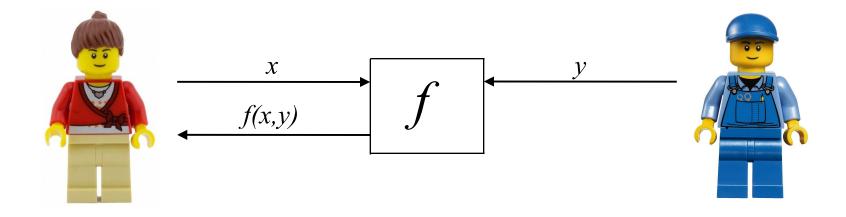
Optimizations of Generic Protocols for Semi-Honest Adversaries

Thomas Schneider (TU Darmstadt)

5th Bar-Ilan Winter School on Cryptography, Feb 2015

Secure Two-Party Computation



This Lecture: Semi-Honest (Passive) Adversaries

Secure Two-Party Computation

Auctions [NaorPS99], ...

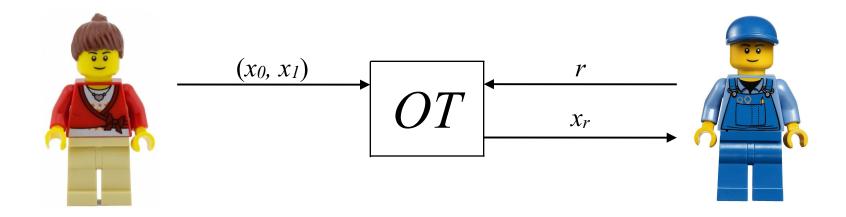
Remote Diagnostics [BrickellPSW07], ...

DNA Searching [Troncoso-PastorizaKC07], ...

Biometric Identification [ErkinFGKLT09], ...

Medical Diagnostics [BarniFKLSS09], ...

Oblivious Transfer (OT)



1-out-of-2 OT is an essential building block for secure computation.

How to Measure Efficiency of a Protocol?

√ Runtime (depends on implementation & scenario)

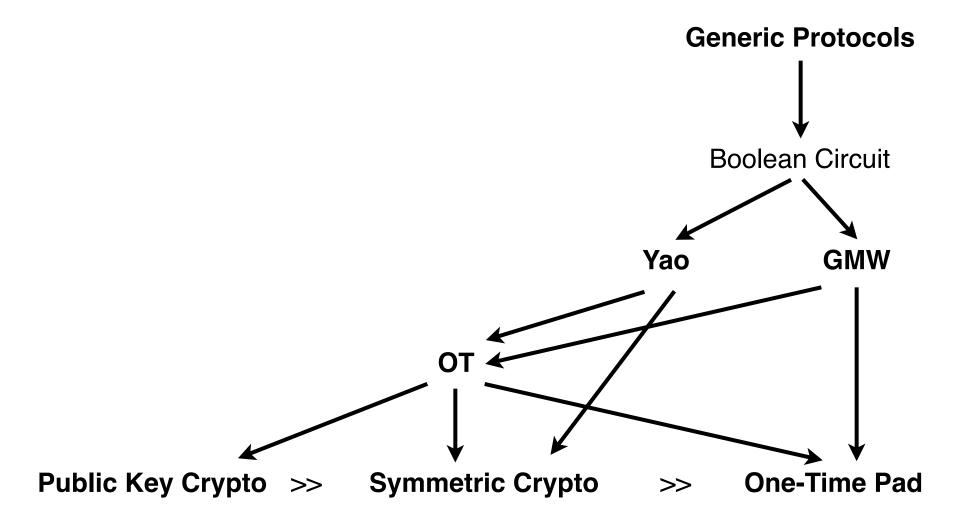
How to Measure Efficiency of a Protocol?

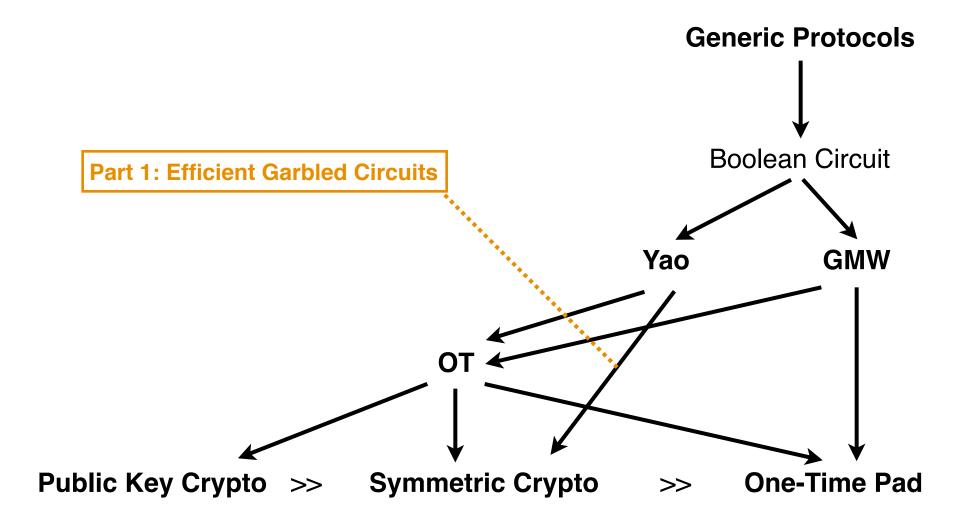
- √ Runtime (depends on implementation & scenario)
- √ Communication
 - # bits sent (important for networks with low bandwidth)
 - # rounds (important for networks with high latency)

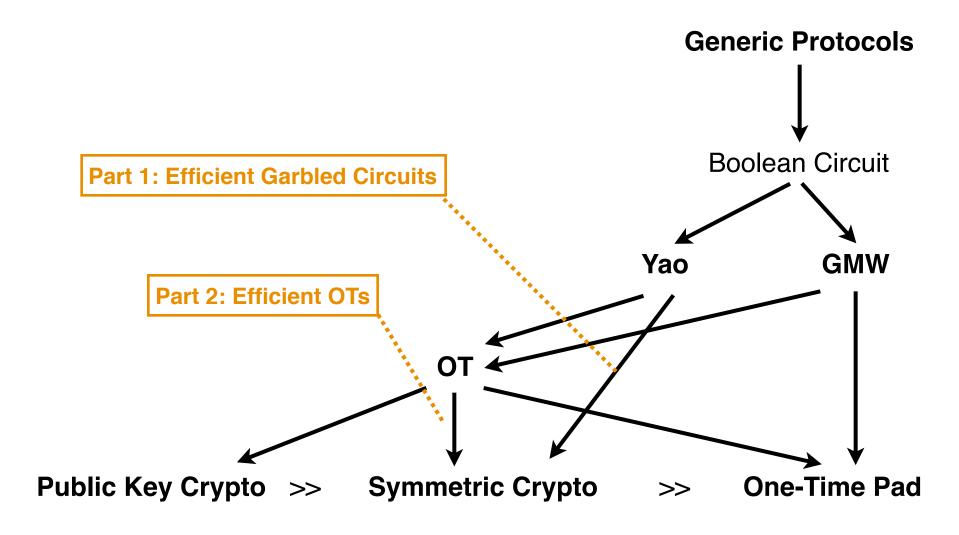
How to Measure Efficiency of a Protocol?

