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DNA Searching [Troncoso-PastorizaKC07], ...

Auctions [NaorPS99], ...

Remote Diagnostics [BrickellPSW07], ...

Biometric Identification [ErkinFGKLT09], ...

Medical Diagnostics [BarniFKLSS09], ...
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1-out-of-2 OT is an essential building block for secure computation.
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How to Measure Efficiency of a Protocol?

✓ Runtime (depends on implementation & scenario)

✓ Communication
• # bits sent (important for networks with low bandwidth)
• # rounds (important for networks with high latency)

? Computation
• Usually: count # crypto operations, e.g.,

• # modular exponentiations
• # point multiplications
• # hash function evaluations (SHA)
• # block cipher evaluations (AES)
• # One-Time Pad evaluations

• But also non-cryptographic operations do matter!
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Symmetric CryptoPublic Key Crypto One-Time Pad>> >>

Generic Protocols

Boolean Circuit

GMWYao
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Part 1: Efficient Garbled Circuits

Part 2: Efficient OTs

Part 3: Efficient Circuits and Yao vs. GMW
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Part 1: Efficient Garbled Circuits
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(Slide from Viet-Tung Hoang)

Privacy (informal): 
Given (F, X, d) learn nothing but y=f(x).
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Wires: 
Assign random keys ki, Ki to all wires i

Garbling:  
For each gate use double-encryption 
and randomly permute entries: 
Ea(Eb(x))  
Ea(EB(x))  
EA(Eb(x))  
EA(EB(X))

Outputs:  
For each output wire i: provide mapping [(0, ki), (1, Ki)]
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Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with efficiently verifiable range: 

Ek(m) = [r, fk(r) ⊕ (m || 0n)], where f is a pseudo-random function 
(by pseudorandomness of f, prob. of obtaining 0n with incorrect k is negl.)

⇒ Need to decrypt multiple entries until decryption succeeds

§ Expected number of decryptions requires is 2.5
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Advantages of point-and-permute:
• Exactly one entry needs to be decrypted
• Simplifies output decryption

19

0 1

1 0

If output permutation pi = 0 then output is permutation bit

If output permutation pi = 1 then output is negated permutation bit

⇒ Sender simply reveals for each output wire the bit pi to receiver. 

In the following we always assume usage of point and permute. 
p(k) is the permutation bit of key k.



3) 3-Row Reduction [NaorPinkasSumner99]

Encryption function: ET(kl, kr; ko) = ko ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T), 
where F is a pseudo-random function, e.g., instantiated with AES.
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Encryption function: ET(kl, kr; ko) = ko ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T), 
where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.
ET(kl,kr; c) = c ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || i) != 0  
⇒ c = F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T). 

⇒ One of the two output keys is derived from the input keys.

ET(a,B; c)
ET(A,b; c)
ET(A,B; C)

⇒ Communication is reduced from 4 to 3 table entries. 
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4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2
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Correctness: c = a ⊕ b = (R ⊕ a) ⊕ (R ⊕ b) = A ⊕ B

                     C = c ⊕ R = a ⊕ b ⊕ R = a ⊕ B = A ⊕ b

Security (intuitively): Evaluator knows one key per wire, so never learns R 
§ Requires random oracle or non-standard circularity assumption

Can be combined with 3-row reduction.
21
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Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: ET(kl, kr; ko) = ko ⊕ AES-256(kl || kr; T)

=> Needs to run expensive AES key schedule per gate
=> Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:
Choose fixed key X and run AES key schedule once
ET(kl, kr; ko) = ko ⊕ AES-128(X; K) ⊕ K with K = 2kl ⊕ 4kr ⊕ T

Requires assuming an “ideal cipher” assumption on AES
Can be combined with free XOR and 3-row reduction



