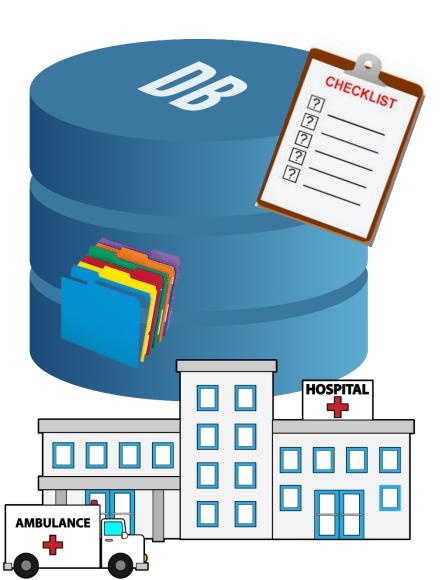
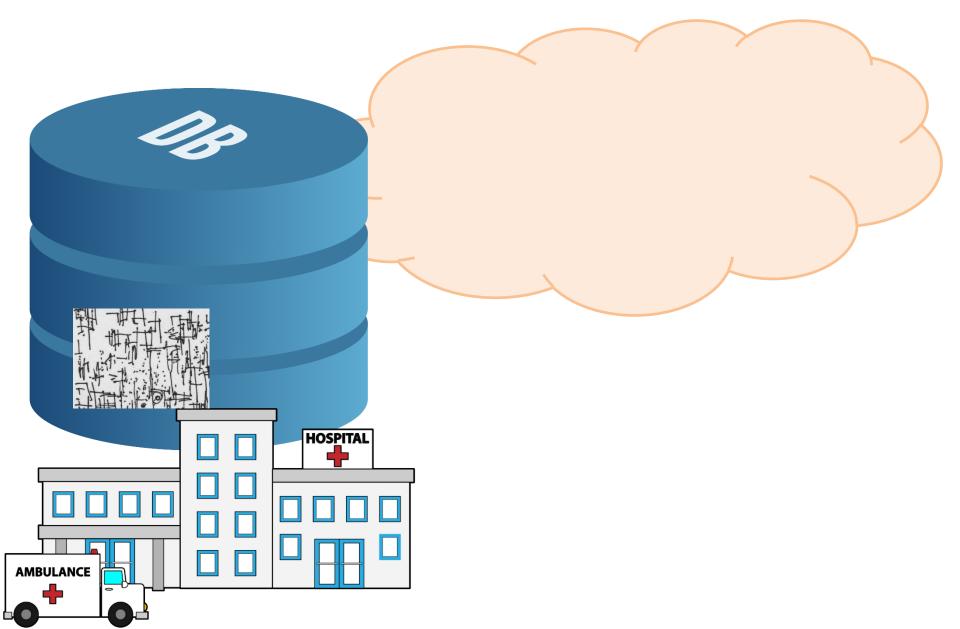
Format-Preserving Encryption Part I: Introduction and Definitions

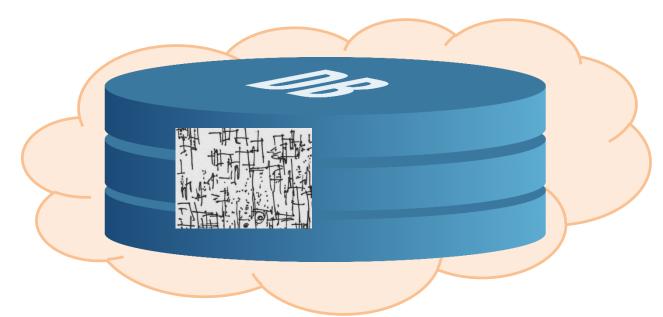
Mor Weiss

Technion

Winter School on Cryptography in the Cloud: Verifiable Computation and Special Encryption Bar-Ilan University

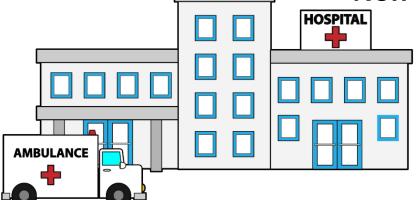


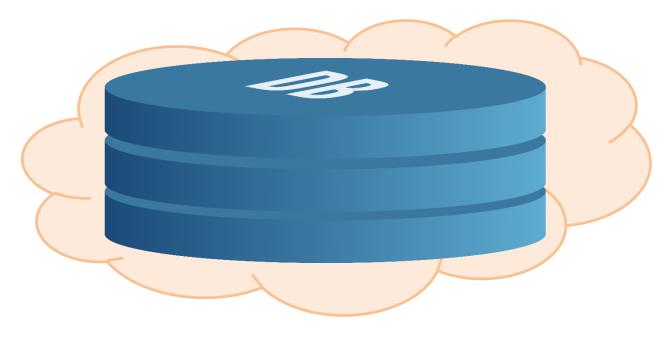


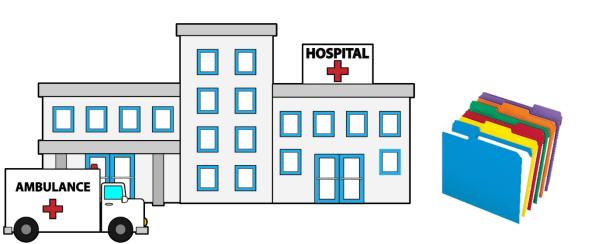


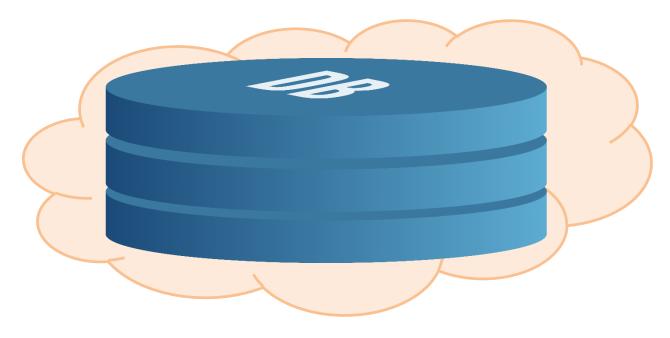
Problem (1): encrypted entry incompatible with database entry structure

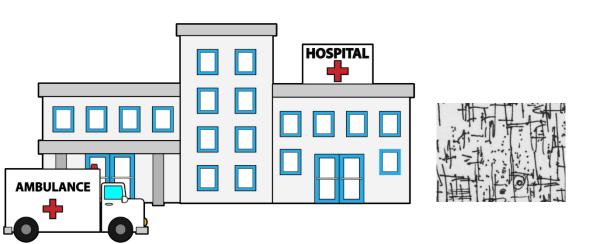
Non-solution (1): generate new tables

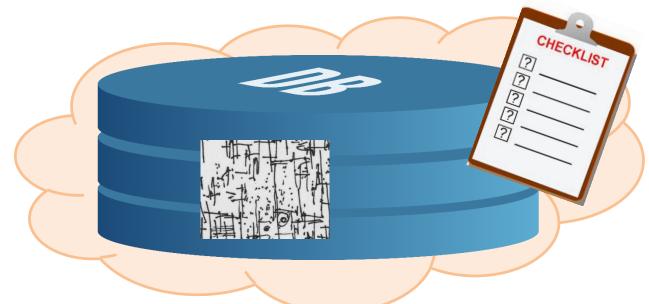




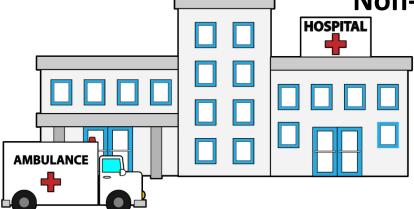








Problem (2): encrypted entry incompatible with applications using data



Session I: Outline

- Tweakable ciphers: motivation and definition
- Format Preserving Encryption (FPE):
 - Security definitions
 - Relations between definitions
- FPE constructions

- In these sessions: all encryption schemes are deterministic and private-key
- Deterministic Encryption Scheme Π :
 - Message space ${\mathcal M}$
 - Randomized KeyGen: N → \mathcal{K}
 - Deterministic $E: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$
 - Deterministic $D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$
- Semantics: correctness and secrecy
- Notation:
 - $-E_K=E(K,\cdot)$
 - $-D_K=D(K,\cdot)$
- "Unpredictability": only due to encryption key K
 - For random K, E_K "similar" to random permutation on ${\mathcal M}$

- Key-provided "unpredictability" insufficient for small ${\mathcal M}$
 - Example: credit card numbers

4385822056110982

- Key-provided "unpredictability" insufficient for small ${\mathcal M}$
 - Example: credit card numbers

- Key-provided "unpredictability" insufficient for small ${\mathcal M}$
 - Example: credit card numbers

- Key-provided "unpredictability" insufficient for small ${\mathcal M}$
 - Example: credit card numbers

4 38582 E_k (205611) 0982

- Key-provided "unpredictability" insufficient for small ${\mathcal M}$
 - Example: credit card numbers

```
4 38582 E_k (205611) 0982
```

4 48539 205611 2836

- Key-provided "unpredictability" insufficient for small ${\mathcal M}$
 - Example: credit card numbers

```
4 38582 E_k (205611) 0982
4 48539 E_k (205611) 2836
```

- Problem: dictionary attacks allow decrypting unknown ciphertexts!
- Want: different plaintexts ⇒ encryption uses different pseudorandom permutations
- Solution: "tweak" encryption using public info!

Tweakable Encryption: Definition

- Deterministic Tweakable Encryption Scheme Π [LRW`02]:
 - Message space \mathcal{M}
 - Tweak space \mathcal{T}
 - Randomized KeyGen: N → \mathcal{K}
 - Deterministic $E: \mathcal{K} \times \mathcal{T} \times \mathcal{M} \to \mathcal{C}$
 - Deterministic $D: \mathcal{K} \times \mathcal{T} \times \mathcal{C} \to \mathcal{M}$

Notation:

- $E_K^T = E(K, T, \cdot)$
- $D_K^T = D(K, T, \cdot)$
- "Unpredictability": **still** only due to encryption key K, but...
- ... for random K, $E_K^{T_1}(\cdot)$, $E_K^{T_2}(\cdot)$ "similar" to **independent** random permutations
- Tweaks give family of pseudorandom permutations
 - Different pseudorandom permutation for every plaintext
- Tweak fundamentally different than key
 - Provides variability, NOT unpredictability

- Deterministic encryption is problematic in small domains
 - E.g., credit card numbers
- Before:

• Before:	4 38582	205611	0982 <i>unencrypted</i> 2836
	4 48539	205611	2836 ************************************
encrypted	4 38582	$E_k(205611)$ $E_k(205611)$	0982
Tence,	4 48539	E_k (205611)	2836

- Deterministic encryption is problematic in small domains
 - E.g., credit card numbers

• Betore:	4 38582	205611	0982 ^{Unencrypted}
	4 48539	ZOJOTI	2836
encrypted	4 38582	849682	0982
ence	4 48539	849682	2836

- Deterministic encryption is problematic in small domains
 - E.g., credit card numbers
- Before:

• Belore:	4 38582	205611	0982 Unencrypted
	4 48539	203011	2836
encrypted	4 38582	849682	0982
iencin	4 48539	849682	2836

- Tweaks solve the problem
 - All available public info used as tweak
- Now:

4 38582
$$E_K^{4385820982}$$
(205611) 0982
4 48539 $E_K^{4485392836}$ (205611) 2836

- Deterministic encryption is problematic in small domains
 - E.g., credit card numbers

• Betore:	4 38582	205611	0982 ^{Un} encrypted
	4 48539		2836
encrypted	4 38582	849682	0982
1	4 48539	849682	2836

