE for ℳ

– Encryption “looks like” random permutation on ℳ

• Have: ideal FPE for ℳ′, ℳ ⊆ℳ′ with encryption 𝐸𝐾
′

– Ideal FPE: each permutation on ℳ′ induced by single key

• 𝐸𝐾
𝒞𝒲 ≔ apply cycle walking to 𝐸𝐾

′ until ciphertext in ℳ

• For random 𝐾, 𝐸𝐾
𝒞𝒲 is random permutation on ℳ [BR`02]

– Enough to show all permutations 𝜋 on ℳ obtained by same
number of keys 𝐾

– Adding one element 𝑥 ∈ ℳ′ ∖ℳ to 𝜋:
• ℳ + 1 options of adding 𝑥

– General case follows by induction on 𝑘 = ℳ′ − ℳ

…ℓ1 = 7 ℓ2 = 2 ℓ𝑟 = 5𝜋

Σ𝑖=1
𝑟 ℓ𝑖 + 1 options

ℓ𝑟+1

Cycle Walking: Efficiency Analysis
• ℳ ⊆ℳ′

• 𝐸𝐾
𝒞𝒲 for ℳ obtained from cycle walking on 𝐸𝐾

′ for ℳ′

• Single 𝐸𝐾
𝒞𝒲 call requires on average

ℳ

ℳ′ calls to 𝐸𝐾
′

– No timing attacks due to repeated encryption [BRRS`09] (cycle
length independent of plaintext)

• No bound on actual efficiency

– But… for “good” FPE (=like PRP) on ℳ′: bound close to average

ℳ′
ℳ

Cycle Walking: Summary
• ℳ ⊆ℳ′

• 𝐸𝐾
𝒞𝒲 for ℳ obtained from cycle walking on 𝐸𝐾

′ for ℳ′

• Cons: Efficiency loss

– single 𝐸𝐾
𝒞𝒲 call = multiple 𝐸𝐾

′ calls

– Average, not worst case, bound

– Even average bound (typically ≈ 2) sometimes too expensive

• Pros: can use known schemes (e.g., Feistel)

– Inherit security

• Would like to avoid when possible

– E.g., design dedicated int-FPE schemes

But… can also be obtained without cycle walking

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

1 2 3 4 5 6 7 8

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt message 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝐸 𝐾, 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

1 2 3 4 5 6 7 8

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt message 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝐸 𝐾, 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

1 2 3 4 5 6 7 8

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt message 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝐸 𝐾, 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

• Security: from security of int-FPE

– rank not meant to, and does not, add security

• Efficiency: only if rank, unrank are efficient

• Main challenge: design efficient ranking procedures

– “Meta” technique for regular languages [BRRS`09]

Constructing General-Format FPE
• Goal: design FPE supporting general formats

– E.g., SSNs, CCNS, dates, names, addresses…

• Main tool: RtE Technique

• Main challenges:

– Designing efficient ranking procedures

– Representing formats

Simplification-Based FPE [MYHC`11,MSP`11]
• Represent formats as union of simpler sub-formats

– Messages interpreted as strings

– ℳ divided into subsets ℳ1, … ,ℳ𝑘 defined by
• Length

• Index-specific character sets

• Encrypt each ℳ𝑖 separately using Rank-then-Encipher
– Ranking computed using generalizes decimal counting method

ℱ𝑛𝑎𝑚𝑒: format of valid names
Name: 1-4 space-separated words
Word: upper case letter followed by 1-15 lower case letters

Subsets:
ℳ1 contains Al
ℳ2 contains Tal

…
ℳ15 contains Muthuramakrishna

ℳ16 contains El Al ℳ5 contains Migel

Simplification-Based FPE: Security Concerns

• The problem: encryption preserves message-specific
properties

– Length and character type at each location

– John Doe can encrypt Jane Lee but not Johnnie Smith

• Scheme insecure both in theory and practice [WRB`15]

– Practice: experimental results
• Ciphertext usually completely reveals plaintext

• Worse than not encrypting at all…

– Theory: scheme is MR (message recovery) insecure
• Implies insecurity according to all FPE security notions

Message Recovery (MR)

𝒎′

Yes\No

𝑚?