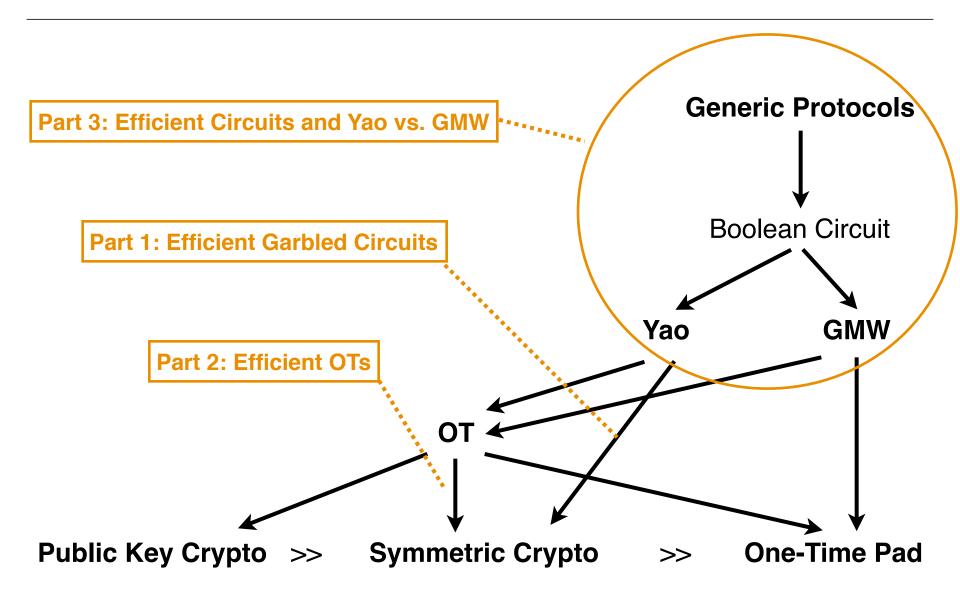
- √ Runtime (depends on implementation & scenario)
- √ Communication
 - # bits sent (important for networks with low bandwidth)
 - # rounds (important for networks with high latency)
- ? Computation
 - Usually: count # crypto operations, e.g.,
 - # modular exponentiations
 - # point multiplications
 - # hash function evaluations (SHA)
 - # block cipher evaluations (AES)
 - # One-Time Pad evaluations
 - But also non-cryptographic operations do matter!

Public Key Crypto >> Symmetric Crypto >> One-Time Pad







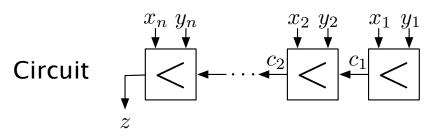


 $f(\cdot, \cdot)$ e.g., $\mathbf{x} < \mathbf{y}$

private data $\mathbf{x} = x_1, ..., x_n$ private data $\mathbf{y} = y_1, ..., y_n$

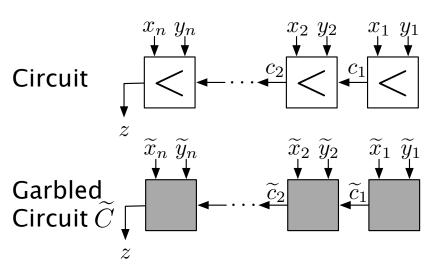
private data $\mathbf{x} = x_1, ..., x_n$

$$f(\cdot, \cdot)$$
 e.g., $\mathbf{x} < \mathbf{y}$



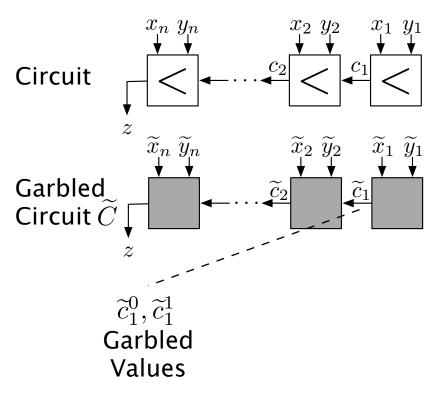
private data $\mathbf{x} = x_1, ..., x_n$

$$f(\cdot, \cdot)$$
 e.g., $\mathbf{x} < \mathbf{y}$



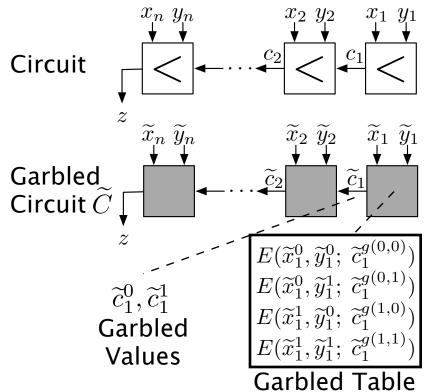
private data $\mathbf{x} = x_1, ..., x_n$

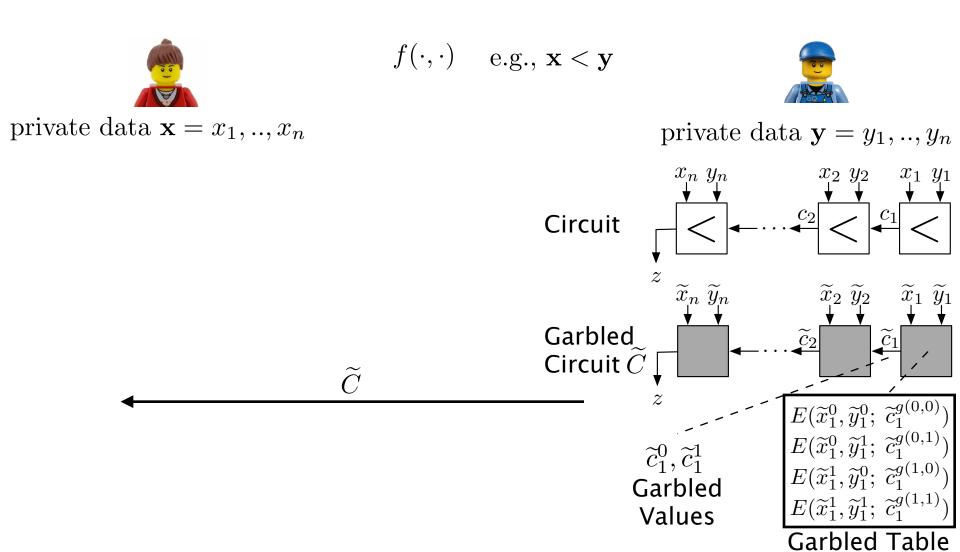
$$f(\cdot, \cdot)$$
 e.g., $\mathbf{x} < \mathbf{y}$



private data $\mathbf{x} = x_1, ..., x_n$

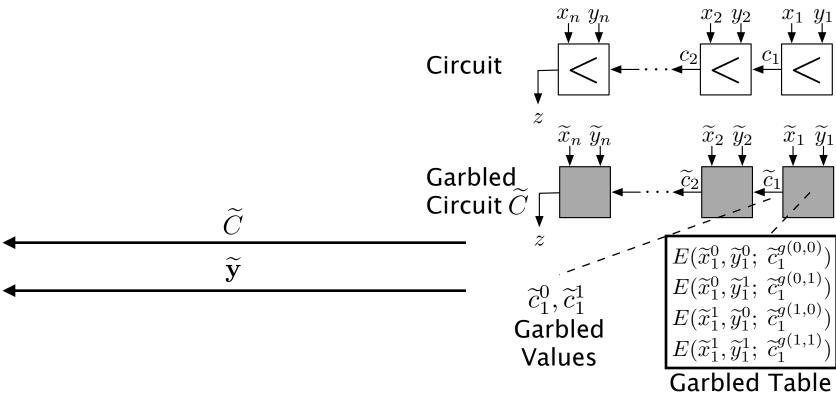
$$f(\cdot, \cdot)$$
 e.g., $\mathbf{x} < \mathbf{y}$





 $f(\cdot, \cdot)$ e.g., $\mathbf{x} < \mathbf{y}$

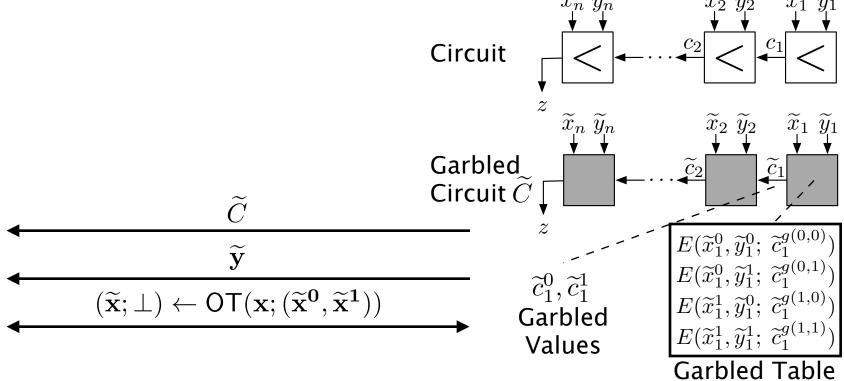
private data $\mathbf{x} = x_1, ..., x_n$