- Tweaks solve the problem
 - All available public info used as tweak
- Now:

$$\alpha \rightarrow 438582$$
 $E_K^{(\alpha,\beta)}(205611)$ 0982 $\leftarrow \beta$
 $\alpha' \rightarrow 448539$ $E_K^{(\alpha',\beta')}(205611)$ 2836 $\leftarrow \beta$

- Deterministic encryption is problematic in small domains
 - E.g., credit card numbers

• Betore:	4 38582	205611	0982 ^{Unencrypted}
	4 48539	ZOOOTI	2836
encrypted	4 38582	849682	0982
1	4 48539	849682	2836

- Tweaks solve the problem
 - All available public info used as tweak

• Now:

$$\alpha \rightarrow 438582$$
 $E_K^{(\alpha,\beta)}$
 $E_K^{(\alpha',\beta')}$
 $E_K^{(\alpha',\beta')}$
 $E_K^{(\alpha',\beta')}$
 $E_K^{(\alpha',\beta')}$
 $E_K^{(\alpha',\beta')}$
 $E_K^{(\alpha',\beta')}$
 $E_K^{(\alpha',\beta')}$

- Deterministic encryption is problematic in small domains
 - E.g., credit card numbers

• Before:	4 38582	205611	0982 ^{Unencrypted}
	4 48539	203011	2836
encrypted	4 38582	849682	0982
1	4 48539	849682	2836

- Tweaks solve the problem
 - All available public info used as tweak
- Now:

4 38582	237849	0982
4 48539	967395	2836

Tweakable Encryption: History

- Tweakable block ciphers [LRW`02] use tweak to
 - Design better "modes of operation"
 - Instead of a fixed IV
 - Improve efficiency
 - Instead of replacing encryption key
- In small domains: tweaks are essential!
- Many formats for which format preserving encryption is needed are small
 - Social security numbers (SSNs), credit card numbers (CCNs),...

Format-Preserving Encryption

Format-Preserving Encryption (FPE): Introduction

- Standard encryption maps messages to "garbage", causing
 - Applications using data to crash
 - Tables designed to store data unsuitable for storing encrypted data
- Sometimes plaintext properties should be preserved
- Want: $\mathcal{M} = \mathcal{C}$
 - i.e., E_K^T is a permutation over \mathcal{M}
- \mathcal{M} is union of messages over all supported formats
 - Supported formats are called "slices"

Examples:

- $-\mathcal{M} = SSNs \cup CCNs \cup Dates \cup \{1, ..., N\}$
- $-\mathcal{M} = \bigcup_{n \in \mathbb{N}} \{0,1\}^n$
- $-\mathcal{M} = \cup_{n \in \mathbb{N}} \mathbb{Z}_n$

FPE: Syntactic Definition

- Format-Preserving Encryption (FPE) ∏ [BRRS`09]:
 - Format space \mathcal{N}
 - Message space $\mathcal{M} = \cup_{N \in \mathcal{N}} \mathcal{M}_N$
 - All \mathcal{M}_N 's are finite
 - Tweak space ${\mathcal T}$
 - Randomized $KeyGen: \mathbb{N} \to \mathcal{K}$
 - Deterministic $E: \mathcal{K} \times \mathcal{T} \times \mathcal{N} \times \mathcal{M} \to \mathcal{M} \cup \{\bot\}$
 - $\bot \notin \mathcal{M}$
 - $E(K, T, N, m) = \perp$ denotes encryption error $(m \notin \mathcal{M}_N)$
 - Failure depends only on N, m and **not** on K, T
 - $E(K,T,N,\cdot)$ is a permutation **over** \mathcal{M}_N
 - Deterministic $D: \mathcal{K} \times \mathcal{T} \times \mathcal{N} \times \mathcal{M} \to \mathcal{M} \cup \{\bot\}$

Notation:

- $-E_K^{T,N}=E(K,T,N,\cdot)$
- $-D_K^{T,N} = D(K,T,N,\cdot)$

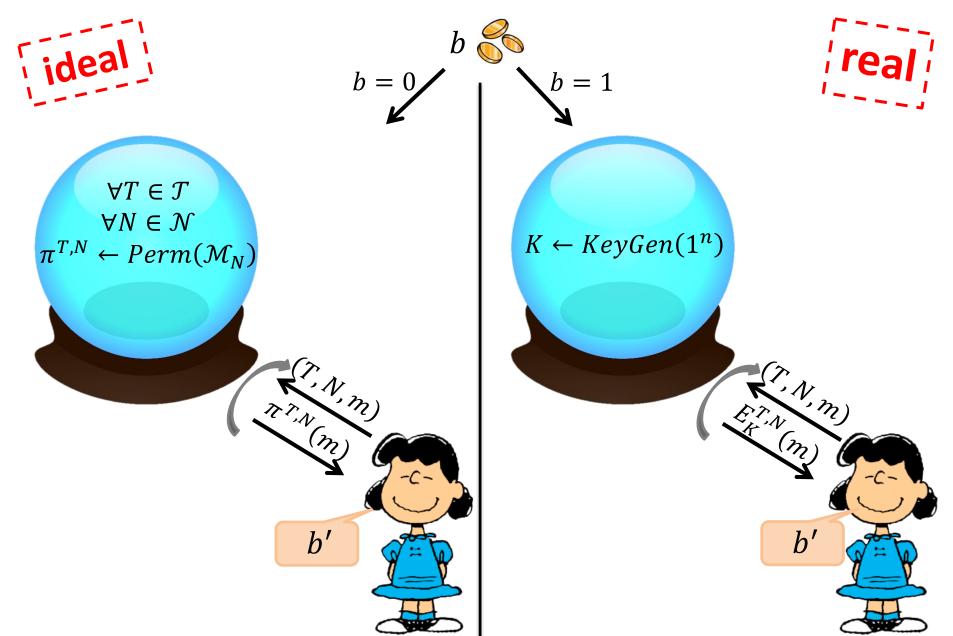
FPE: Semantic Definition

• Correctness: for every $K \in \mathcal{K}$, every $T \in \mathcal{T}$, every $N \in \mathcal{N}$ and every $m \in \mathcal{M}_N$

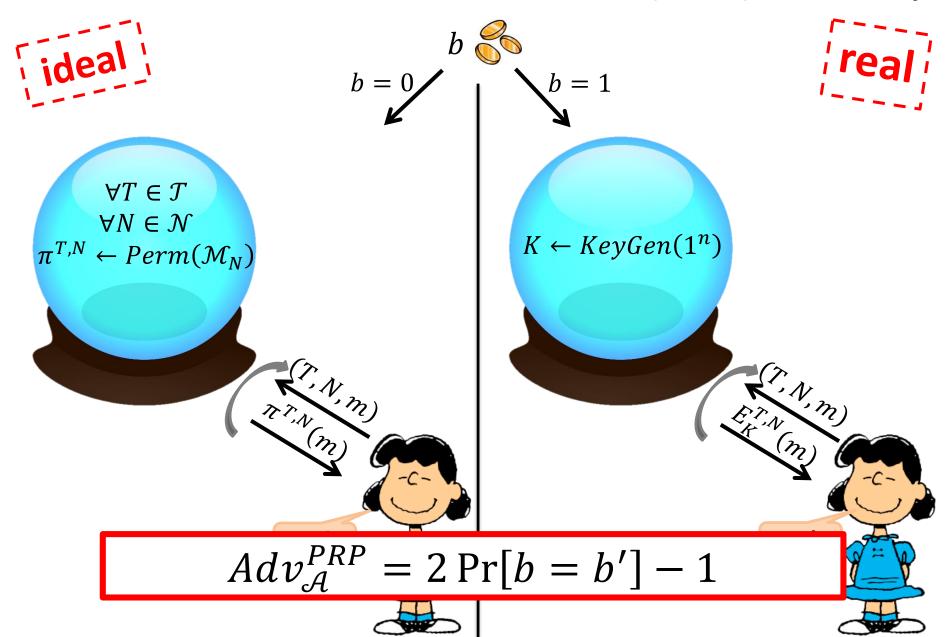
$$D_K^{T,N}\left(E_K^{T,N}(m)\right) = m$$

- Security:
 - Hierarchy of security notions [BRRS`09]
 - Strongest: Pseudo-Random Permutation (PRP) security
 - K random $\Rightarrow E_K^{T,N}$ close to pseudorandom permutation on \mathcal{M}_N

Pseudo-Random Permutation (PRP) security



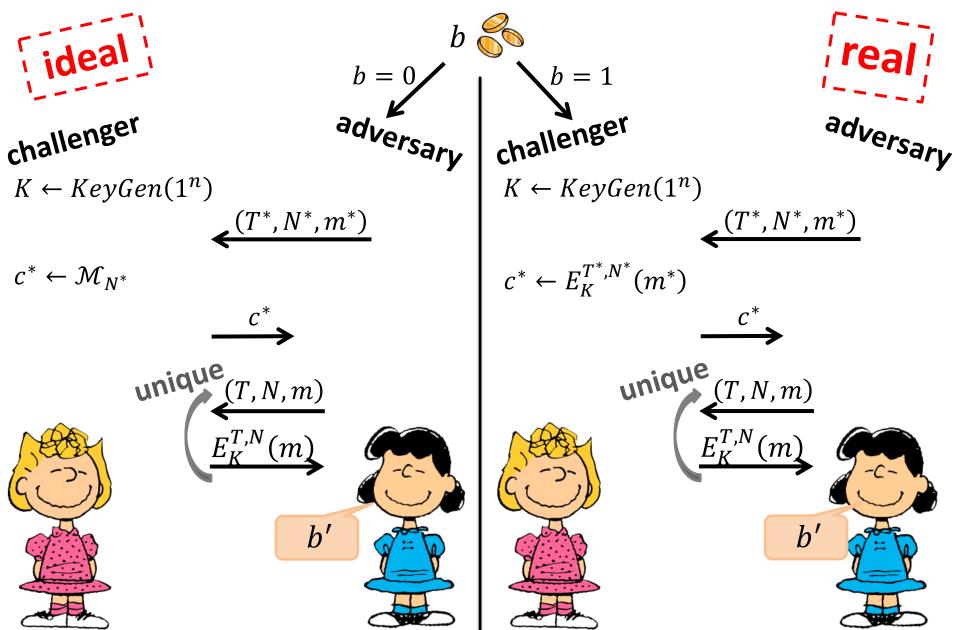
Pseudo-Random Permutation (PRP) security



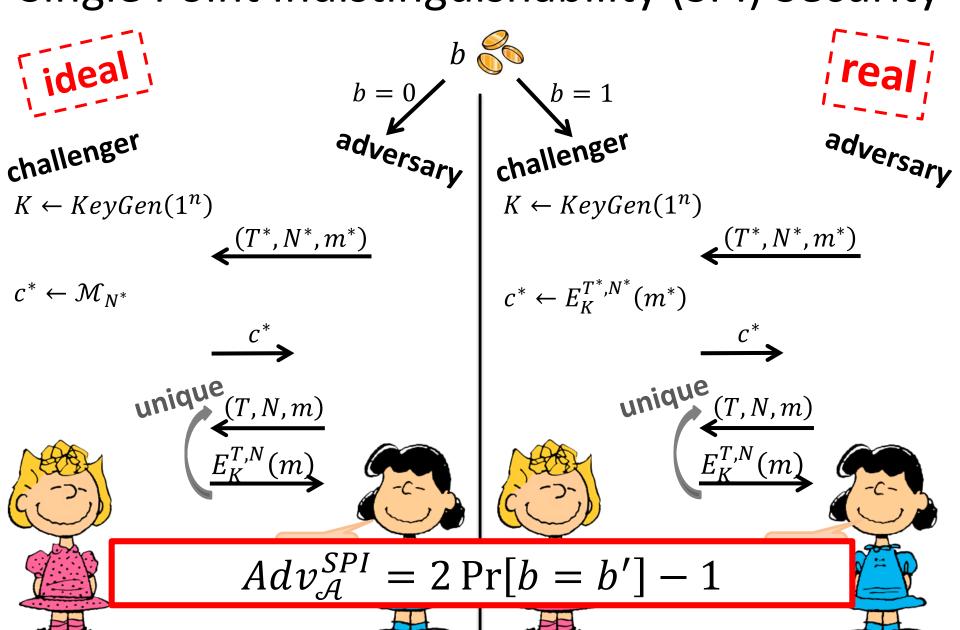
FPE: Security Definitions (2)