6) HalfGates - Today’s Most Efficient Scheme [ZRE14]
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procedure Gb(1k, f):
R ⌘ {0, 1}k�11
for i 2 Inputs(f) do
W 0

i ⌘ {0, 1}k
W 1

i  W 0
i �R

ei  W 0
i

for i /2 Inputs(f) {in topo. order} do
{a, b} GateInputs(f, i)
if i 2 XorGates(f) then
W 0

i  W 0
a �W 0

b

else
(W 0

i , TGi, TEi) GbAnd(W 0
a ,W

0
b )

Fi  (TGi, TEi)
end if
W 1

i  W 0
i �R

for i 2 Outputs(f) do
di  lsb(W 0

i )

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b ):

pa  lsbW 0
a ; pb  lsbW 0

b

j  NextIndex(); j0  NextIndex()
{First half gate}
TG  H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G  H(W 0

a , j)� paTG

{Second half gate}
TE  H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E  H(W 0

b , j
0)� pb(TE �W 0

a )
{Combine halves}
W 0  W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei 2 ê do
Xi  ei � xiR

return X̂

procedure De(d̂, Ŷ ):
for di 2 d̂ do
yi  di � lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i 2 Inputs(F̂ ) do
Wi  Xi

for i /2 Inputs(F̂ ) {in topo. order} do
{a, b} GateInputs(F̂ , i)

if i 2 XorGates(F̂ ) then
Wi  Wa �Wb

else
sa  lsbWa; sb  lsbWb

j1  NextIndex(); j2  NextIndex()
(TGi, TEi) Fi

WGi  H(Wa, j1)� saTGi

WEi  H(Wb, j2)� sb(TEi �Wa)
Wi  WGi �WEi

end if
for i 2 Outputs(F̂ ) do
Yi  Wi

return Ŷ

Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .
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for ei 2 ê do
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Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .
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in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .
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private procedure GbAnd(W 0
a ,W

0
b ):

pa  lsbW 0
a ; pb  lsbW 0

b

j  NextIndex(); j0  NextIndex()
{First half gate}
TG  H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G  H(W 0

a , j)� paTG

{Second half gate}
TE  H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E  H(W 0

b , j
0)� pb(TE �W 0

a )
{Combine halves}
W 0  W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
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Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0
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Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.
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in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
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The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
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We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
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we have expanded W f(x,pb)
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G. Asharov, Y. Lindell, T. Schneider, M. Zohner: 
More efficient oblivious transfer and extensions for faster secure computation. 
In ACM CCS’13.

http://encrypto.de/code/OTExtension
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- [ImpagliazzoRudich89]: there’s no black-box reduction from OT to OWFs 

- Several OT protocols based on public-key cryptography
 - e.g., [NaorPinkas01] yields ~1,000 OTs per second       

- Since public-key crypto is expensive, OT was believed to be inefficient
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OT - Good News 

26

- [Beaver95]: OTs can be precomputed (only OTP in online phase)

- OT Extensions (similar to hybrid encryption): 
  use symmetric crypto to stretch few “real” OTs into longer/many OTs
 - [Beaver96]: OT on long strings from short seeds       
 - [IshaiKilianNissimPetrank03]: many OTs from few OTs       

[Beaver96]“real” OTs

[IKNP03]

l-bit
k-bit

k OTs

m OTs



OT Extension of [IKNP03] (1) 

27

- Alice inputs m pairs of ℓ𝓁-bit strings (xi,0 , xi,1) 
 
- Bob inputs m-bit string r and obtains xi,ri in i-th OT 



OT Extension of [IKNP03] (2) 

28

- Alice and Bob perform k “real” OTs on random seeds with reverse roles 
  (k: security parameter)



OT Extension of [IKNP03] (3) 
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- Bob generates a random m x k bit matrix T and masks his choices r 

- The matrix is masked with the stretched seeds of the “real” OTs

PRG:  pseudo-random generator (instantiated with AES)



OT Extension of [IKNP03] (4) 

30

H: correlation robust function (instantiated with hash function)

- Transpose matrices V and T 

- Alice masks her inputs and obliviously sends them to Bob



Computation Complexity of OT Extension

31
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Computation Complexity of OT Extension