 $f(\cdot, \cdot)$ e.g., $\mathbf{x} < \mathbf{y}$

private data $\mathbf{x} = x_1, ..., x_n$

private data $\mathbf{y} = y_1, ..., y_n$ $x_n y_n$ $x_2 y_2$ $x_1 y_1$



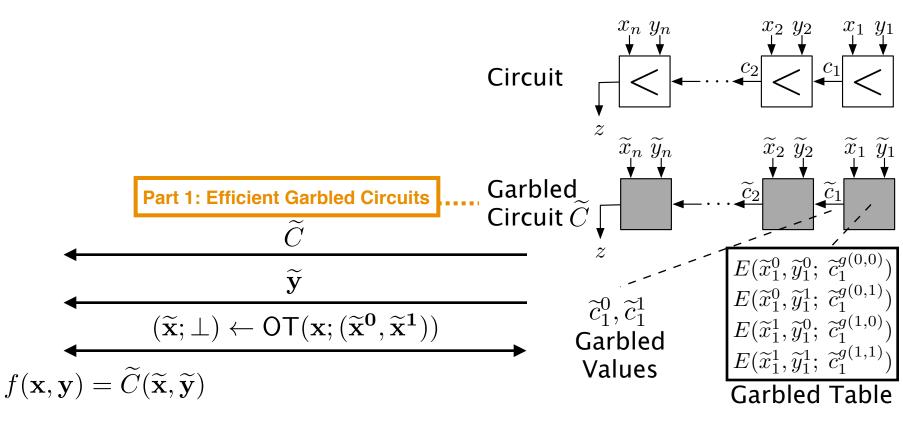
 $f(\cdot, \cdot)$ e.g., $\mathbf{x} < \mathbf{y}$

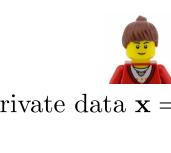
private data $\mathbf{x} = x_1, ..., x_n$



$$f(\cdot, \cdot)$$
 e.g., $\mathbf{x} < \mathbf{y}$

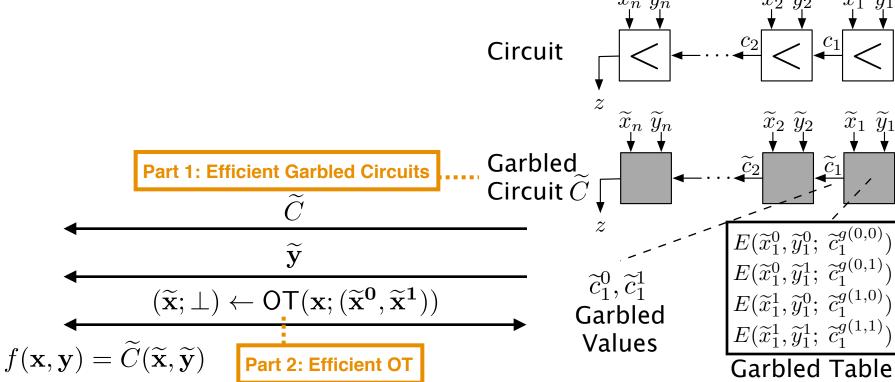
private data $\mathbf{x} = x_1, ..., x_n$

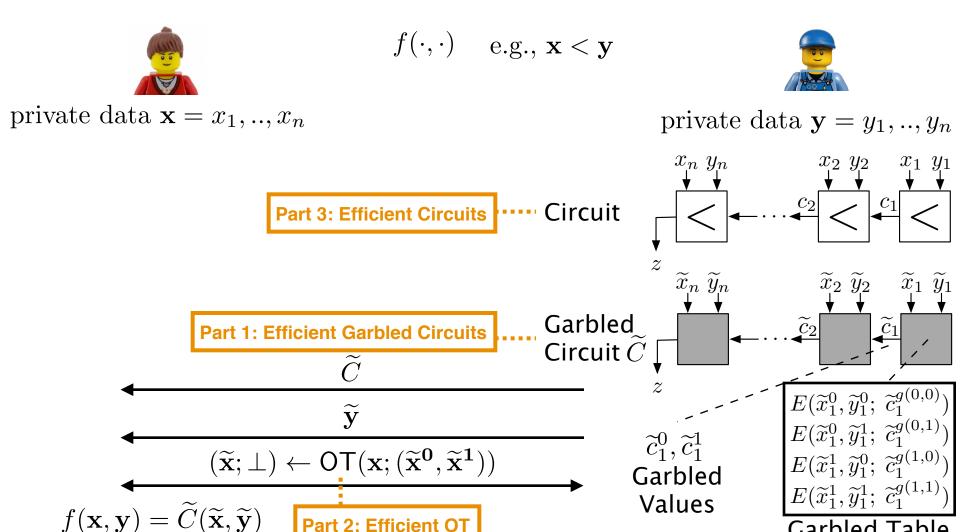




$$f(\cdot, \cdot)$$
 e.g., $\mathbf{x} < \mathbf{y}$

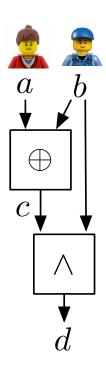
private data $\mathbf{x} = x_1, ..., x_n$ private data $\mathbf{y} = y_1, ..., y_n$





Part 2: Efficient OT

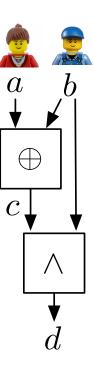
Garbled Table



Secret share inputs:

$$a = a_1 \oplus a_2$$

$$b = b_1 \oplus b_2$$



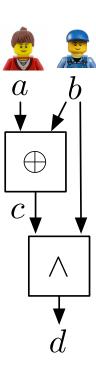
Secret share inputs:

⊕ **a**₂

$$b = b_1$$

 \oplus b₂

Non-Interactive XOR gates: $c_1 = a_1 \oplus b_1$; $c_2 = a_2 \oplus b_2$



 b_2

Secret share inputs:

$$a = a_1$$

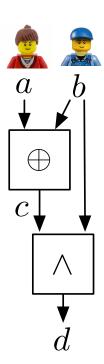
$$b = b_1$$

$$\oplus$$

Non-Interactive XOR gates: $c_1 = a_1 \oplus b_1$; $c_2 = a_2 \oplus b_2$

Interactive AND gates:

$$c_1, b_1 \longrightarrow c_2, b_2$$
 $d_1 \longleftarrow d_2$



Secret share inputs:

$$a = a_1$$

 \oplus

 a_2

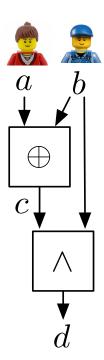
$$b = b_1$$

 b_2

Non-Interactive XOR gates: $c_1 = a_1 \oplus b_1$; $c_2 = a_2 \oplus b_2$

Interactive AND gates:

$$c_1, b_1 \longrightarrow c_2, b_2$$
 $d_1 \longleftarrow d_2$



Recombine outputs:

$$d = d_1$$

$$\oplus$$

 d_2

 a_2

Secret share inputs:

$$a = a_1$$

$$\oplus$$

$$b = b_1$$

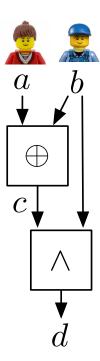
$$b_2$$

Non-Interactive XOR gates: $c_1 = a_1 \oplus b_1$; $c_2 = a_2 \oplus b_2$

Interactive AND gates:

$$c_1, b_1 \longrightarrow c_2, b_2$$

$$d_1 \longleftarrow d_2$$



Part 3: Efficient Circuits

Recombine outputs:

$$d = d_1$$

$$\oplus$$

$$d_2$$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

P₁'s output: a₁,b₁,c₁

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

P₁'s output: a₁,b₁,c₁

P₂'s output: a₂,b₂,c₂

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P2's output: a2,b2,c2
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

The Protocol:

1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P2's output: a2,b2,c2
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P2's output: a2,b2,c2
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. P_1 sets $b_1 = m_0 \oplus m_1$; $v_1 = m_0$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. P_1 sets $b_1 = m_0 \oplus m_1$; $v_1 = m_0$
 - Observe: $V_1 \oplus U_2 = m_0 \oplus m_{a_2}$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. P_1 sets $b_1 = m_0 \oplus m_1$; $v_1 = m_0$
 - Observe: $V_1 \oplus U_2 = m_0 \oplus m_{a_2}$
 - If $a_2=0$ then $v_1 \oplus u_2 = m_0 \oplus m_0 = 0 = a_2b_1$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. P_1 sets $b_1 = m_0 \oplus m_1$; $v_1 = m_0$
 - Observe: $V_1 \oplus U_2 = m_0 \oplus m_{a2}$
 - If $a_2=0$ then $v_1 \oplus u_2 = m_0 \oplus m_0 = 0 = a_2b_1$
 - If $a_2=1$ then $v_1 \oplus u_2 = m_0 \oplus m_1 = b_1 = a_2b_1$