- Hierarchy of security notions [BRRS`09]
- Strongest: Pseudo-Random Permutation (PRP) security
 - K random $\Rightarrow E_K^{T,N}$ close to pseudorandom permutation on \mathcal{M}_N
 - Guaranteed security against (improbable) attacks incurs expensive overhead
 - "Overkill" for typical applications
- Single Point Indistinguishability (SPI) security
 - Adversary cannot distinguish encryption of single point of its choice from random
 - Analogous to PRF and PRP security notions [GGM`84, DM`00, MRS`09]

Single Point Indistinguishability (SPI) Security



Single Point Indistinguishability (SPI) Security



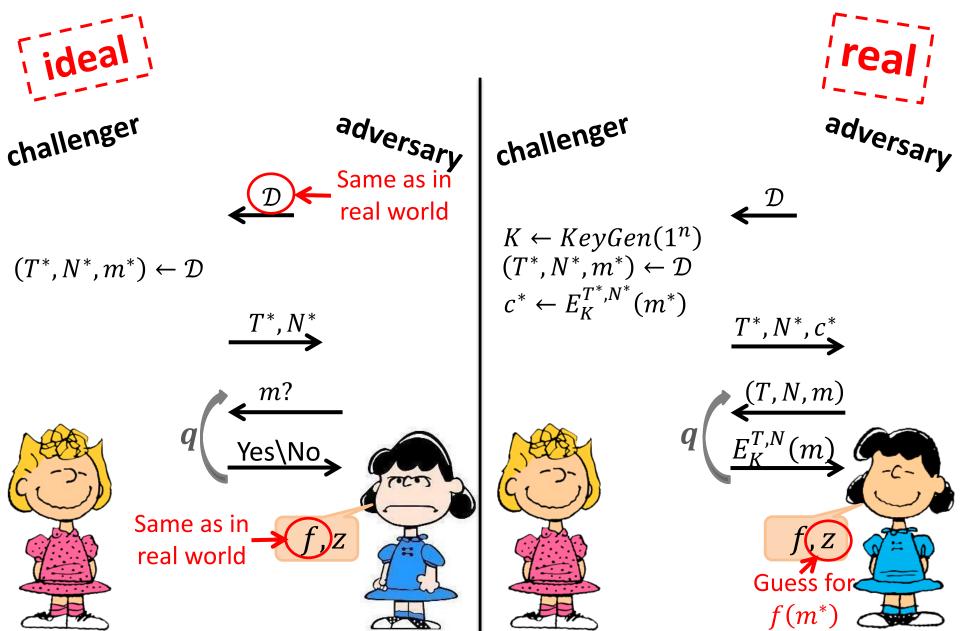
Why SPI?

- Pseudo-Random Permutation (PRP)
 - Adversary cannot distinguish encryption oracle from random permutations
 - $-Adv_{\mathcal{A}}^{PRP} = 2 \Pr[b = b'] 1$
- Single Point Indistinguishability (SPI)
 - Adversary cannot distinguish encryption of single point of its choice from random
 - Even given encryption oracle
 - $-Adv_{\mathcal{A}}^{SPI} = 2 \Pr[b = b'] 1$
- Equivalent notions, SPI easier to work with
- $PRP \Rightarrow SPI: Adv_{\mathcal{A}}^{SPI} \leq 2 \cdot Adv_{\mathcal{A}'}^{PRP} + \frac{q}{M}$
 - -q = number of queries of PRP adversary
 - -M = minimal size of supported format
- $SPI \Rightarrow PRP: Adv_{\mathcal{A}}^{PRP} \leq q \cdot Adv_{\mathcal{A}'}^{SPI} + \frac{q^2}{M}$

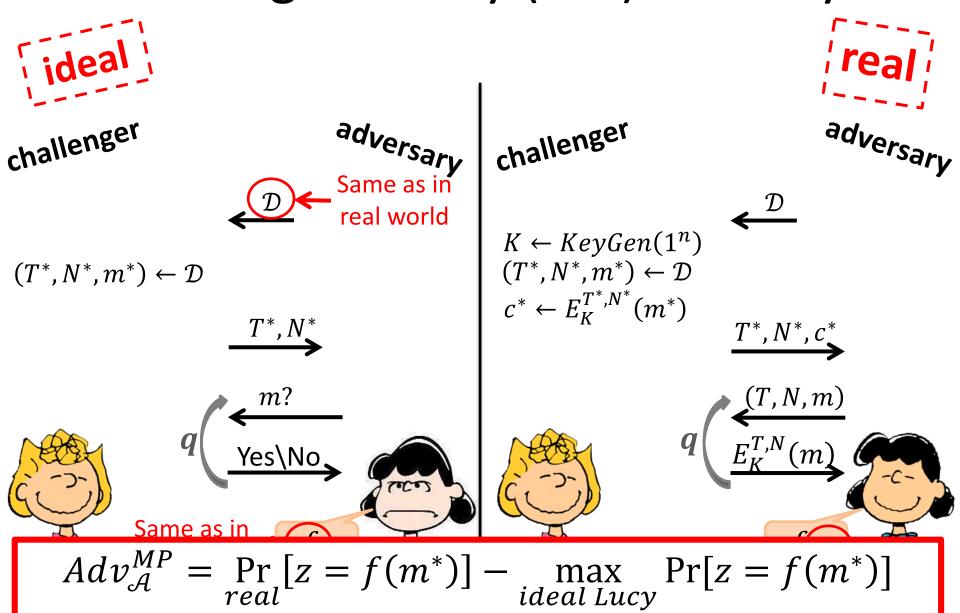
FPE: Security Definitions (3)

- Hierarchy of security notions [BRRS`09]
- Strongest: Pseudo-Random Permutation (PRP) security
 - -K random $\Rightarrow E_K^{T,N}$ close to pseudorandom permutation on \mathcal{M}_N
- Single Point Indistinguishability (SPI) security
 - Adversary cannot distinguish encryption of single point of its choice from random
- Message Privacy (MP) security
 - "Format-preserving" analog of semantic security
 - Challenge ciphertext c^* practically no help in computing $f(m^*)$
 - Randomized encryption: "practically" = no help
 - Deterministic encryption: "practically" = encryption oracle equivalent to equality oracle

Message Privacy (MP) Security



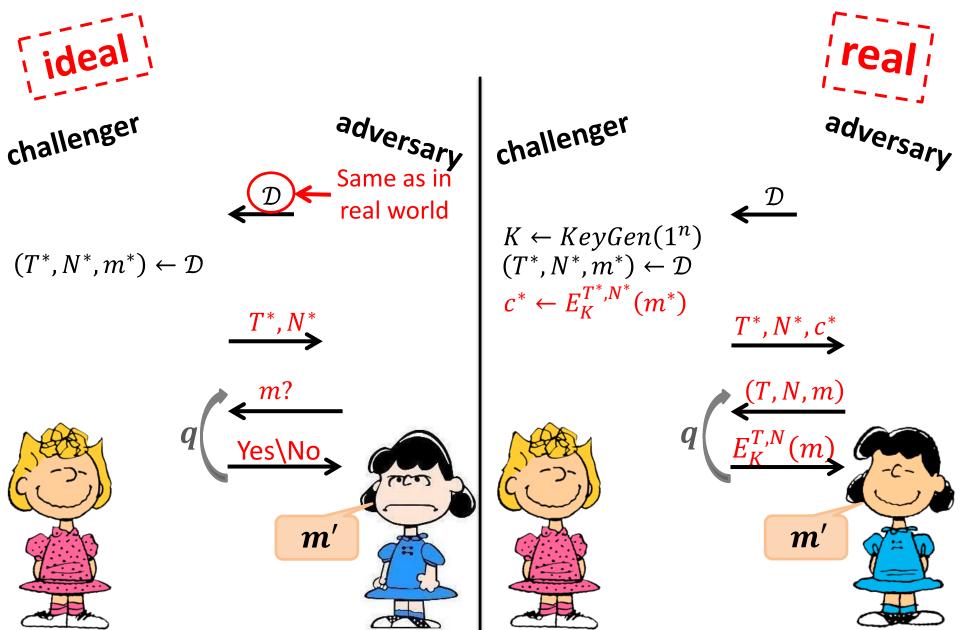
Message Privacy (MP) Security



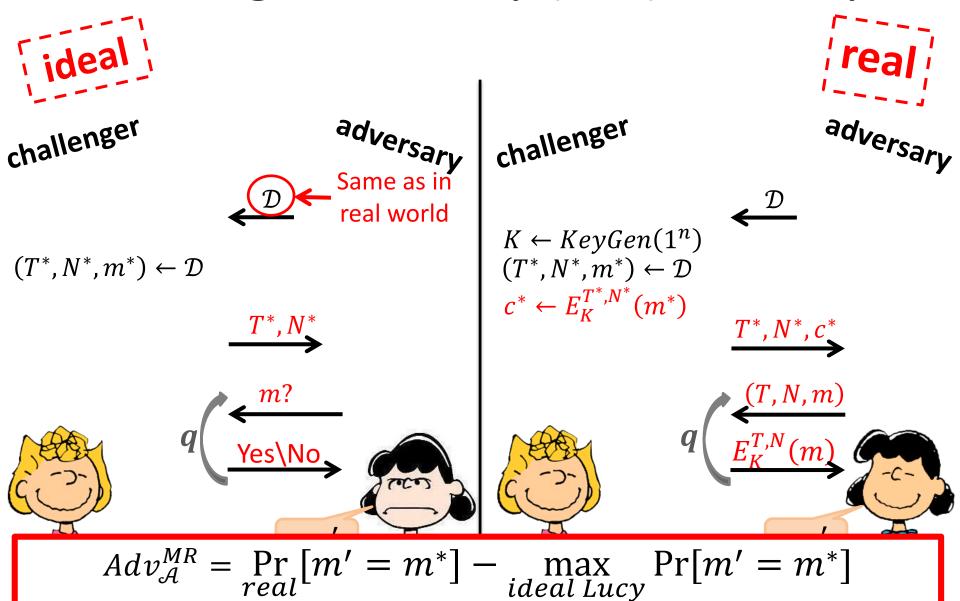
FPE: Security Definitions (4)

- Hierarchy of security notions [BRRS`09]
- Strongest: Pseudo-Random Permutation (PRP) security
 - -K random $\Rightarrow E_K^{T,N}$ close to pseudorandom permutation on \mathcal{M}_N
- Single Point Indistinguishability (SPI) security
 - Adversary cannot distinguish encryption of single point of its choice from random
- Message Privacy (MP) security
 - "Format-preserving" analog of semantic security
 - Challenge ciphertext c^{*} practically no help in computing $f(m^{*})$
- Weakest: Message Recovery (MR) security
 - Adversary cannot completely recover challenge plaintext

Message Recovery (MR) Security



Message Recovery (MR) Security



FPE: Security Definitions (5)