𝒟

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑇∗, 𝑁∗

𝒎′

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

Same as in
real world

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝒟

𝑇∗, 𝑁∗, 𝑐∗

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝒒𝒒

Message Recovery (MR)

𝒎′

Yes\No

𝑚?

𝒟

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑇∗, 𝑁∗

𝒎′

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑛

Same as in
real world

𝐸𝐾
𝑇,𝑁 𝑚

𝑇,𝑁,𝑚

𝒟

𝑇∗, 𝑁∗, 𝑐∗

𝑇∗, 𝑁∗, 𝑚∗ ← 𝒟

𝑐∗ ← 𝐸𝐾
𝑇∗,𝑁∗

𝑚∗

𝒒𝒒

𝐴𝑑𝑣𝒜
𝑀𝑅 = Pr

𝑟𝑒𝑎𝑙
𝑚′ = 𝑚∗ − max

𝑖𝑑𝑒𝑎𝑙 𝐿𝑢𝑐𝑦
Pr[𝑚′ = 𝑚∗]

Simplification-Based FPE: MR-insecurity
Warm-up example: attacking sparse formats

• ℳ = 𝑚1, … ,𝑚𝑛 , 𝑚𝑖 ’s are unique
• Ciphertext reveals message length (⇒ reveals message)

– In this case: 𝐸𝐾
𝑇,𝑁 𝑚 = 𝑚

• The adversary 𝒜:
– Picks 𝒟 = uniform distribution over ℳ
– Given 𝑐∗, guesses 𝑐∗

– Makes no queries!

– Pr 𝒜 wins = 1

• Best ideal-world adversarial strategy: random guess

– Pr 𝑖𝑑𝑒𝑎𝑙𝒜 wins =
1

ℳ

• Adversarial advantage: 1 − 1

ℳ
→ℳ →∞ 1

General case: “sparsify” the format
• For every possible length, 𝒜 selects a single message
• Picks uniforms distribution over these messages

Simplification-Based FPE: Take-Home Message

• “Natural” method of representing formats is insecure

• Reason: encryption preserves message-specific
properties

FPE “wish list”
• Functionality (and efficiency):

– Simple method of representing formats

– Efficient rank, unrank procedures

• In particular: minimize cycle walking

• Security: preserve only format-specific properties

– Hide all message-specific properties

RtE-Based FPE for General Formats
• Two concurrent works [LDJRS`14,WRB`15], differ in focus

and design

• Focus: Developer- or user-oriented

• Design: representing formats, ranking methods

– Both schemes based on RtE (Rank-then-Encipher)

– libFTE [LDJRS`14]:
• Developer-oriented

• Represent formats using regular expressions

• Extend RtE method to allow efficient ranking

– GFPE [WRB`15]:
• User-oriented

• Represent formats using bottom-up framework

• Use standard RtE

libFTE [LDJRS`14]
• Library for format-preserving and format transforming

encryption

• Developer-oriented: developer needed to…

– Choose “right” scheme to use (using “Configuration assistant”)
• Several schemes (with different parameters) available

– Define new formats

• Structure:

– Represent formats with Regular Expressions (Regexes)
• Expressions limited to lengths in range 𝑛min, 𝑛max

– Ranking from automatons

– Int-FPE using FFX-A2 (FFX over bit strings)

• Main challenge: efficient rank, unrank algorithms

Ranking in libFTE
• Format represented as regular expressions (regexes)
⇒ need a method of ranking regexes

– Ranking: bijection from ℳ to 1,… , ℳ

• Only useful when bijection easy to compute

– (Exact) ranking may be an overkill

– Suffices to achieve a relaxed ranking notion

– Relaxed ranking [LDJRS`14]:

map ℳ to {1, … ,𝑀′}, ℳ < 𝑀′

• 𝐫rank:ℳ → 1,… ,𝑀′ injective

• un𝐫rank: 1, … ,𝑀′ →ℳ surjective

• For all 𝑚 ∈ ℳ, un𝐫rank 𝐫rank 𝑚 = 𝑚

Ranking in libFTE (2)
• Format represented as regular expressions (regexes)
⇒ need a method of ranking regexes

• “Meta” ranking technique from DFA [BRRS`09]
– Order paths in DFA, map 𝑚 ∈ ℳ to index of corresponding path
– Too inefficient!