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. P_1 sets $b_1 = m_0 \oplus m_1$; $v_1 = m_0$
 - Observe: $V_1 \oplus U_2 = m_0 \oplus m_{a_2}$
 - If $a_2=0$ then $v_1 \oplus u_2 = m_0 \oplus m_0 = 0 = a_2b_1$
 - If $a_2=1$ then $v_1 \oplus u_2 = m_0 \oplus m_1 = b_1 = a_2b_1$
- 4. P_1 and P_2 repeat steps 1-3 with reversed roles to obtain (a_1,u_1) ; (b_2,v_2)

The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. P_1 sets $b_1 = m_0 \oplus m_1$; $v_1 = m_0$
 - Observe: $V_1 \oplus U_2 = m_0 \oplus m_{a_2}$
 - If $a_2=0$ then $v_1 \oplus u_2 = m_0 \oplus m_0 = 0 = a_2b_1$
 - If $a_2=1$ then $v_1 \oplus u_2 = m_0 \oplus m_1 = b_1 = a_2b_1$
- 4. P_1 and P_2 repeat steps 1-3 with reversed roles to obtain (a_1,u_1) ; (b_2,v_2)
- 5. P_i sets $c_i = (a_ib_i) \oplus u_i \oplus v_i$

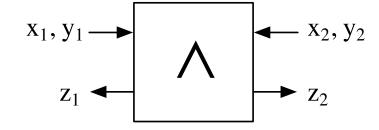
The Aim: Generate a multiplication triple $(a_1 \oplus a_2)$ $(b_1 \oplus b_2) = c_1 \oplus c_2$

- P₁'s output: a₁,b₁,c₁
- P₂'s output: a₂,b₂,c₂
- Property: $(a_1 \oplus a_2) (b_1 \oplus b_2) = c_1 \oplus c_2$
 - Observe that $C_1 \oplus C_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

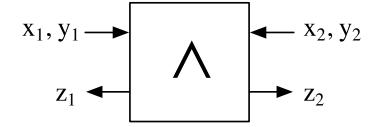
The Protocol:

- 1. P_1 : choose $m_0, m_1 \in_R \{0,1\}$; P_2 : choose $a_2 \in_R \{0,1\}$
- 2. P_1 and P_2 run OT: P_1 inputs (m_0, m_1) , P_2 inputs a_2 and gets $u_2 = m_{a2}$
- 3. $P_1 \text{ sets } b_1 = m_0 \oplus m_1; v_1 = m_0$
 - Observe: $V_1 \oplus U_2 = m_0 \oplus m_{a_2}$
 - If $a_2=0$ then $v_1 \oplus u_2 = m_0 \oplus m_0 = 0 = a_2b_1$
 - If $a_2=1$ then $v_1\oplus u_2=m_0\oplus m_1=b_1=a_2b_1$
- 4. P_1 and P_2 repeat steps 1-3 with reversed roles to obtain (a_1,u_1) ; (b_2,v_2)
- 5. P_i sets $c_i = (a_ib_i) \oplus u_i \oplus v_i$

Observe: $c_1 \oplus c_2 = a_1b_1 \oplus u_1 \oplus v_1 \oplus a_2b_2 \oplus u_2 \oplus v_2 = a_1b_1 \oplus a_2b_1 \oplus a_1b_2 \oplus a_2b_2$

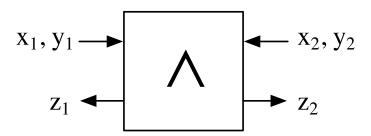


The aim: Compute AND using multiplication triple



The aim: Compute AND using multiplication triple

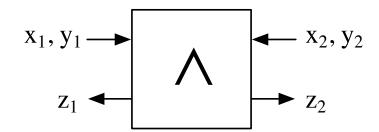
Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$



The aim: Compute AND using multiplication triple

Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$

 P_1 sends P_2 : $d_1=x_1\oplus a_1$; $e_1=y_1\oplus b_1$

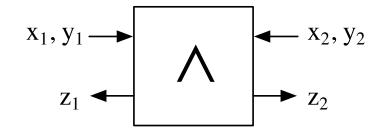


The aim: Compute AND using multiplication triple

Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$

 P_1 sends P_2 : $d_1=x_1\oplus a_1$; $e_1=y_1\oplus b_1$

 P_2 sends P_1 : $d_2=x_2\oplus a_2$; $e_2=y_2\oplus b_2$



The aim: Compute AND using multiplication triple

Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$

 P_1 sends P_2 : $d_1 = x_1 \oplus a_1$; $e_1 = y_1 \oplus b_1$

 P_2 sends P_1 : $d_2=x_2\oplus a_2$; $e_2=y_2\oplus b_2$

 $x_1, y_1 \longrightarrow$ $z_1 \longleftarrow x_2, y_2 \longrightarrow z_2$

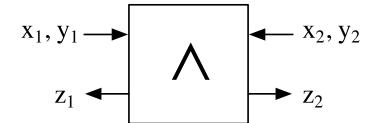
 P_1 and P_2 locally compute: $d=d_1\oplus d_2$; $e=e_1\oplus e_2$

The aim: Compute AND using multiplication triple

Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$

 P_1 sends P_2 : $d_1=x_1\oplus a_1$; $e_1=y_1\oplus b_1$

 P_2 sends P_1 : $d_2=x_2\oplus a_2$; $e_2=y_2\oplus b_2$



 P_1 and P_2 locally compute: $d=d_1\oplus d_2$; $e=e_1\oplus e_2$

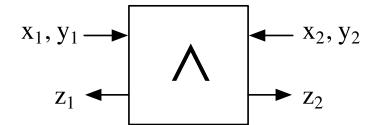
 P_1 outputs: $z_1 = db_1 \oplus ea_1 \oplus c_1 \oplus de$

The aim: Compute AND using multiplication triple

Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$

 P_1 sends P_2 : $d_1=x_1\oplus a_1$; $e_1=y_1\oplus b_1$

 P_2 sends P_1 : $d_2=x_2\oplus a_2$; $e_2=y_2\oplus b_2$



 P_1 and P_2 locally compute: $d=d_1\oplus d_2$; $e=e_1\oplus e_2$

 P_1 outputs: $z_1 = db_1 \oplus ea_1 \oplus c_1 \oplus de$

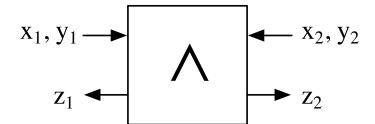
 P_2 outputs: $Z_2 = db_2 \oplus ea_2 \oplus C_2$

The aim: Compute AND using multiplication triple

Given: a_1,b_1,c_1 and a_2,b_2,c_2 such that $c_1\oplus c_2=a_1b_1\oplus a_2b_1\oplus a_1b_2\oplus a_2b_2$

 P_1 sends P_2 : $d_1=x_1\oplus a_1$; $e_1=y_1\oplus b_1$

 P_2 sends P_1 : $d_2=x_2\oplus a_2$; $e_2=y_2\oplus b_2$



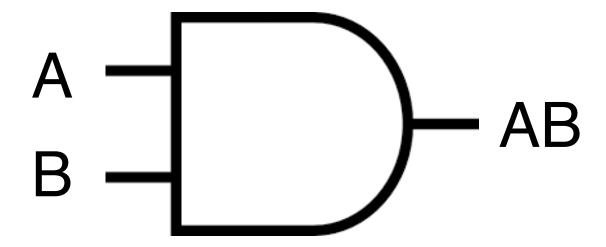
 P_1 and P_2 locally compute: $d=d_1\oplus d_2$; $e=e_1\oplus e_2$