- Hierarchy of security notions [BRRS`09]
 - Pseudo-Random Permutation (PRP)
 - Single Point Indistinguishability (SPI)
 - Message Privacy (MP)
 - Message Recovery (MR)
- Similar to IND-DistinctCPA security
- Extends to stronger IND-DistinctCCA security:
 - Strong-PRP:
 - Real world: adversary given $D_K^{T,N}$
 - Ideal world: adversary given $(\pi^{T,N})^{-1}$
 - Strong SPI, MP, MR:
 - Real world: adversary given $D_K^{T,N}$
 - Ideal world: simulator given no additional oracle
- We will work with IND-CPA notions (no decryption oracle)

Relations Between Security Definitions

$PRP \Leftrightarrow SPI \Rightarrow MP \Rightarrow MR$

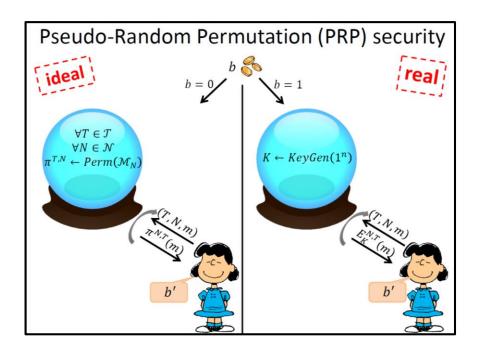
PRP: Pseudo Random Permutation

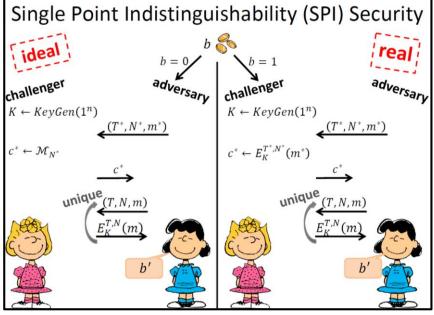
SPI: Single Point Indistinguishability **MR:** Message Recovery

MP: Message Privacy

•
$$PRP \Rightarrow SPI: Adv_{\mathcal{A}}^{SPI} \leq 2 \cdot Adv_{\mathcal{A}'}^{PRP} + \frac{q}{M}$$

•
$$SPI \Rightarrow PRP: Adv_{\mathcal{A}}^{PRP} \le q \cdot Adv_{\mathcal{A}'}^{SPI} + \frac{q^2}{M}$$





Relations Between Security Definitions (2)

 $PRP \Leftrightarrow SPI \Rightarrow MP \Rightarrow MR$

PRP: Pseudo Random Permutation

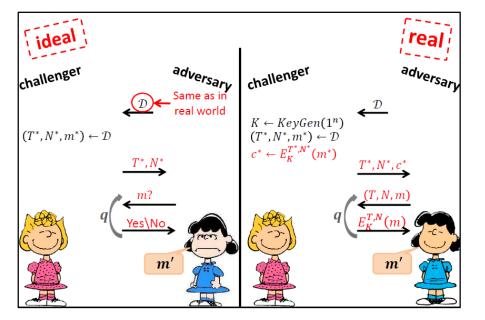
SPI: Single Point Indistinguishability

MP: Message Privacy

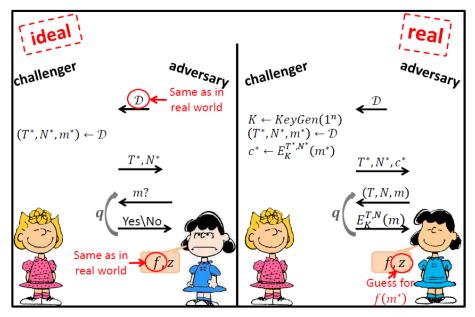
MR: Message Recovery

- $MP \Rightarrow MR: Adv_{\mathcal{A}}^{MR} \leq Adv_{\mathcal{A}'}^{MP}$
 - MR special case of MP: \mathcal{A}' chooses f = identity function

MR



MP



Relations Between Security Definitions (3)

$PRP \Leftrightarrow SPI \Rightarrow MP \Rightarrow MR$

PRP: Pseudo Random Permutation

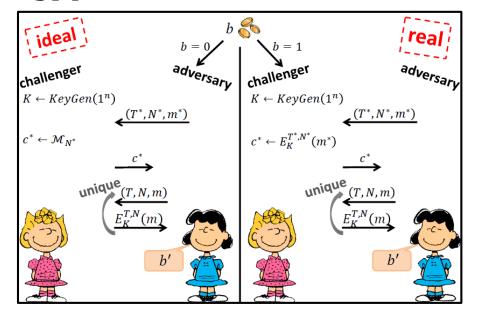
SPI: Single Point Indistinguishability

MP: Message Privacy

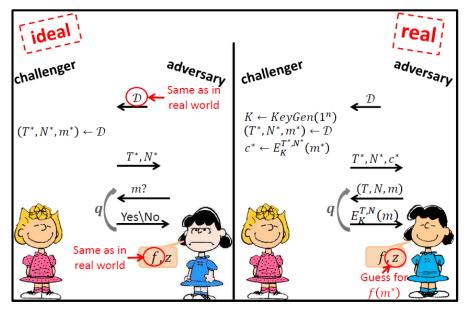
MR: Message Recovery

• $SPI \Rightarrow MP: Adv_{\mathcal{A}}^{MP} \leq Adv_{\mathcal{A}'}^{SPI}$

SPI



MP



Relations Between Security Definitions (4)

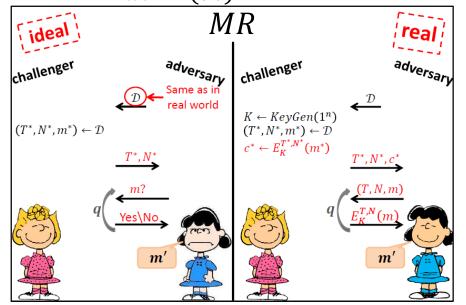
 $PRP \Leftrightarrow SPI \not\leftarrow MP \not\leftarrow MR$

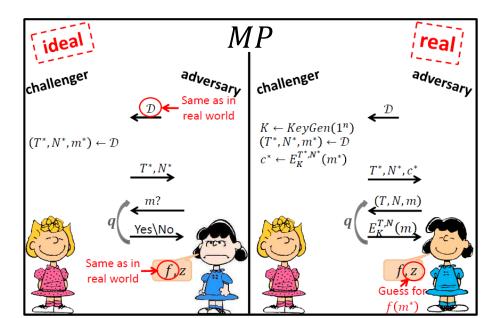
PRP: Pseudo Random Permutation **MP:** Message Privacy

SPI: Single Point Indistinguishability **MR:** Message Recovery

• $MR \Rightarrow MP$:

- E.g., $\mathcal{M}_N = \{0,1\}^N$ for all $N \in \mathbb{N}$, and encryption is:
 - Identity on first plaintext bit
 - Pseudorandom on other plaintext bits
- $-Adv^{MP}(\mathcal{A}) = 1/2 \leftarrow \text{Compare } \mathcal{A} \text{ to "best possible" ideal } \mathcal{A}$
- $-Adv^{MR}(\mathcal{A}) \approx 2^{-(N-1)}$





Relations Between Security Definitions (5)

$PRP \Leftrightarrow SPI \not\leftarrow MP \not\leftarrow MR$

PRP: Pseudo Random Permutation **MP:** Message Privacy

SPI: Single Point Indistinguishability **MR:** Message Recovery

- $MP \Rightarrow SPI$:
 - e.g., encryption has "fixed point" $m_N \in \mathcal{M}_N$ for every N and every K, T:
 - $\pi_K^{T,N}$ is pseudorandom permutation over $\mathcal{M}_N \setminus \{m_N\}$
 - $m \neq m_N \Rightarrow E_K^{T,N}(m) = \pi_K^{T,N}(m)$
 - $E_K^{T,N}(m_N) = m_N$

Relations Between Security Definitions (6)

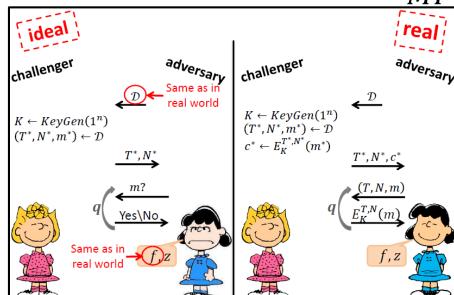
$PRP \Leftrightarrow SPI \notin MP \notin MR$

PRP: Pseudo Random Permutation **MP:** Message Privacy

SPI: Single Point Indistinguishability **MR:** Message Recovery

- $MP \Rightarrow SPI$:
 - e.g., encryption has "fixed point" $m_N \in \mathcal{M}_N$ for every N and every K, T
 - $-\mathcal{A}^{SPI}$ chooses challenge plaintext (T,N,m_N) for maximal $|\mathcal{M}_N|$
 - Has advantage $1 \frac{1}{|\mathcal{M}_N|}$
 - "Best" \mathcal{A}^{MP} : choose "easy to guess" f or m

challenger adversary $K \leftarrow KeyGen(1^n)$ $C^* \leftarrow \mathcal{M}_{N^*}$ $C^* \leftarrow \mathcal{M}_{N^*}$ $C^* \leftarrow \mathcal{M}_{K^*}$ $C^* \leftarrow \mathcal{M}$



Recap

- Tweakable ciphers: parameterized by key K and tweak T
 - Tweak "equivalent" to using pseudorandom permutation family
 - Essential when encrypting small domains
- Format Preserving Encryption: preserves message format
 - Hierarchy of security definitions: $PRP \Leftrightarrow SPI \Rightarrow MP \Rightarrow MR$

PRP: Pseudo Random Permutation

SPI: Single Point Indistinguishability

MP: Message Privacy

MR: Message Recovery

•
$$PRP \Rightarrow SPI: Adv_{\mathcal{A}}^{SPI} \leq 2 \cdot Adv_{\mathcal{A}'}^{PRP} + \frac{q}{M}$$

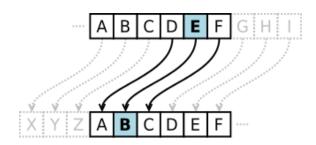
•
$$SPI \Rightarrow PRP: Adv_{\mathcal{A}}^{PRP} \le q \cdot Adv_{\mathcal{A}'}^{SPI} + \frac{q^2}{M}$$

- $SPI \Rightarrow MP \Rightarrow MR$ with tight bounds
- $MR \Rightarrow MP \Rightarrow SPI$

Constructions

What We Know About FPE

First* FPE



- AES
- Term coined by Terence Spies, Voltage Security's CTO
- First formal definitions due to [BRRS`09]
- Constructions for specific formats
 - Social Security Numbers (SSNs) [Hoo`11]
 - Credit Card Numbers (CCNs)
 - Dates [LJLC`10]
 - **–** ...