• Relaxed ranking from NFA in polynomial time [LDJRS`14]
– In NFA, (possibly) more than one path for 𝑚 ∈ ℳ
– Find one such path efficiently through implicit graph representation

• libFTE supports DFA-based ranking and NFA-based relaxed ranking

(Highly Informal) Automata Theory Crash Course
• Automatons, and regexes, used to represent sets ℳ

• Automatons are graphs: 𝑚 ∈ ℳ represented through paths in graph
– Deterministic finite automaton (DFA)

– Nondeterministic finite automaton (NFA)

• Regexes equivalent to automatons:
– Regex-to-NFA transformation in linear time

– Regex-to-DFA transformation in exponential time (this is tight!)

libFTE: Tools and Algorithms
• Configuration assistant helps developer choose appropriate

scheme
– Randomized\deterministic, DFA-based\NFA-based ranking…

• “Appropriate” schemes chosen according to input parameters
– Format, memory threshold for encryption\ranking…

– Assistant runs tests to evaluate time and memory performance

• Developer chooses preferred scheme from list

libFTE: Tools and Algorithms
• Configuration assistant helps developer choose appropriate

scheme
– Randomized\deterministic, DFA-based\NFA-based ranking…

• “Appropriate” schemes chosen according to input parameters
– Format, memory threshold for encryption\ranking…

– Assistant runs tests to evaluate time and memory performance

• Developer chooses preferred scheme from list

randomizedNFA-based ranking
DFA-based unranking

Format
min, max len

libFTE: Implementation Notes
• Encryption\decryption performance (runtime and

memory consumption) determined by:

– Chosen scheme (DFA or NFA-based ranking)

– Chosen representation of format (!)

• Unclear how to find scheme + format representation
optimizing performance

– Even given performance estimate of assistant

– Bad performance due to bad regex or bad format?

libFTE: Implementation Notes
• Encryption\decryption performance (runtime and

memory consumption) determined by:

– Chosen scheme (DFA or NFA-based ranking)

– Chosen representation of format (!)

• Unclear how to find scheme + format representation
optimizing performance

– Even given performance estimate of assistant

– Bad performance due to bad regex or bad format?

GFPE [WRB`15]
• User-oriented

– Part of a larger system used by the end-user

• Encryption\decryption using RtE, supporting int-FPE for:

– ℤ𝑀 (proven security, no cycle walking, inefficient for large formats)

– 0,1,… ,𝑚 − 1 𝑛 (no security proofs, requires cycles walking, efficient
for large formats)

• Main challenge: user-friendly format representation

• Structure: formats represented using bottom-up framework

– “Basic” building-blocks (primitives)

• Usually “rigid” formats

– SSNs, CCNs, dates, set of valid strings, fixed-length strings…

• Also “less rigid” formats (e.g., variable-length strings)

– Operations used to construct complex formats

• Operations preserve the “parsing property”

GFPE: Representing Formats
• “Basic” building-blocks (primitives):

– ℱ𝑢𝑝𝑝𝑒𝑟 = {A,B,…,Z}

– ℱ𝑙𝑜𝑤𝑒𝑟 = length-𝑘 lower-case letter strings, 1 ≤ 𝑘 ≤ 15

– ℱ𝑠𝑠𝑛 =SSNs

• Operations:

– Concatenation:

• ℱ = ℱ1 ⋅ … ⋅ ℱ𝑘
– Words: ℱ𝑤𝑜𝑟𝑑 = ℱ𝑢𝑝𝑝𝑒𝑟 ⋅ ℱ𝑙𝑜𝑤𝑒𝑟

• ℱ = ℱ1 ⋅ 𝑑1 ⋅ ℱ2 ⋅ … ⋅ 𝑑𝑛−1 ⋅ ℱ𝑛 (𝑑1, … , 𝑑𝑛−1 are delimiters)

– Range: ℱ = ℱ1 ⋅ 𝑑
𝑘, 𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑚𝑎𝑥