 P_1 outputs: $z_1 = db_1 \oplus ea_1 \oplus c_1 \oplus de$

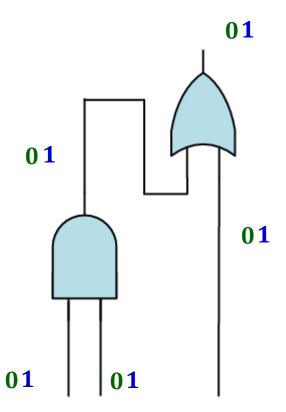
 P_2 outputs: $Z_2 = db_2 \oplus ea_2 \oplus c_2$

On the board: it holds $z_1 \oplus z_2 = (x_1 \oplus x_2)(y_1 \oplus y_2)$

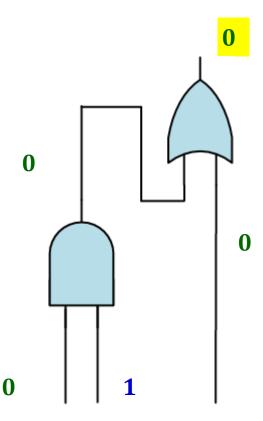
Part 1: Efficient Garbled Circuits



Conventional circuit

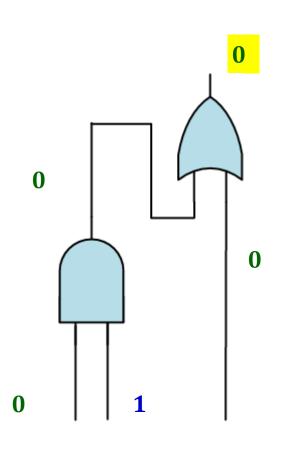


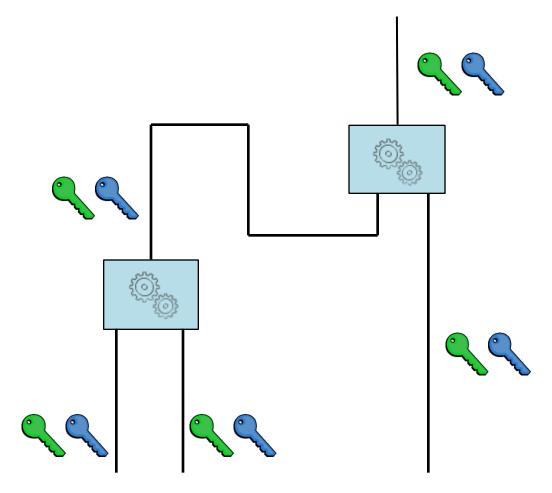
Conventional circuit



Conventional circuit

Garbled circuit

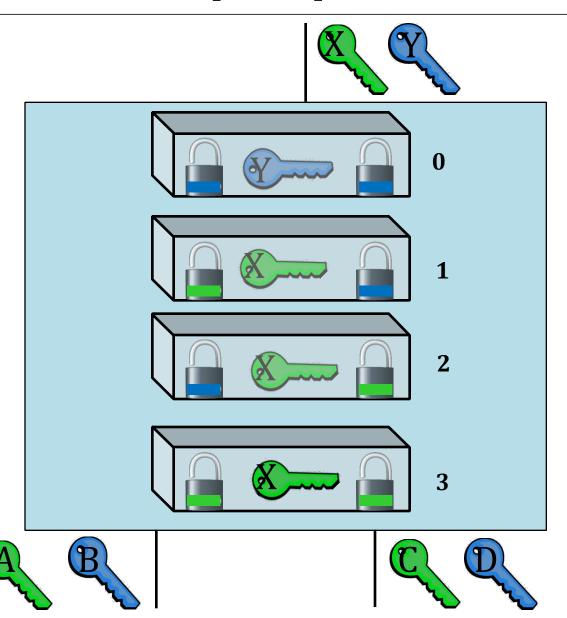




Conventional circuit Garbled circuit keys look random

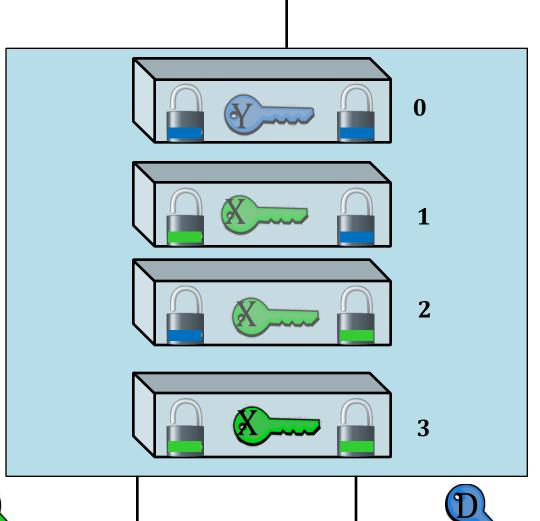
given input keys, can compute output key only

Garbled Gate [Yao86]



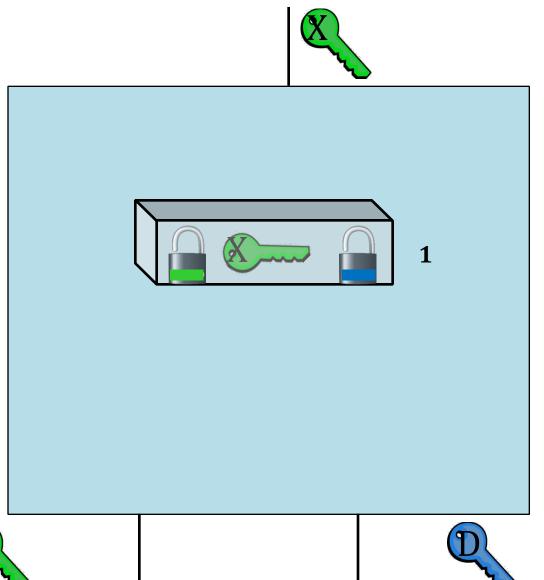
given two input keys, can compute only output key

Garbled Gate [Yao86]



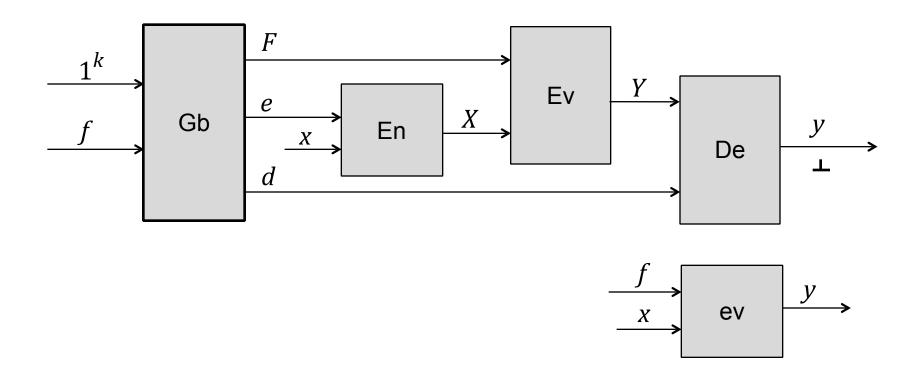
given two input keys, can compute only output key

Garbled Gate [Yao86]

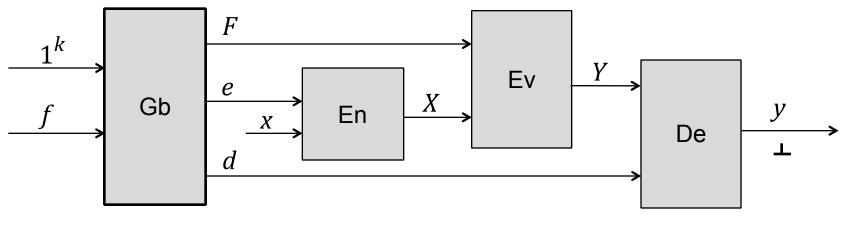


given two input keys, can compute only output key

Formalization: Garbling Schemes [BellareHoangRogaway12]

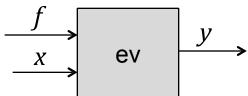


Formalization: Garbling Schemes [BellareHoangRogaway12]