Drawbacks:

- Designed for specific formats
- New encryption techniques, little (if any) security analysis
- Often inconsistent with syntactic definition
- Interested in schemes for **general** formats
 - Starting point: schemes for integral domains

Format-Preserving Encryption Part II: Integral Domains

Session II: Outline

- Integral and "almost-integral" domains
- Feistel Networks and Generalized Feistel Network
- Integer-FPE constructions from Feistel Networks
- Integer-FPE standards

Integer-FPEs

- In many cases, interested in encrypting integral domains
 - E.g., credit-card numbers
- FPEs for integral (and "almost integral") domains useful for encrypting general formats
 - Stay tuned...
- Int-FPE: FPE for integral domain \mathbb{Z}_M [BR`02,BRRS`09]
- Also interested in FPEs for "almost integral" domains

$$\mathcal{M} = \{0,1,\ldots,m-1\}^n \text{ for } n,m \in \mathbb{N}$$

- Methods described as early as 1981
- FFX [BRS`10], BPS [BPS`10] under NIST consideration
- We will refer to both as "int-FPE"
- Many constructions based on Feistel Networks

Integer-FPE: Constructions

- "Tiny" domains \mathbb{Z}_M : spending O(M) time\space is feasible
 - Using card shuffles [Dur`98,FY`38,Knu`69,MO`63,San`98]
 - Using block ciphers [BR`02]
- "Small" domains \mathbb{Z}_M or $\{0, 1, ..., m-1\}^n$:

 $M, m^n \leq \text{domain of underlying block cipher}$

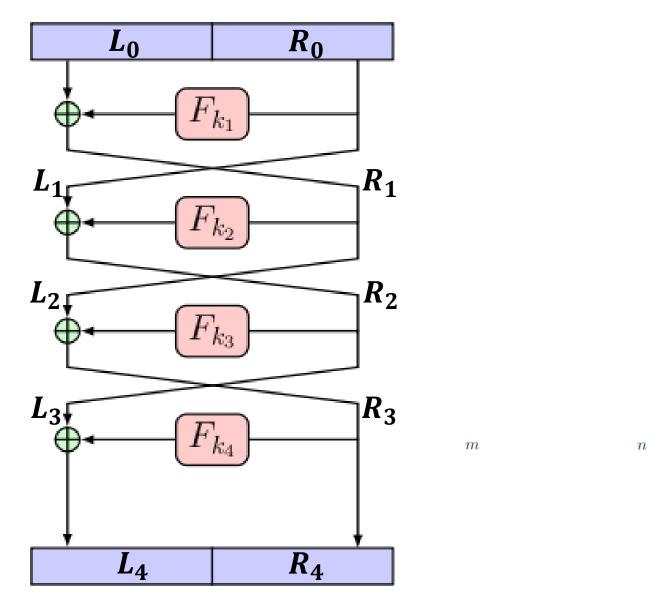
- Based on Feistel networks for
 - Z_{ab} [BR`02,BRRs`09]
 - {0,1}ⁿ [Fei`74,AB`96,Luc`96,SK`96]
 - $\{0,1,\ldots,m-1\}^n$ [BRS`10,BPS`10])
- Based on card shuffling for \mathbb{Z}_M
 - Obtained as special case of Feistel network, or inefficient [Tho`73,GP`07]
- "Huge" domains $\{0, 1\}^n$:

 $2^n >$ domain of underlying block cipher

Constructions based on block ciphers, e.g.,
 [ZMI`89,Hal`04,HR`04,MF`07,CS`08,Sar`08,SAR`11]

Feistel-Based Integer FPEs

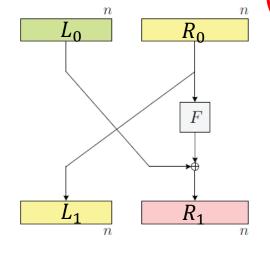
Feistel Networks [Smi`71,Fei`74,FNS`75]

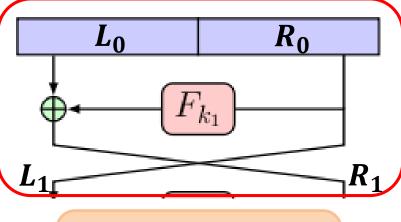


Feistel Networks [Smi`71,Fei`74,FNS`75]

Balanced:

$$|L_i| = |R_i|$$

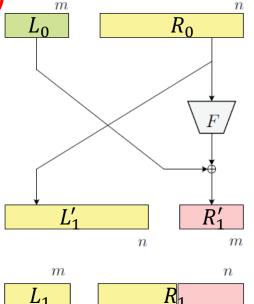


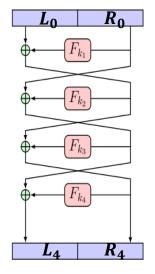


$$R_1 = F_{k_1}(R_0) \oplus L_0$$
$$L_1 = R_0$$

Unbalanced:

$$|L_i| \neq |R_i|$$

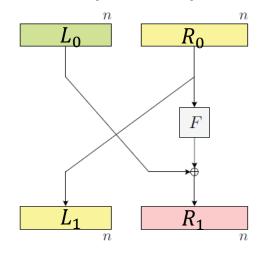




Feistel Networks (2)

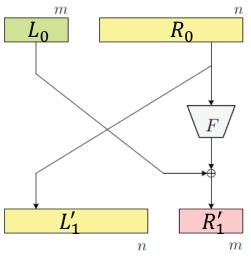
Balanced:

$$|L_i| = |R_i|$$



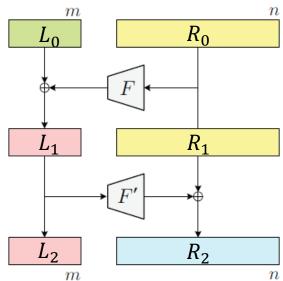
Unbalanced:

$$|L_i| \neq |R_i|$$



Alternating:

$$|L_i| \neq |R_i|$$

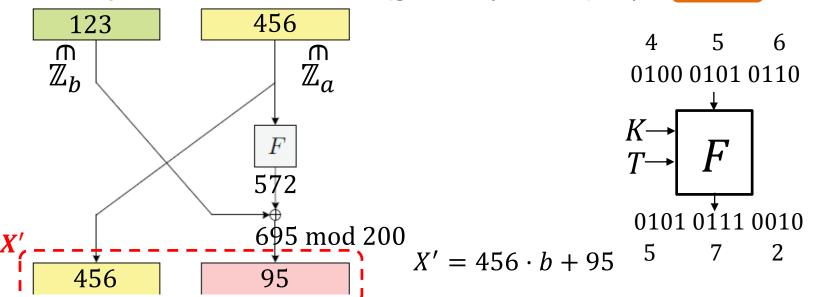


Generalized Feistel Networks

- Classic Feistel networks defined over bit strings
- First generalized to integral domains \mathbb{Z}_{ab} by [BR`02]
 - Used alternating Feistel
- Tweakable Feistel for \mathbb{Z}_{ab} described in [BRRS`09] (**FE1** and **FE2**)
 - Tweakable round function F
 - Tweak of F includes all public info (round #, provided tweak, format)
 - Use either alternating of unbalanced Feistel
- Operations computed modulo b

$$61956 = 123 \cdot a + 456$$

• **Example:** a = 500, b = 200 (generally, $b \le a$), input 61956

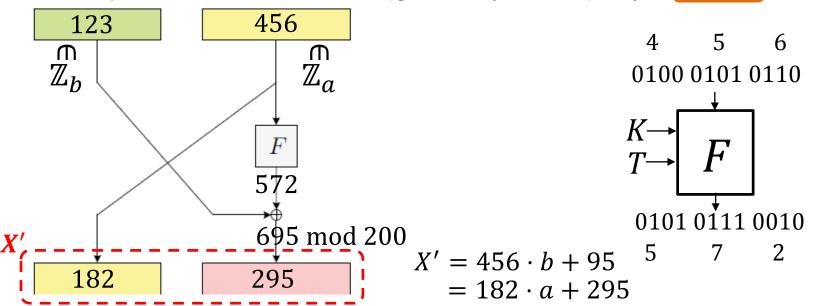


Generalized Feistel Networks

- Classic Feistel networks defined over bit strings
- First generalized to integral domains \mathbb{Z}_{ab} by [BR`02]
 - Used alternating Feistel
- Tweakable Feistel for \mathbb{Z}_{ab} described in [BRRS`09] (**FE1** and **FE2**)
 - Tweakable round function F
 - Tweak of F includes all public info (round #, provided tweak, format)
 - Use either alternating of unbalanced Feistel
- Operations computed modulo b

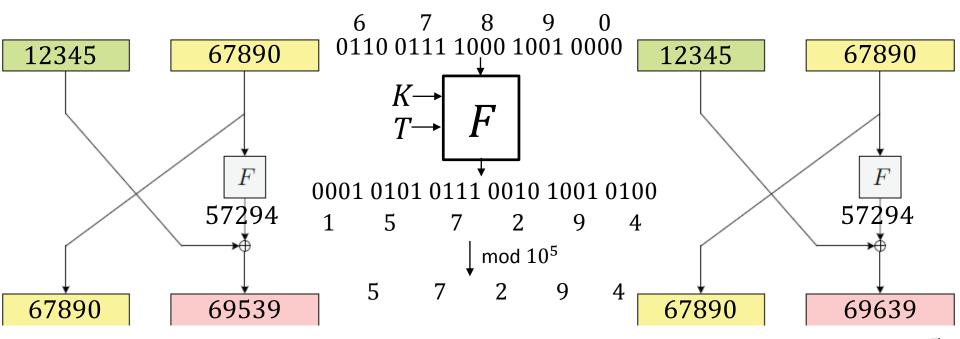
$$61956 = 123 \cdot a + 456$$

• **Example:** a = 500, b = 200 (generally, $b \le a$), input 61956



Generalized Feistel Networks (2)

- Feistel for \mathbb{Z}_M , M=ab: given format size M, requires factoring M
 - Highly inefficient for large M!
- Can we avoid factoring?
- Feistel for $\{0,1,\ldots,m-1\}^n$ for $n,m\in\mathbb{N}$ [BRS`10,BPS`10]
 - Operations computed coordinate-wise or block-wise (mod $m^{|R|}$)
- Example: m = n = 10, |L| = |R| = 5, input 1234567890



coordinate-wise: mod 10

block-wise: $mod 10^5$

Generalized Feistel Networks (3)

- Feistel for \mathbb{Z}_M , M=ab: given format size M, requires factoring M
 - Highly inefficient for large M!
- Can we avoid factoring?
- Feistel for $\{0,1,\ldots,m-1\}^n$ for $n,m\in\mathbb{N}$ [BRS`10,BPS`10]
 - Operations computed coordinate-wise of block-wise (mod $m^{|R|}$)
- Efficiency: no factoring
- Generalized Feistel networks \Rightarrow int-FPE for domains \mathbb{Z}_M , M=ab and $\{0,1,\ldots,m-1\}^n$
 - Main issue: choosing network parameters
 - Round function, # rounds, operation and network type...

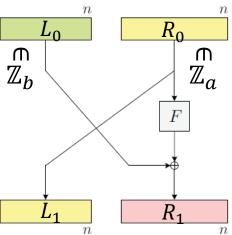
Security of Feistel Networks

- Main approach for block cipher constructions
- Intensively studied for over 3 decades
 - Security proofs (e.g.,[LR`88, Mau`92, NR`97, Vau`98, Pat`98, MP`03, Pat`03, MRS`09, Pat`10, LP`12])
 - Attacks (e.g., [Pat`01, Pat`04, PNB`06, PNB`07])
- Security measure: PRP or strong-PRP security (random round functions)
 - Also: attacks exploiting round function structure, or allowing adversary oracle access to round functions
- Parameters of interest:
 - # queries
 - Running time
- Parameters of interest influence choice of round number
- Huge gap between security guarantees and known attacks
 - In part due to highly inefficient information theoretic attacks
 - Major open problem!