31

Time distribution for 10 Million OTs (in 21s): 
2.1 microseconds per OT

Non-crypto part was bottleneck!!!
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# PRG evaluations 

# H evaluations
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- Naive matrix transposition performs mk load/process/store operations 



Algorithmic Optimization: Efficient Matrix Transposition

32

- Naive matrix transposition performs mk load/process/store operations 

- Eklundh's algorithm reduces number of operations to O(m log2 k) swaps
- Swap whole registers instead of bits
- Transposing 10 times faster



Algorithmic Optimization: Parallelization

33

- OT extension can easily be 
parallelized by splitting the T matrix 
into sub-matrices 

- Since columns are independent, 
OT is highly parallelizable
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Communication Complexity of OT Extension
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2ℓ𝓁

Per OT: 

Bits sent

Yao: ℓ𝓁 = k = 80 GMW: ℓ𝓁 = 1, k = 80

Alice Bob

Bob

Alice

2k



Protocol Optimization: General OT Extension

35

- Instead of generating a random T matrix, we derive it from sj,0 

- Reduces data sent by Bob by factor 2
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Specific OT Functionalities

36

- Secure computation protocols often require a specific OT functionality
 - Yao with free XORs requires strings x0, x1 to be XOR-correlated       
 - GMW with multiplication triples can use random strings       

Correlated OT Random OT

- Correlated OT: random x0  and x1 = x0 ⊕ x - Random OT: random x0 and x1 

e.g., for Yao e.g., for GMW



- Choose xi,0 as random output of H (modeled as RO here) 

- Compute xi,1 as xi,0 ⊕ xi to obliviously transfer XOR-correlated values 

- Reduces data sent by Alice by factor 2 

Specific OT Functionalities: Correlated OT (C-OT)

37



- Choose xi,0 and xi,1 as random outputs of H (modeled as RO here) 

- No data sent by Alice 

Specific OT Functionalities: Random OT (R-OT)

38
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Performance Evaluation: Original Implementation

39

- C++ implementation of [SZ13] implementing OT extension of [IKNP03] 

- Performance for 10 Million OTs on 80-bit strings
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Performance Evaluation: Efficient Matrix Transposition

40

- Efficient matrix transposition – improves computation 

- Only decreases runtime in LAN where computation is the bottleneck
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Performance Evaluation: General OT

41

- Generate T matrix from seeds – improves communication Bob → Alice 

- Runtimes only slightly faster (bottleneck: communication Alice → Bob)
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Performance Evaluation: Correlated/Random OT 

42

- Correlated/Random OT – improved communication Alice → Bob 

- WiFi runtime faster by factor 2 (bottleneck: communication Bob → Alice)



Performance Evaluation: Parallelization

43

- Parallel OT extension with 2 and 4 threads – improved computation 

- LAN runtime decreases linear in # of threads  

- WiFi runtime remains the same (bottleneck: communication)
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Performance Evaluation: Summary

44

- OT is very efficient 

- Communication is the bottleneck for OT (even without using AES-NI)

Performance for 10 Mio. OTs on 80-bit strings
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Part 3: Efficient Circuits and Yao vs. GMW

45

T. Schneider, M. Zohner: 
GMW vs. Yao? Efficient secure two-party computation with low depth circuits. 
In FC’13.
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+ Yao has constant #rounds
- Evaluating a garbled gate requires 

symmetric crypto in the online phase
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2) eat (easy)

Setup phase: 
- precompute multiplication triples for each AND 

gate using 2 R-OTs and constant #rounds 
+ no need to know function, only max. #ANDs

Online phase: 
+ evaluating circuit needs OTP operations only 
- communication per layer of AND gates
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communication [bit] per ANDS→R: 2t setup: S→R:t || R→S:t 
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Chapter 3 Circuit Optimizations and Constructions

Table 3.2: Size: E�cient Circuit Constructions (for n unsigned `-bit values)
Circuit Standard Free XOR
#gates 2-input 3-input 2-input non-XOR