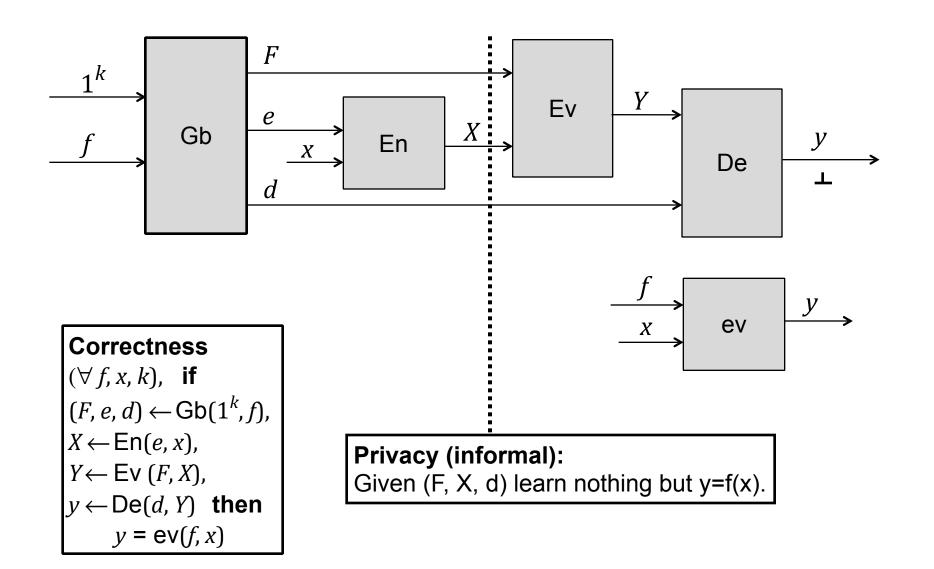


Correctness

$$(\forall f, x, k)$$
, **if**
 $(F, e, d) \leftarrow \text{Gb}(1^k, f)$,
 $X \leftarrow \text{En}(e, x)$,
 $Y \leftarrow \text{Ev}(F, X)$,
 $y \leftarrow \text{De}(d, Y)$ **then**
 $y = \text{ev}(f, x)$



Formalization: Garbling Schemes [BellareHoangRogaway12]



Overview of Efficient Garbled Circuit Constructions

1990 Point-and-Permute [BeaverMicaliRogaway]

1999 3-row reduction [NaorPinkasSumner]

[KolesnikovSchneider] 2008 Free-XOR

[PinkasSchneiderSmartWilliams] 2009 2-row reduction

2012 Garbling via AES [KreuterShelatShen]

2013 Fixed-key AES [BellareHoangKeelveedhiRogaway]

2014 FleXor [KolesnikovMohasselRosulek]

2015 HalfGates [ZahurRosulekEvans]

Wires:

Assign random keys k_i , K_i to all wires i

Wires:

Assign random keys k_i , K_i to all wires i

Garbling:

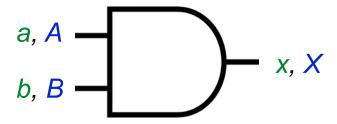
For each gate use double-encryption and randomly permute entries:

$$E_a(E_b(x))$$

$$\mathsf{E}_a(\mathsf{E}_B(x))$$

$$\mathsf{E}_{A}(\mathsf{E}_{b}(x))$$

$$\mathsf{E}_{A}(\mathsf{E}_{B}(X))$$



Wires:

Assign random keys k_i , K_i to all wires i

Garbling:

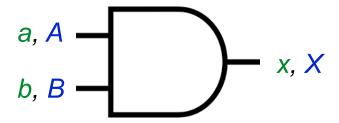
For each gate use double-encryption and randomly permute entries:

$$E_a(E_b(x))$$

$$\mathsf{E}_a(\mathsf{E}_B(x))$$

$$\mathsf{E}_{\mathsf{A}}(\mathsf{E}_{\mathsf{b}}(\mathsf{x}))$$

$$\mathsf{E}_{A}(\mathsf{E}_{B}(X))$$



Outputs:

For each output wire *i*: provide mapping $[(0, k_i), (1, K_i)]$

Evaluator needs to know which entry was decrypted successfully

Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with **efficiently verifiable range**:

 $E_k(m) = [r, f_k(r) \oplus (m \mid\mid 0^n)],$ where f is a pseudo-random function (by pseudorandomness of f, prob. of obtaining 0^n with incorrect k is negl.)

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with **efficiently verifiable range**:

 $E_k(m) = [r, f_k(r) \oplus (m \mid\mid 0^n)],$ where f is a pseudo-random function (by pseudorandomness of f, prob. of obtaining 0^n with incorrect k is negl.)

⇒ Need to **decrypt multiple entries** until decryption succeeds

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

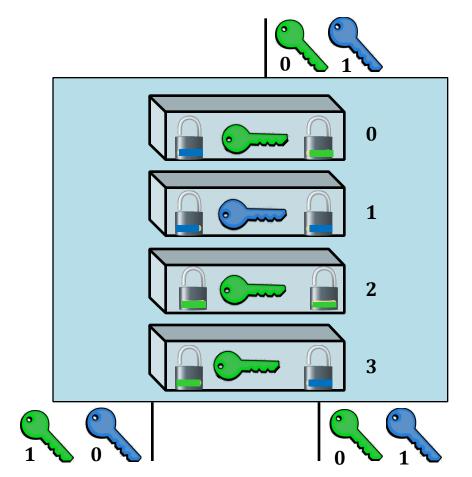
Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with efficiently verifiable range:

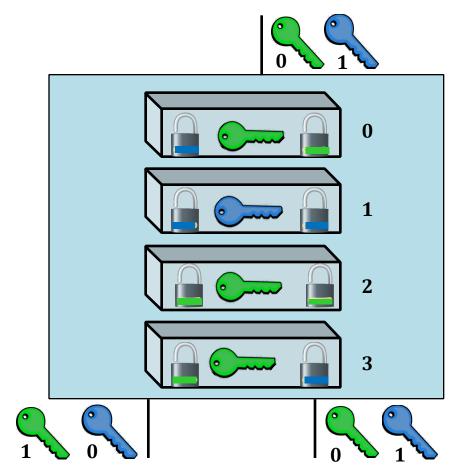
 $E_k(m) = [r, f_k(r) \oplus (m \mid\mid 0^n)],$ where f is a pseudo-random function (by pseudorandomness of f, prob. of obtaining 0^n with incorrect k is negl.)

- ⇒ Need to **decrypt multiple entries** until decryption succeeds
 - Expected number of decryptions requires is 2.5

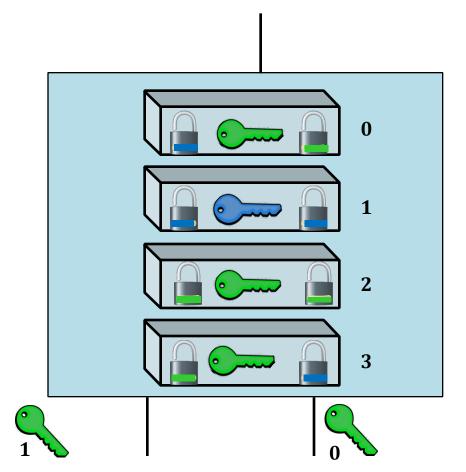
For every wire i, choose a random signal bit p_i together with the key.



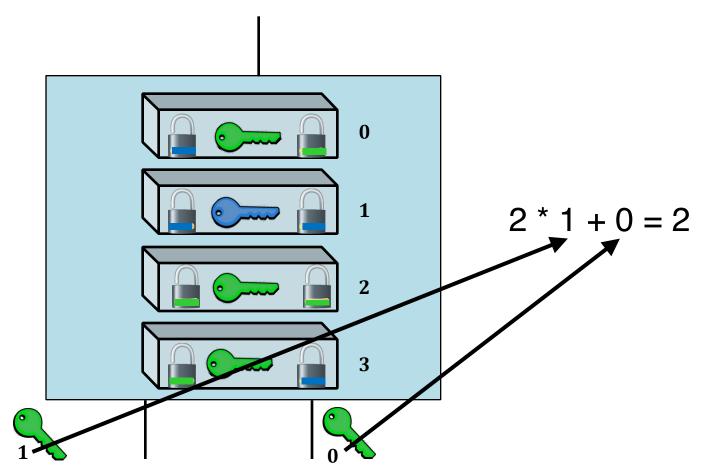
For every wire i, choose a random signal bit p_i together with the key.