Security of Generalized Feistel Networks

- Generalized Feistel (almost) as secure as standard Feistel
 - But not as well studied
- Standard Feistel: security follows from pseudo-randomness of F
- Generalized Feistel:
 - Output z of F pseudorandom in $2^n > |\mathbb{Z}_a|$
 - Output used in generalized Feistel is z mod a
- Mod operation preserves pseudo-randomness [BRRS`09]:

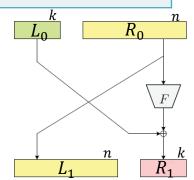
 $(z \bmod a)$ is $\frac{a}{2^{n-2}}$ -statistically close to random $z' \in_R \mathbb{Z}_a$



Security of Generalized Feistel Networks (2)

Domain	Network type	Number queries q	Number rounds r
\mathbb{Z}_{M} , $M = ab$ $a > b$	unbalanced, contracting	$q \approx a^{1-\epsilon}$	$r = O\left(\frac{\lceil \log_b a \rceil}{\epsilon}\right)$
$\mathbb{Z}_{M}, M = ab$ $a \leq b$	unbalanced, expanding	$q \approx a^{1-\epsilon}$	$r = O\left(\frac{\lceil \log_a b \rceil}{\epsilon}\right)$
$\{0,1,,m-1\}^N$ N = 2n	balanced	$q\approx m^{n(1-\epsilon)}$	$r = O\left(\frac{1}{\epsilon}\right)$
$\{0,1,,m-1\}^N$ N = n + k, n > k	unbalanced, contracting*	$q\approx m^{n(1-\epsilon)}$	$r = O\left(\frac{n}{\epsilon k}\right)$
$\{0,1,,m-1\}^N$ $N = n + k, n \le k$	unbalanced, expanding**	$q\approx m^{n(1-\epsilon)}$	$r = O\left(\frac{n}{\epsilon k}\right)$

Security bounds from [HR`10]



^{*}bound improves with imbalance

^{**} bound deteriorates with imbalance

Int-FPE (Soon To Be*) Standards

- **Recall:** generalized Feistel networks \Rightarrow int-FPE for domains \mathbb{Z}_M , M=ab and $\{0,1,\ldots,m-1\}^n$
 - Main issue: choosing network parameters
 - Round function, # rounds, operation and network type...
- Two Feistel-based int-FPE schemes for $\{0,1,...,m-1\}^n$ currently under NIST consideration:
 - FFX [BRS`10]
 - BPS [BPS`10]

FFX [BRS`10]

- Highly parameterized:
 - Format structure: $m, n \ (100 \le m^n \le 2^{128})$
 - No mode of operation
 - Round function F (and key space)
 - E.g., CBC-MAC, CMAC, HMAC
 - # rounds, tweak space
 - Tweak should include all public info
 - Network structure: alternating\unbalanced; block\coordinate-wise operation; imbalance factor
- Security goal: strong-PRP against m^n-2 queries in time < exhaustive key search
 - "Suggested" (conservative) # rounds based on known results
 - Shorter input \Rightarrow more rounds
- Variants for useful domains:
 - FFX-A2: bit strings, lengths 8-128 (12-36 rounds)
 - FFX-A10: decimal strings, lengths 4-36 (12-24 rounds)

BPS [**BPS**`10]

Construction parameters:

- Format structure: m, n for any $m, n \in \mathbb{N}$
 - Mode of operation for long messages (# blocks $\leq 2^{16}$)
- Round function F (and key space)
 - E.g., AES, TDES, SHA-2
- # rounds (even \ge 8)

Construction constants:

- Tweak space: $\{0,1\}^{64}$
 - Tweak should include all public info (long tweaks hashed)
- Network structure:
 - Alternating, maximally balanced
 - Coordinate-wise operation in Feistel, block-wise in mode of operation
- Mode of operation: CBC (block size = $2 \times \log_m \left| 2^{\text{input length to } F \text{ minus } 32} \right|$)
- Security goal: PRP-security against m^n queries (no time bound)
 - "Suggested" # rounds based on known attacks and security analysis
 - # rounds fixed to 8 for all input lengths

Int-FPE (Soon To Be*) Standards (2)

	FFX [BRS`10]	BPS [BP5`10]
Domain size $\pmb{M} = \pmb{m^n}$	$M \le 2^{128} (*)$	arbitrary
Security goal	strong-PRP $q=m^n-2$ $T<$ exhaustive key search	$egin{aligned} PRP \ q &= m^n \ no \ time \ bound \end{aligned}$
Efficiency	more rounds (conservative bounds) more calls to F (defeat strong attacks)	8 rounds (less conservative) less calls to F (strong attacks outside of security goal)
Suggested F	CBC-MAC, CMAC, HMAC	AES, TDES, SHA-2
Flexibility (tweak space and network structure)	user defined	fixed

Format-Preserving Encryption Part III: General Formats

Post-Lunch Recap

- Format Preserving Encryption (FPE):
 - Preserves message format
 - Tweakable, deterministic, private key
 - Useful for:
 - Storing data at remote servers
 - Running applications for (unencrypted data) on encrypted data
- Hierarchy of security notions: $PRP \Leftrightarrow SPI \Rightarrow MP \Rightarrow MR$
- Int-FPE based on generalized Feistel networks
 - $For \mathbb{Z}_M$, M = ab
 - For $\{0,1,...,m-1\}^n$

Session III: Outline

- Techniques for general-format FPE
- Natural FPE construction: analysis and insecurities
- FPE constructions for general formats:
 - From regular expressions and relaxed ranking
 - From bottom-up framework and (standard) ranking

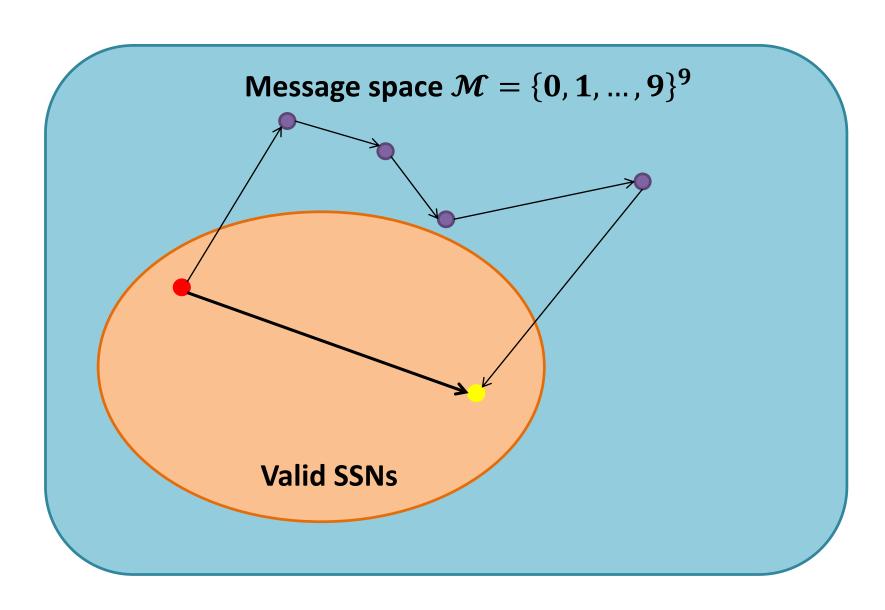
Techniques for General-Format FPE (Part 1)

- How to encrypt social security numbers (SSNs)?
 - Subset of $\{0,1,...,9\}^9$
 - Additional constraints
- We have FPE for $\mathcal{M} = \{0, 1, ..., 9\}^9$
- Can get FPE for SSNs from FPE for \mathcal{M} :
- Use cycle walking [SO`98,BR`02]

"if at first you don't succeed, pick yourself up and try again"

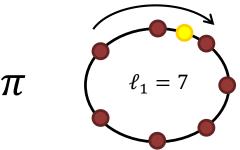
- Use "standard" FPE for $\mathcal{M} = \{0,1,...,9\}^9$
- Repeat until ciphertext is valid SSN

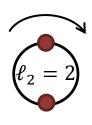
Cycle Walking

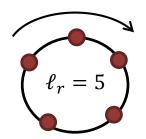


Cycle Walking: Security Analysis

- Want: FPE for ${\mathcal M}$
 - Encryption "looks like" random permutation on $\mathcal M$
- **Have:** *ideal* FPE for \mathcal{M}' , $\mathcal{M} \subseteq \mathcal{M}'$ with encryption E_K'
 - Ideal FPE: each permutation on \mathcal{M}' induced by *single* key
- $E_K^{\mathcal{CW}} \coloneqq$ apply cycle walking to E_K' until ciphertext in \mathcal{M}
- For random K, $E_K^{\mathcal{CW}}$ is **random permutation** on \mathcal{M} [BR`02]
 - Enough to show all permutations π on $\mathcal M$ obtained by same number of keys K
 - Adding one element $x \in \mathcal{M}' \setminus \mathcal{M}$ to $\pi: \sum_{i=1}^{r} \ell_i + 1$ options
 - $|\mathcal{M}| + 1$ options of adding x
 - General case follows by induction on $k = |\mathcal{M}'| |\mathcal{M}|$

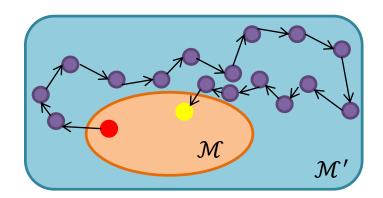






Cycle Walking: Efficiency Analysis

- $\mathcal{M} \subseteq \mathcal{M}'$
- $E_K^{\mathcal{CW}}$ for \mathcal{M} obtained from cycle walking on E_K' for \mathcal{M}'
- Single $E_K^{\mathcal{CW}}$ call requires on average $\frac{|\mathcal{M}|}{|\mathcal{M}'|}$ calls to E_K'
 - No timing attacks due to repeated encryption [BRRS`09] (cycle length independent of plaintext)
- No bound on actual efficiency
 - But... for "good" FPE (=like PRP) on \mathcal{M}' : bound close to average



Cycle Walking: Summary

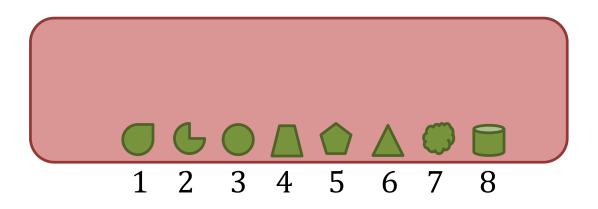
- $\mathcal{M} \subseteq \mathcal{M}'$
- $E_K^{\mathcal{CW}}$ for $\mathcal M$ obtained from cycle walking on E_K' for $\mathcal M'$
- Cons: Efficiency loss
 - single $E_K^{\mathcal{CW}}$ call = multiple E_K' calls
 - Average, not worst case, bound
 - Even average bound (typically ≈ 2) sometimes too expensive
- Pros: can use known schemes (e.g., Feistel)
 - Inherit security

But... can also be obtained without cycle walking

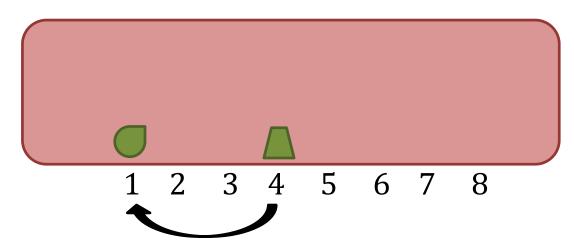
- Would like to avoid when possible
 - E.g., design dedicated int-FPE schemes

- Rank-then-Encipher (RtE) [BRRS`09]: general-format FPEs from int-FPE
 - Order \mathcal{M} arbitrarily: **rank**: \mathcal{M} → $\{1,...,M\}$

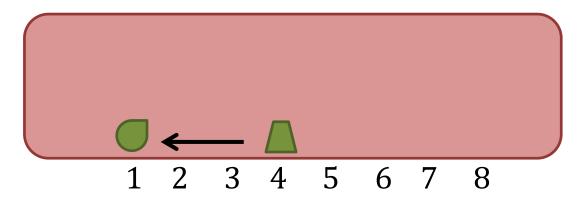
- Rank-then-Encipher (RtE) [BRRS`09]: general-format FPEs from int-FPE
 - Order \mathcal{M} arbitrarily: **rank**: \mathcal{M} → $\{1,...,M\}$



- Rank-then-Encipher (RtE) [BRRS`09]: general-format
 FPEs from int-FPE
 - Order \mathcal{M} arbitrarily: **rank**: \mathcal{M} → $\{1,...,M\}$
 - To encrypt message m:
 - Rank $m: i = \operatorname{rank}(m)$
 - Encipher i: j = intE(K, i)
 - Unrank $j: c = \operatorname{rank}^{-1}(j)$