ADD, SUB (§3.3.1) 2 2` � 2 `
ADDSUB (§3.3.1.3) `+ 1 2` `
MUL (Textbook) (§3.3.2.1) `2 + 2` � 2 2`2 � 4`+ 2 2`2 � `
MUL (Karatsuba) (§3.3.2.2) ⇡ 9`1.6 � 13` � 34`
CMP (§3.3.3.1) 1 ` � 1 `
MUX (§3.3.3.2) 0 ` `
MIN, MAX (§3.3.3.3) n � 1 2`(n � 1) + 2 2`(n � 1) + n+ 1

The first 1-bit adder has constant input c1 = 0 and can be replaced by a smaller half-
adder with two inputs. Each 1-bit adder has as inputs the carry-in bit c

i

from the
previous 1-bit adder and the two input bits x

i

, y
i

. The outputs are the carry-out
bit c

i+1 = (x
i

^ y
i

) _ (x
i

^ c
i

) _ (y
i

^ c
i

) = (x
i

, y
i

, c
i

)[00010111] and the sum bit
s
i

= x
i

� y
i

� c
i

= (x
i

, y
i

, c
i

)[01101001]. All occurring gates are even and can be
optimized to a small number of XOR gates. An equivalent construction for computing
c
i+1 with the same number of non-XOR gates was given in [BPP00, BDP00].

x` y` x1 y1y2x2

s`+1 s` s2 s1

. . . +++ c2c3
0

ADD

Figure 3.3: Circuit: Addition (ADD)

3.3.1.2 Subtraction (SUB)

Subtraction in two’s complement representation is defined as x�y = x+¬y+1. Hence,
a subtraction circuit (SUB) can be constructed analogously to the addition circuit from
1-bit subtractors (�) as shown in Fig. 3.4. Each 1-bit subtractor computes the carry-
out bit c

i+1 = (x
i

^¬y
i

)_(x
i

^c
i

)_(¬y
i

^c
i

) = (x
i

, y
i

, c
i

))[01001101] and the di↵erence
bit d

i

= x
i

� ¬y
i

� c
i

= (x
i

, y
i

, c
i

)[10010110]. The size of SUB is equal to that of ADD.

3.3.1.3 Controlled Addition/Subtraction (ADDSUB)

A controlled addition/subtraction circuit (ADDSUB) which can add or subtract two
unsigned `-bit values x and y depending on a control input bit ctrl can be naturally
constructed as combination of ADD, SUB, and controlled inversion (CNOT) which is

40

Ripple-Carry-Adder

si = xi ⊕ yi ⊕ ci 

ci+1 = ((xi ⊕ yi) ∧ (xi ⊕ ci)) ⊕ xi [BoyarPeraltaPochuev00] 
ANDsize = ℓ𝓁, ANDdepth = ℓ𝓁
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si = xi ⊕ yi ⊕ ci 

ci+1 = ((xi ⊕ yi) ∧ (xi ⊕ ci)) ⊕ xi [BoyarPeraltaPochuev00] 
ANDsize = ℓ𝓁, ANDdepth = ℓ𝓁

Ladner-Fischer-Adder [LF80]

ANDsize = ℓ𝓁+1.25 ℓ𝓁 log2(ℓ𝓁), ANDdepth = 1+2 log2(ℓ𝓁)

x 4 y 4 x 3 y 3 x 2 y 2 x 1 y 1

p 4,0
c 4,0

p 3,0
c 3,0

p 2,0
c 2,0

p 1,0
c 1,0

p 4,1
c 4,1

p 2,1
c 2,1

p 4,2
c 4,2

p 3,2
c 3,2

s 5 s 4 s 3 s 2 s 1

pi,0=xi⊕yi, ci,0=xi∧yi

pi,j=pi,j-1∧pk,j-1 
ci,j=(pi,j-1∧ck,j-1)∨ci,j-1
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A Summary of Circuit Building Blocks