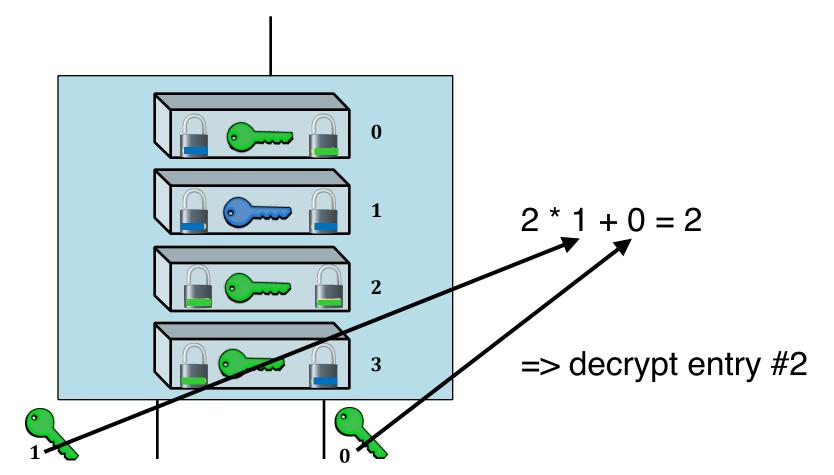
For every wire i, choose a random signal bit p_i together with the key.



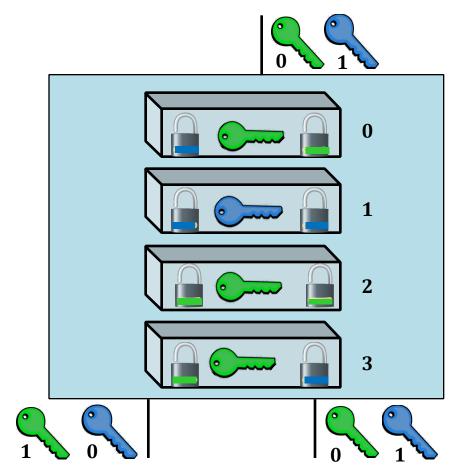
For every wire i, choose a random signal bit p_i together with the key.



For every wire i, choose a random signal bit p_i together with the key.



For every wire i, choose a random signal bit p_i together with the key.



Advantages of point-and-permute:

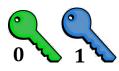
Exactly one entry needs to be decrypted

Advantages of point-and-permute:

- Exactly one entry needs to be decrypted
- Simplifies output decryption

Advantages of point-and-permute:

- Exactly one entry needs to be decrypted
- Simplifies output decryption



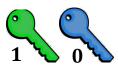
If output permutation $p_i = 0$ then output is permutation bit

If output permutation $p_i = 1$ then output is negated permutation bit

Advantages of point-and-permute:

- Exactly one entry needs to be decrypted
- Simplifies output decryption

If output permutation $p_i = 0$ then output is permutation bit

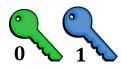


If output permutation $p_i = 1$ then output is negated permutation bit

 \Rightarrow Sender simply reveals for each output wire the bit p_i to receiver.

Advantages of point-and-permute:

- Exactly one entry needs to be decrypted
- Simplifies output decryption



If output permutation $p_i = 0$ then output is permutation bit

If output permutation $p_i = 1$ then output is negated permutation bit

 \Rightarrow Sender simply reveals for each output wire the bit p_i to receiver.

In the following we always assume usage of point and permute. p(k) is the permutation bit of key k.

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus F(k_{l}, p(k_{l}) || T) \oplus F(k_{r}, p(k_{r}) || T)$, where F is a pseudo-random function, e.g., instantiated with AES.

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus F(k_{l}, p(k_{l}) || T) \oplus F(k_{r}, p(k_{r}) || T)$, where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.

$$\mathsf{E}^T(k_l,k_r;\,c)=c\oplus\mathsf{F}(k_l,\,\mathsf{p}(k_l)\parallel T)\oplus\mathsf{F}(k_r,\,\mathsf{p}(k_r)\parallel i)\,!=\mathbf{0}$$

- $\Rightarrow c = F(k_l, p(k_l) || T) \oplus F(k_r, p(k_r) || T).$
- ⇒ One of the two output keys is derived from the input keys.

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus F(k_{l}, p(k_{l}) || T) \oplus F(k_{r}, p(k_{r}) || T)$, where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.

$$E^{T}(k_{l},k_{r}; c) = c \oplus F(k_{l}, p(k_{l}) \parallel T) \oplus F(k_{r}, p(k_{r}) \parallel i) != \mathbf{0}$$

$$\Rightarrow c = F(k_{l}, p(k_{l}) \parallel T) \oplus F(k_{r}, p(k_{r}) \parallel T).$$

⇒ One of the two output keys is derived from the input keys.

$$E^{T}(a,B;c)$$

$$E^{T}(A,b;c)$$

$$E^{T}(A,B;C)$$

remaining 3 table entries as before

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus F(k_{l}, p(k_{l}) || T) \oplus F(k_{r}, p(k_{r}) || T)$, where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.

$$E^{T}(k_{l},k_{r};c) = c \oplus F(k_{l}, p(k_{l}) \parallel T) \oplus F(k_{r}, p(k_{r}) \parallel i) != \mathbf{0}$$

$$\Rightarrow c = F(k_{l}, p(k_{l}) \parallel T) \oplus F(k_{r}, p(k_{r}) \parallel T).$$

⇒ One of the two output keys is derived from the input keys.

$$E^{T}(a,B;c)$$
 $E^{T}(A,b;c)$ remaining 3 table entries as before $E^{T}(A,B;C)$

⇒ Communication is reduced from 4 to 3 table entries.

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).

$$R = a \oplus A = b \oplus B = c \oplus C = \dots$$

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).

$$R = a \oplus A = b \oplus B = c \oplus C = \dots$$

Garble XOR: set output key $c = a \oplus b$

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).

$$R = a \oplus A = b \oplus B = c \oplus C = \dots$$

Garble XOR: set output key $c = a \oplus b$

Evaluate XOR: set output key $k_c = k_a \oplus k_b$

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance *R* (unknown to evaluator).

$$R = a \oplus A = b \oplus B = c \oplus C = \dots$$

Garble XOR: set output key $c = a \oplus b$

Evaluate XOR: set output key $k_c = k_a \oplus k_b$

Correctness:
$$\underline{c} = \underline{a \oplus b} = (R \oplus a) \oplus (R \oplus b) = \underline{A \oplus B}$$

 $\underline{C} = c \oplus R = a \oplus b \oplus R = \underline{a \oplus B} = \underline{A \oplus b}$

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance *R* (unknown to evaluator).

$$R = a \oplus A = b \oplus B = c \oplus C = \dots$$

Garble XOR: set output key $c = a \oplus b$

Evaluate XOR: set output key $k_c = k_a \oplus k_b$

Correctness:
$$\underline{c} = \underline{a \oplus b} = (R \oplus a) \oplus (R \oplus b) = \underline{A \oplus B}$$

 $\underline{C} = c \oplus R = a \oplus b \oplus R = \underline{a \oplus B} = \underline{A \oplus b}$

Security (intuitively): Evaluator knows one key per wire, so never learns R

■ Requires random oracle or non-standard circularity assumption

Encryption function: $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus H(k_{l} || k_{r} || T)$, where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).

$$R = a \oplus A = b \oplus B = c \oplus C = \dots$$

Garble XOR: set output key $c = a \oplus b$

Evaluate XOR: set output key $k_c = k_a \oplus k_b$

Correctness:
$$\underline{c} = \underline{a \oplus b} = (R \oplus a) \oplus (R \oplus b) = \underline{A \oplus B}$$

 $\underline{C} = c \oplus R = a \oplus b \oplus R = \underline{a \oplus B} = \underline{A \oplus b}$

Security (intuitively): Evaluator knows one key per wire, so never learns R

Requires random oracle or non-standard circularity assumption
 Can be combined with 3-row reduction.