- Rank-then-Encipher (RtE) [BRRS`09]: general-format
 FPEs from int-FPE
 - Order \mathcal{M} arbitrarily: **rank**: \mathcal{M} → $\{1,...,M\}$
 - To encrypt message m:
 - Rank $m: i = \operatorname{rank}(m)$
 - Encipher i: j = intE(K, i)
 - Unrank $j: c = \operatorname{rank}^{-1}(j)$



- Rank-then-Encipher (RtE) [BRRS`09]: general-format
 FPEs from int-FPE
 - Order \mathcal{M} arbitrarily: **rank**: \mathcal{M} → $\{1,...,M\}$
 - To encrypt message m:
 - Rank $m: i = \operatorname{rank}(m)$
 - Encipher i: j = intE(K, i)
 - Unrank j: $c = \operatorname{rank}^{-1}(j)$
- Security: from security of int-FPE
 - rank not meant to, and does not, add security
- Efficiency: only if rank, unrank are efficient
- Main challenge: design efficient ranking procedures
 - "Meta" technique for regular languages [BRRS`09]

Constructing General-Format FPE

- Goal: design FPE supporting general formats
 - E.g., SSNs, CCNS, dates, names, addresses...
- Main tool: RtE Technique
- Main challenges:
 - Designing efficient ranking procedures
 - Representing formats

Simplification-Based FPE [MYHC`11,MSP`11]

- Represent formats as union of simpler sub-formats
 - Messages interpreted as strings
 - $-\mathcal{M}$ divided into subsets $\mathcal{M}_1, ..., \mathcal{M}_k$ defined by
 - Length
 - Index-specific character sets
- Encrypt each \mathcal{M}_i separately using Rank-then-Encipher
 - Ranking computed using generalizes decimal counting method

 \mathcal{F}_{name} : format of valid names

Name: 1-4 space-separated words

Word: upper case letter followed by 1-15 lower case letters

Subsets:

 \mathcal{M}_1 contains Al \mathcal{M}_2 contains Tal

• • •

 \mathcal{M}_{15} contains Muthuramak<u>rishna</u>

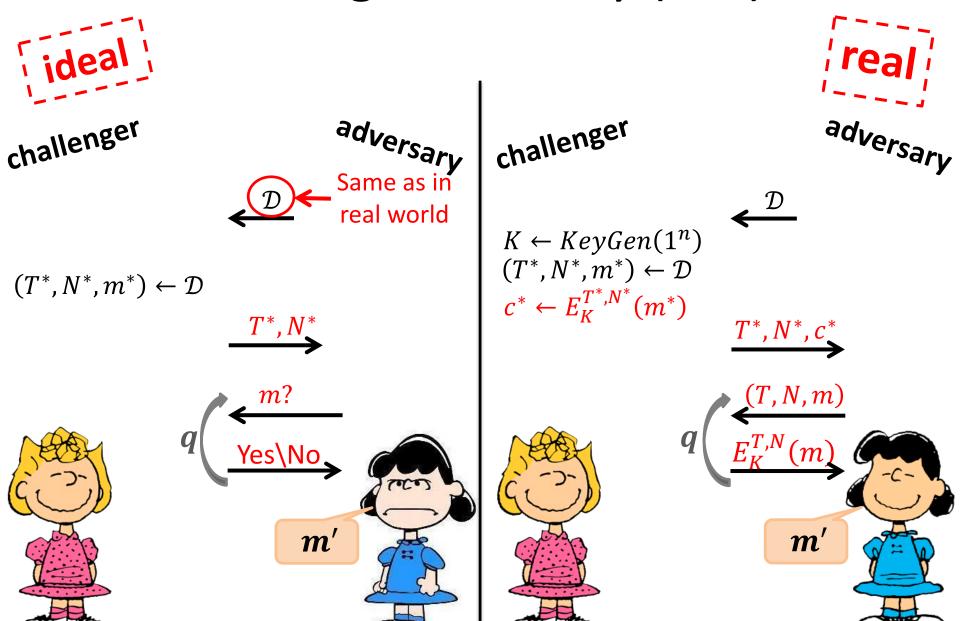
 \mathcal{M}_{16} contains El Al

 \mathcal{M}_5 contains Migel

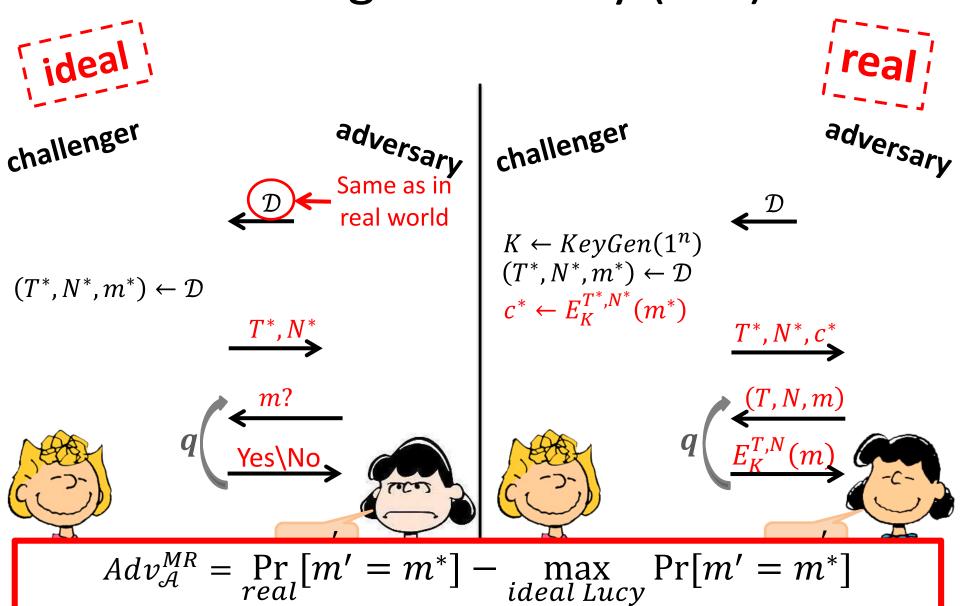
Simplification-Based FPE: Security Concerns

- The problem: encryption preserves message-specific properties
 - Length and character type at each location
 - John Doe can encrypt Jane Lee but not Johnnie Smith
- Scheme insecure both in theory and practice [WRB`15]
 - Practice: experimental results
 - Ciphertext usually completely reveals plaintext
 - Worse than not encrypting at all...
 - Theory: scheme is MR (message recovery) insecure
 - Implies insecurity according to all FPE security notions

Message Recovery (MR)



Message Recovery (MR)



Simplification-Based FPE: MR-insecurity

Warm-up example: attacking sparse formats

- $\mathcal{M} = \{m_1, \dots, m_n\}$, $|m_i|$'s are unique
- Ciphertext reveals message length (⇒ reveals message)
 - In this case: $E_K^{T,N}(m) = m$
- The adversary \mathcal{A} :
 - Picks \mathcal{D} = uniform distribution over \mathcal{M}
 - Given c^* , guesses c^*
 - Makes no queries!
 - $\Pr[\mathcal{A} \text{ wins}] = 1$
- Best ideal-world adversarial strategy: random guess
 - $Pr[idealA wins] = \frac{1}{|\mathcal{M}|}$
- Adversarial advantage: $1 \frac{1}{|\mathcal{M}|} \rightarrow |\mathcal{M}| \rightarrow \infty$ 1

General case: "sparsify" the format

- For every possible length, \mathcal{A} selects a single message
- Picks uniforms distribution over these messages

Simplification-Based FPE: Take-Home Message

- "Natural" method of representing formats is insecure
- Reason: encryption preserves message-specific properties

FPE "wish list"

- Functionality (and efficiency):
 - Simple method of representing formats
 - Efficient rank, unrank procedures
 - In particular: minimize cycle walking
- **Security:** preserve *only format-specific* properties
 - Hide all message-specific properties

RtE-Based FPE for General Formats

- Two concurrent works [LDJRS`14,WRB`15], differ in focus and design
- Focus: Developer- or user-oriented
- Design: representing formats, ranking methods
 - Both schemes based on RtE (Rank-then-Encipher)
 - libfTE [LDJRS`14]:
 - Developer-oriented
 - Represent formats using regular expressions
 - Extend RtE method to allow efficient ranking
 - GFPE [WRB`15]:
 - User-oriented
 - Represent formats using bottom-up framework
 - Use standard RtE

libfTE [LDJRS`14]

- Library for format-preserving and format transforming encryption
- Developer-oriented: developer needed to...
 - Choose "right" scheme to use (using "Configuration assistant")
 - Several schemes (with different parameters) available
 - Define new formats

• Structure:

- Represent formats with Regular Expressions (Regexes)
 - Expressions limited to lengths in range $\{n_{\min}, n_{\max}\}$
- Ranking from automatons
- Int-FPE using FFX-A2 (FFX over bit strings)
- Main challenge: efficient rank, unrank algorithms

Ranking in libFTE

- Format represented as regular expressions (regexes)
 ⇒ need a method of ranking regexes
- Ranking: bijection from \mathcal{M} to $\{1, ..., |\mathcal{M}|\}$
 - Only useful when bijection easy to compute
- (Exact) ranking may be an overkill
- Suffices to achieve a relaxed ranking notion
- Relaxed ranking [LDJRS`14]:

map
$$\mathcal{M}$$
 to $\{1, ..., M'\}$, $|\mathcal{M}| < M'$

- rrank: $\mathcal{M} \rightarrow \{1, ..., M'\}$ injective
- unrrank: $\{1, ..., M'\} \rightarrow \mathcal{M}$ surjective
- For all $m \in \mathcal{M}$, unrank(rrank(m)) = m

Ranking in libFTE (2)

- Format represented as regular expressions (regexes)
 - ⇒ need a method of ranking regexes

(Highly Informal) Automata Theory Crash Course

- Automatons, and regexes, used to represent sets ${\mathcal M}$
- Automatons are graphs: $m \in \mathcal{M}$ represented through paths in graph
 - Deterministic finite automaton (DFA)
 - Nondeterministic finite automaton (NFA)
- Regexes equivalent to automatons:
 - Regex-to-NFA transformation in linear time
 - Regex-to-DFA transformation in exponential time (this is tight!)
- "Meta" ranking technique from DFA [BRRS`09]
 - Order paths in DFA, map $m \in \mathcal{M}$ to index of corresponding path
 - Too inefficient!
- Relaxed ranking from NFA in polynomial time [LDJRS`14]
 - In NFA, (possibly) more than one path for $m \in \mathcal{M}$
 - Find one such path efficiently through implicit graph representation
- libFTE supports DFA-based ranking and NFA-based relaxed ranking

libFTE: Tools and Algorithms

- Configuration assistant helps developer choose appropriate scheme
 - Randomized\deterministic, DFA-based\NFA-based ranking...
- "Appropriate" schemes chosen according to input parameters
 - Format, memory threshold for encryption\ranking...
 - Assistant runs tests to evaluate time and memory performance
- Developer chooses preferred scheme from list

libFTE: Tools and Algorithms

- Configuration assistant helps developer choose appropriate scheme
 - Randomized\deterministic, DFA-based\NFA-based ranking...
- "Appropriate" schemes chosen according to input parameters
 - Format, memory threshold for encryption\ranking...
 - Assistant runs tests to evaluate time and memory performance
- Developer chooses preferred scheme from list

```
$ ./configuration-assistant \
> --input-format "(a|b)*a(a|b) {16}" 0 32  min, max len

Format

==== Identifying valid schemes ====

WARNING: Memory threshold exceeded when

building DFA for input format

NFA-based ranking : P-ND, P-NN,

DFA-based unranking

SCHEME ENCRYPT DECRYPT ... MEMORY
P-ND 0.32ms 0.31ms ... 77KB
P-NN 0.39ms 0.38ms ... 79KB

...
```

libFTE: Implementation Notes

- Encryption\decryption performance (runtime and memory consumption) determined by:
 - Chosen scheme (DFA or NFA-based ranking)
 - Chosen representation of format (!)
- Unclear how to find scheme + format representation optimizing performance
 - Even given performance estimate of assistant
 - Bad performance due to bad regex or bad format?