Table 7. Size and Depth of Circuit Constructions (dH : Hamming weight)

Circuit Size S Depth D
Addition

Ripple-carry ADD/SUBℓ
RC ℓ ℓ

Ladner-Fischer ADDℓ
LF 1.25ℓ⌈log2 ℓ⌉+ ℓ 2⌈log2 ℓ⌉+ 1

LF subtraction SUBℓ
LF 1.25ℓ⌈log2 ℓ⌉+ 2ℓ 2⌈log2 ℓ⌉+ 2

Carry-save ADD(ℓ,3)
CSA ℓ + S(ADDℓ) D(ADDℓ)+1

RC network ADD(ℓ,n)
RC ℓn− ℓ+ n− ⌈log2 n⌉ − 1 ⌈log2 n− 1⌉+ ℓ

CSA network ADD(ℓ,n)
CSA

ℓn− 2ℓ+ n− ⌈log2 n⌉ ⌈log2 n− 1⌉
+S(ADD

ℓ+⌈log2 n⌉
LF ) +D(ADD

ℓ+⌈log2 n⌉
LF )

Multiplication
RCN school method MULℓ

RC 2ℓ2 − ℓ 2ℓ− 1
CSN school method MULℓ

CSN 2ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − ℓ+ 2 3⌈log2 ℓ⌉+ 4
RC squaring SQRℓ

RC ℓ2 − ℓ 2ℓ− 3
LF squaring SQRℓ

LF ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − 1.5ℓ − 2 3⌈log2 ℓ⌉+ 3
Comparison
Equality EQℓ ℓ− 1 ⌈log2 ℓ⌉
Sequential greater than GTℓ

S ℓ ℓ
D&C greater than GTℓ

DC 3ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉+ 1
Selection
Multiplexer MUXℓ ℓ 1

Minimum MIN(ℓ,n) (n− 1)(S(GTℓ)+ℓ) ⌈log2 n⌉(D(GTℓ)+1)

Minimum index MIN(ℓ,n)
IDX (n− 1)(S(GTℓ)+ℓ+ ⌈log2 n⌉) ⌈log2 n⌉(D(GTℓ)+1)

Set Operations
Set union ∪ℓ ℓ 1
Set intersection ∩ℓ ℓ 1
Set inclusion ⊆ℓ 2ℓ − 1 ⌈log2 ℓ⌉+ 1
Count
Full Adder count CNTℓ

FA 2ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉
Boyar-Peralta count CNTℓ

BP ℓ− dH(ℓ) ⌊log2 ℓ⌋
Distances

Manhattan distance DSTℓ
M 2S(SUBℓ)+S(ADD(ℓ,3))+1 D(SUBℓ)+D(ADD(ℓ,3))+1

Euclidean distance DSTℓ
E

2S(SUBℓ)+2S(SQRℓ) D(SUBℓ)
+S(ADD(2ℓ,4))+2S(MUXℓ) +D(SQRℓ)+3

B Depth Efficient Distance Circuits

B.1 Manhattan Distance

The Manhattan distance DSTℓ
M between two points p1 = (xℓ

1, y
ℓ
1) and p2 =

(xℓ
2, y

ℓ
2) is the distance in a two dimensional space allowing only horizontal and

vertical moves and is computed as |xℓ
1 − xℓ

2| + |yℓ1 − yℓ2|. [5] give such a circuit
DSTℓ

M,C with size S(DSTℓ
M,C) = 9ℓ and depth D(DSTℓ

M,C) = 2ℓ+ 2. They use

4 multiplexer circuits MUXℓ (cf. [18]), 2 GTℓ
S circuits (§3.3), 2 SUBℓ

RC circuits
(cf. [18]), and one ADDℓ

RC circuit (§3.1).

Can trade-off larger size for better depth.
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Symmetric crypto is so efficient that communication is the bottleneck.



Thanks for your attention!

Contact: http://encrypto.de

Questions?