• Names: ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒
𝑘 for 1 ≤ 𝑘 ≤ 4

– Union: ℱ = ℱ1 ∪⋯∪ ℱ𝑘
• “Names or SSNs”: ℱ = ℱ𝑛𝑎𝑚𝑒 ∪ ℱ𝑠𝑠𝑛

Example: Representing Addresses
name house # street city zip state

• ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒
𝑘 for 1 ≤ 𝑘 ≤ 4 (range)

• ℱ𝑛𝑢𝑚 = 1,… , 100 (integral domain)

• ℱ𝑧𝑖𝑝 = 0,1, … , 9 5 (fixed length string)

• ℱ𝑠𝑡𝑎𝑡𝑒 = set of valid state abbreviations

• Valid addresses obtained through concatenation:
ℱ𝑎𝑑𝑑 = ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑢𝑚 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑧𝑖𝑝 ⋅ ℱ𝑠𝑡𝑎𝑡𝑒

name house # street city zip state

GFPE: Ranking
• Define ranking for primitives and operations

• Rank of compound formats computed top-down:

– Parse string to components

– Delegate substring ranking to format components

– “Glue” ranks together using ranking for operations

Example: Ranking Concatenation
ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

⋅ 𝑑 ⋅

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2

𝑚1 𝑚2

𝑟1 𝑟2

Example: Ranking Concatenation

⋅ 𝑑 ⋅

Scale-and-Sum:
𝒓 = 𝒓𝟏 + 𝒓𝟐 ⋅ 𝓕𝟏. 𝐬𝐢𝐳𝐞()

Scale by size of sub-formats

ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

GFPE: Supporting Large Formats
• Scheme supports int-FPEs for ℤ𝑀 [BR`02,BRRS`09]

• Requires factoring 𝑀 ⇒ inefficient for large 𝑀’s!

• Supporting large formats: keep formats small

– Divide large formats

– Minimize security loss by “hiding” message-specific properties:

• Division according to format structure

• Maximizing sub-format size

– 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 determined by user-defined performance constraints

Main challenge!

Example: Dividing Address Format
Name house # street city zip state

• Valid addresses obtained through concatenation:
ℱ𝑎𝑑𝑑 = ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑢𝑚 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑧𝑖𝑝 ⋅ ℱ𝑠𝑡𝑎𝑡𝑒

• Jane Doe 23 Delaford New York 12345 NY

• Jane Doe 23 Delaford Berkeley 12345 CA

• Smaller 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 ⇒ further division

– E.g., ℱ𝑛𝑎𝑚𝑒 divided according to number of words in name

name house # street city zip state

GFPE: Supporting Large Formats (2)
• Scheme supports int-FPEs for ℤ𝑀 [BR`02,BRRS`09]

• requires factoring 𝑀 ⇒ inefficient for large 𝑀’s!

• Supporting large formats: keep formats small

– Divide large formats

– Minimize security loss by “hiding” message-specific properties:

• Division according to format structure

• Maximizing sub-format size

– 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 determined by user-defined performance constraints

• Introduces complications in ranking and unranking

– Generalize rank, unrank to lists of ranks

• Minimal security loss (according to experimental results)

Main challenge!

FPEs for General Formats: Summary
GFPE [WRB`15]libFTE [LDJRS’14]

FFX or FE1
(any FPE for ℤ𝑀 or
0,1, … ,𝑚 − 1 𝑛)

FFX
(any FPE for 0,1, … ,𝑚 − 1 𝑛)

Underlying int-FPE

end usersdevelopersDesigned for

deterministicdeterministic\ randomizedEncryption type

bottom-up frameworkregular expressionsFormat
representation

same as underlying int-FPEsame as underlying int-FPESecurity guarantee

FPEFPE + format transformingEncryption type

uniformdepends on scheme and format
representation

Performance

representation thorough
computation is possible

not clear how to efficiently
represent though computations

Expressiveness

NoYes: Python, C++, JavaScriptOpen source?

Format Preserving Encryption (FPE): Summary

• FPE preserves plaintext format under encryption

• Useful when adding encryption layer to existing schemes

• Int-FPEs based on generalized Feistel networks

– Two constructions under NIST consideration for standardization

• Techniques for general-format FPE:

– Cycle walking

– Rank-then-Encipher (RtE)

• FPE for general formats constructed from int-FPE

– Using RtE on top of int-FPE

– Comparable security and performance