	Input/Output Format			DFA/NFA	Memory	Encrypt	Decrypt
Scheme	R	α	β	States	Required	(ms)	(ms)
P-DD	(a b)*	0	32	2	4KB	0.18	0.18
	$(a b)*a(a b){16}$	16	32	131,073	266MB	0.25	0.21
	$(a a b){16}(a b)*$	16	32	18	36KB	0.19	0.18
	$(a b)\{1024\}$	1,024	1,024	1,026	34MB	1.2	1.2
P-NN	(alb) *	0	32	3	6KB	0.36	0.35
	$(a b)*a(a b){16}$	16	32	36	73KB	0.61	0.60
	$(a a b) \{16\} (a b) *$	16	32	51	103KB	1,340	1,340
	(a b) {1024}	1,024	1,024	2,049	68MB	6.6	6.6

libFTE: Implementation Notes

- Encryption\decryption performance (runtime and memory consumption) determined by:
 - Chosen scheme (DFA or NFA-based ranking)
 - Chosen representation of format (!)
- Unclear how to find scheme + format representation optimizing performance
 - Even given performance estimate of assistant
 - Bad performance due to bad regex or bad format?

	Input/Output Format			DFA/NFA	Memory	Encrypt	Decrypt
Scheme	R	α	β	States	Required	(ms)	(ms)
P-DD	(a b)*	0	32	2	4KB	0.18	0.18
	$(a b)*a(a b){16}$	16	32	131,073	266MB	0.25	0.21
	$(a a b){16}(a b)*$	16	32	18	36KB	0.19	0.18
	(a b) {1024}	1,024	1,024	1,026	34MB	1.2	1.2
P-NN	(a b)*	0	32	3	6KB	0.36	0.35
	$(a b)*a(a b){16}$	16	32	36	73KB	0.61	0.60
	(a a b){16}(a b)*	16	32	51	103KB	1,340	1,340
	(a b) {1024}	1,024	1,024	2,049	68MB	6.6	6.6

GFPE [WRB'15]

- User-oriented
 - Part of a larger system used by the end-user
- Encryption\decryption using RtE, supporting int-FPE for:
 - $-\mathbb{Z}_{M}$ (proven security, no cycle walking, inefficient for large formats)
 - $-\{0,1,...,m-1\}^n$ (no security proofs, requires cycles walking, efficient for large formats)
- Main challenge: user-friendly format representation
- Structure: formats represented using bottom-up framework
 - "Basic" building-blocks (primitives)
 - Usually "rigid" formats
 - SSNs, CCNs, dates, set of valid strings, fixed-length strings...
 - Also "less rigid" formats (e.g., variable-length strings)
 - Operations used to construct complex formats
 - Operations preserve the "parsing property"

GFPE: Representing Formats

"Basic" building-blocks (primitives):

- $\mathcal{F}_{upper} = \{A,B,...,Z\}$
- $-\mathcal{F}_{lower} = \text{length-}k \text{ lower-case letter strings, } 1 \le k \le 15$
- $-\mathcal{F}_{ssn} = SSNs$

Operations:

- Concatenation:
 - $\mathcal{F} = \mathcal{F}_1 \cdot \ldots \cdot \mathcal{F}_k$
 - Words: $\mathcal{F}_{word} = \mathcal{F}_{upper} \cdot \mathcal{F}_{lower}$
 - $\mathcal{F} = \mathcal{F}_1 \cdot d_1 \cdot \mathcal{F}_2 \cdot \dots \cdot d_{n-1} \cdot \mathcal{F}_n$ (d_1, \dots, d_{n-1} are delimiters)
- Range: $\mathcal{F} = (\mathcal{F}_1 \cdot d)^k$, $min \le k \le max$
 - Names: $\mathcal{F}_{name} = (\mathcal{F}_{word} \cdot space)^k$ for $1 \le k \le 4$
- Union: $\mathcal{F} = \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_k$
 - "Names or SSNs": $\mathcal{F} = \mathcal{F}_{name} \cup \mathcal{F}_{ssn}$

Example: Representing Addresses

name house # street city zip state

- $\mathcal{F}_{name} = (\mathcal{F}_{word} \cdot space)^k$ for $1 \le k \le 4$ (range)
- $\mathcal{F}_{num} = \{1, ..., 100\}$ (integral domain)
- $\mathcal{F}_{zip} = \{0,1,...,9\}^5$ (fixed length string)
- \mathcal{F}_{state} = set of valid state abbreviations
- Valid addresses obtained through concatenation:

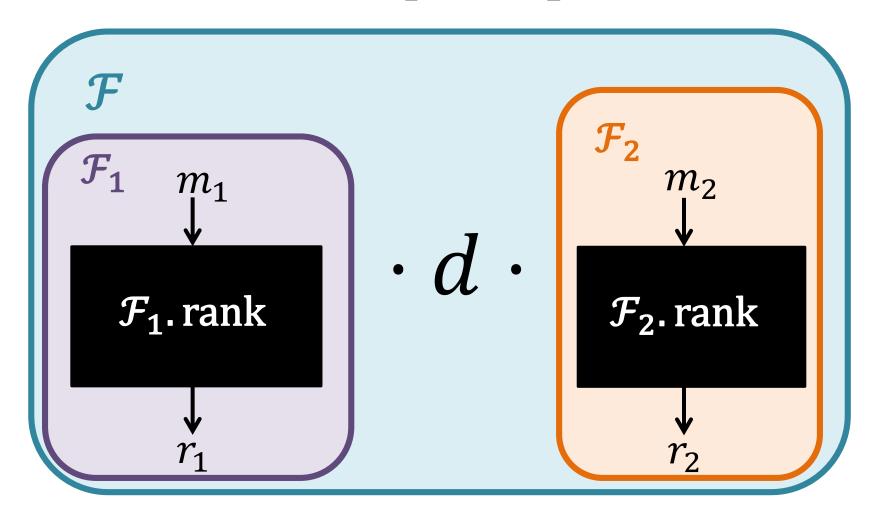
$$\mathcal{F}_{add} = \mathcal{F}_{name} \cdot \mathcal{F}_{num} \cdot \mathcal{F}_{name} \cdot \mathcal{F}_{name} \cdot \mathcal{F}_{zip} \cdot \mathcal{F}_{state}$$
name house # street city zip state

GFPE: Ranking

- Define ranking for primitives and operations
- Rank of compound formats computed top-down:
 - Parse string to components
 - Delegate substring ranking to format components
 - "Glue" ranks together using ranking for operations

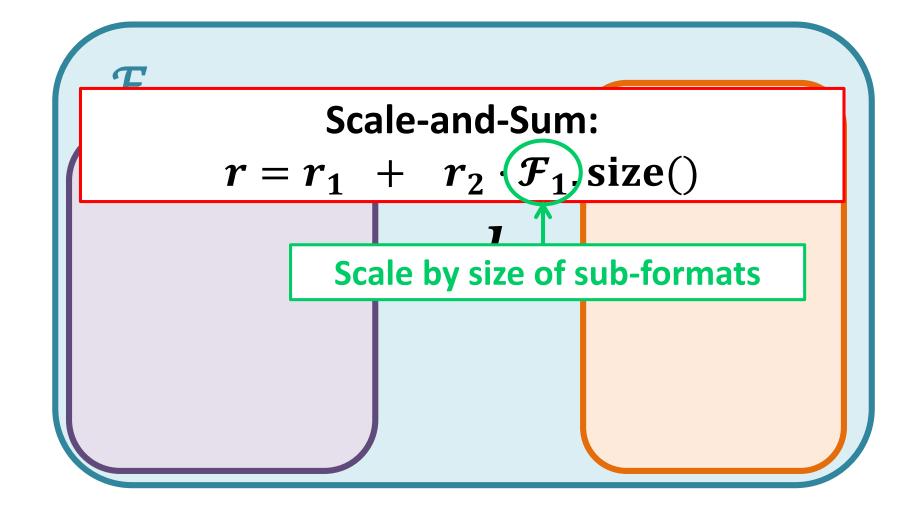
Example: Ranking Concatenation

$$\mathcal{F} = \mathcal{F}_1 \cdot d \cdot \mathcal{F}_2$$
$$m = m_1 \cdot d \cdot m_2$$



Example: Ranking Concatenation

$$\mathcal{F} = \mathcal{F}_1 \cdot d \cdot \mathcal{F}_2$$



GFPE: Supporting Large Formats

- Scheme supports int-FPEs for \mathbb{Z}_M [BR`02,BRRS`09]
- Requires factoring $M \Rightarrow$ inefficient for large M's!
- Supporting large formats: keep formats small
 - Divide large formats
 - Minimize security loss by "hiding" message-specific properties:
 - Division according to format structure Main challenge!
 - Maximizing sub-format size
 - maxSize determined by user-defined performance constraints

Example: Dividing Address Format

Name house # street city zip state

Valid addresses obtained through concatenation:

$$\mathcal{F}_{add} = \begin{bmatrix} \mathcal{F}_{name} \cdot \mathcal{F}_{num} & \mathcal{F}_{name} \cdot \mathcal{F}_{name} \\ \text{name house #} & \text{street city} \end{bmatrix} \begin{bmatrix} \mathcal{F}_{zip} \cdot \mathcal{F}_{state} \\ \text{zip state} \end{bmatrix}$$

- Jane Doe 23 Delaford New York 12345 NY
- Jane Doe 23 Delaford Berkeley 12345 CA
- Smaller $maxSize \Rightarrow$ further division
 - E.g., \mathcal{F}_{name} divided according to number of words in name

GFPE: Supporting Large Formats (2)

- Scheme supports int-FPEs for \mathbb{Z}_M [BR`02,BRRS`09]
- requires factoring $M \Rightarrow$ inefficient for large M's!
- Supporting large formats: keep formats small
 - Divide large formats
 - Minimize security loss by "hiding" message-specific properties:
 - Division according to *format structure* ← Main challenge!
 - Maximizing sub-format size
 - maxSize determined by user-defined performance constraints
- Introduces complications in ranking and unranking
 - Generalize rank, unrank to lists of ranks
- Minimal security loss (according to experimental results)

FPEs for General Formats: Summary

	libFTE [LDJRS'14]	GFPE [WRB`15]
Underlying int-FPE	FFX (any FPE for $\{0,1,,m-1\}^n$)	FFX or FE1 (any FPE for \mathbb{Z}_M or $\{0,1,,m-1\}^n$)
Designed for	developers	end users
Encryption type	deterministic\ randomized	deterministic
Format representation	regular expressions	bottom-up framework
Security guarantee	same as underlying int-FPE	same as underlying int-FPE
Encryption type	FPE + format transforming	FPE
Performance	depends on scheme and format representation	uniform
Expressiveness	not clear how to efficiently represent though computations	representation thorough computation is possible
Open source?	Yes: Python, C++, JavaScript	No

Format Preserving Encryption (FPE): Summary

- FPE preserves plaintext format under encryption
- Useful when adding encryption layer to existing schemes
- Int-FPEs based on generalized Feistel networks
 - Two constructions under NIST consideration for standardization
- Techniques for general-format FPE:
 - Cycle walking
 - Rank-then-Encipher (RtE)
- FPE for general formats constructed from int-FPE
 - Using RtE on top of int-FPE
 - Comparable security and performance

THANKYOU