Since 2008 many Intel and AMD CPUs have hardware support for AES: Advanced Encryption Standard New Instructions (AES-NI)

Since 2008 many Intel and AMD CPUs have hardware support for AES: Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: $E^T(k_l, k_r; k_o) = k_o \oplus AES-256(k_l || k_r; T)$

Since 2008 many Intel and AMD CPUs have hardware support for AES: Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: $E^T(k_l, k_r; k_o) = k_o \oplus AES-256(k_l || k_r; T)$

- => Needs to run expensive AES key schedule per gate
- => Also assumes a related-key assumptions (not great for AES)

Since 2008 many Intel and AMD CPUs have hardware support for AES: Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: $E^T(k_l, k_r; k_o) = k_o \oplus AES-256(k_l || k_r; T)$

- => Needs to run expensive AES key schedule per gate
- => Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:

Choose fixed key X and run AES key schedule once

 $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus AES-128(X; K) \oplus K \text{ with } K = 2k_{l} \oplus 4k_{r} \oplus T$

Since 2008 many Intel and AMD CPUs have hardware support for AES: Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: $E^T(k_l, k_r; k_o) = k_o \oplus AES-256(k_l || k_r; T)$

- => Needs to run expensive AES key schedule per gate
- => Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:

Choose fixed key X and run AES key schedule once

 $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus AES-128(X; K) \oplus K \text{ with } K = 2k_{l} \oplus 4k_{r} \oplus T$

Requires assuming an "ideal cipher" assumption on AES

Since 2008 many Intel and AMD CPUs have hardware support for AES: Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: $E^T(k_l, k_r; k_o) = k_o \oplus AES-256(k_l || k_r; T)$

- => Needs to run expensive AES key schedule per gate
- => Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:

Choose fixed key X and run AES key schedule once

 $E^{T}(k_{l}, k_{r}; k_{o}) = k_{o} \oplus AES-128(X; K) \oplus K \text{ with } K = 2k_{l} \oplus 4k_{r} \oplus T$

Requires assuming an "ideal cipher" assumption on AES Can be combined with free XOR and 3-row reduction

```
procedure Gb(1^k, f):
                                                                                              procedure \text{En}(\hat{e}, \hat{x}):
   R \leftarrow \{0,1\}^{k-1}
                                                                                                  for e_i \in \hat{e} do
   for i \in Inputs(f) do
                                                                                                     X_i \leftarrow e_i \oplus x_i R
      W_i^0 \leftarrow \{0,1\}^k
                                                                                                  return \hat{X}
      W_i^1 \leftarrow W_i^0 \oplus R
      e_i \leftarrow W_i^0
                                                                                              procedure De(\hat{d}, \hat{Y}):
   for i \notin Inputs(f) \{in topo. order\} do
                                                                                                  for d_i \in \hat{d} do
      \{a,b\} \leftarrow \mathsf{GateInputs}(f,i)
                                                                                                     y_i \leftarrow d_i \oplus \mathsf{lsb}\, Y_i
       if i \in \mathsf{XorGates}(f) then
                                                                                                 return \hat{y}
          W_i^0 \leftarrow W_a^0 \oplus W_h^0
       else
                                                                                              procedure \text{Ev}(\hat{F}, \hat{X}):
          (W_i^0, T_{Gi}, T_{Ei}) \leftarrow \mathsf{GbAnd}(W_a^0, W_b^0)
                                                                                                  for i \in \mathsf{Inputs}(\hat{F}) do
          F_i \leftarrow (T_{Gi}, T_{Ei})
                                                                                                     W_i \leftarrow X_i
      end if
                                                                                                  for i \notin Inputs(\hat{F}) \{in topo. order\} do
      W_i^1 \leftarrow W_i^0 \oplus R
                                                                                                     \{a,b\} \leftarrow \mathsf{GateInputs}(\hat{F},i)
   for i \in \mathsf{Outputs}(f) do
      d_i \leftarrow \mathsf{lsb}(W_i^0)
                                                                                                     if i \in \mathsf{XorGates}(\hat{F}) then
   return (\hat{F}, \hat{e}, \hat{d})
                                                                                                        W_i \leftarrow W_a \oplus W_b
                                                                                                      else
private procedure GbAnd(W_a^0, W_b^0):
                                                                                                         s_a \leftarrow \mathsf{lsb}\,W_a; s_b \leftarrow \mathsf{lsb}\,W_b
   p_a \leftarrow \operatorname{lsb} W_a^0; p_b \leftarrow \operatorname{lsb} W_b^0
                                                                                                         j_1 \leftarrow \mathsf{NextIndex}(); j_2 \leftarrow \mathsf{NextIndex}()
   j \leftarrow \mathsf{NextIndex}(); j' \leftarrow \mathsf{NextIndex}()
                                                                                                         (T_{Gi}, T_{Ei}) \leftarrow F_i
                                                                                                         W_{Gi} \leftarrow H(W_a, j_1) \oplus s_a T_{Gi}
   {First half gate}
   T_G \leftarrow H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R
                                                                                                        W_{Ei} \leftarrow H(W_b, j_2) \oplus s_b(T_{Ei} \oplus W_a)
   W_G^0 \leftarrow H(W_a^0, j) \oplus p_a T_G
                                                                                                         W_i \leftarrow W_{Gi} \oplus W_{Ei}
                                                                                                     end if
   {Second half gate}
   T_E \leftarrow H(W_h^0, j') \oplus H(W_h^1, j') \oplus W_a^0
                                                                                                  for i \in \mathsf{Outputs}(\hat{F}) do
   W_E^0 \leftarrow H(W_b^0, j') \oplus p_b(T_E \oplus W_a^0)
                                                                                                     Y_i \leftarrow W_i
   {Combine halves}
                                                                                                  return \hat{Y}
   W^0 \leftarrow W_G^0 \oplus W_E^0
   return (W^0, T_G, T_E)
```

```
procedure Gb(1^k, f):
                                                                                               procedure \text{En}(\hat{e}, \hat{x}):
   R \leftarrow \{0,1\}^{k-1}
                                                                                                  for e_i \in \hat{e} do
   for i \in Inputs(f) do
                                                                                                      X_i \leftarrow e_i \oplus x_i R
       W_i^0 \leftarrow \{0,1\}^k
                                                                                                  return \hat{X}
      W_i^1 \leftarrow W_i^0 \oplus R
      e_i \leftarrow W_i^0
                                                                                               procedure De(\hat{d}, \hat{Y}):
   for i \notin Inputs(f) \{in topo. order\} do
                                                                                                  for d_i \in \hat{d} do
       \{a,b\} \leftarrow \mathsf{GateInputs}(f,i)
                                                                                                      y_i \leftarrow d_i \oplus \mathsf{lsb}\, Y_i
       if i \in \mathsf{XorGates}(f) then
                                                                                                  return \hat{y}
          W_i^0 \leftarrow W_a^0 \oplus W_h^0
       else
                                                                                               procedure \text{Ev}(\hat{F}, \hat{X}):
          (W_i^0, T_{Gi}, T_{Ei}) \leftarrow \mathsf{GbAnd}(W_a^0, W_b^0)
                                                                                                  for i \in \mathsf{Inputs}(\hat{F}) do
          F_i \leftarrow (T_{Gi}, T_{Ei})
                                                                                                      W_i \leftarrow X_i
       end if
                                                                                                  for i \notin Inputs(\hat{F}) \{in topo. order\} do
       W_i^1 \leftarrow W_i^0 \oplus R
                                                                                                      \{a,b\} \leftarrow \mathsf{GateInputs}(\hat{F},i)
   for i \in \mathsf{Outputs}(f) do
      d_i \leftarrow \mathsf{lsb}(W_i^0)
                                                                                                      if i \in \mathsf{XorGates}(\hat{F}) then
   return (\hat{F}, \hat{e}, \hat{d})
                                                                                                         W_i \leftarrow W_a \oplus W_b
                                                                                                      else
private procedure GbAnd(W_a^0, W_b^0):
                                                                                                         s_a \leftarrow \mathsf{lsb}\,W_a; s_b \leftarrow \mathsf{lsb}\,W_b
   p_a \leftarrow \operatorname{lsb} W_a^0; p_b \leftarrow \operatorname{lsb} W_b^0
                                                                                                         j_1 \leftarrow \mathsf{NextIndex}(); j_2 \leftarrow \mathsf{NextIndex}()
                                                                                                         (T_{Gi}, T_{Ei}) \leftarrow F_i
   j \leftarrow \mathsf{NextIndex}(); j' \leftarrow \mathsf{NextIndex}()
                                                                                                         W_{Gi} \leftarrow H(W_a, j_1) \oplus s_a T_{Gi}
   {First half gate}
   T_G \leftarrow H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R
                                                                                                         W_{Ei} \leftarrow H(W_b, j_2) \oplus s_b(T_{Ei} \oplus W_a)
   W_G^0 \leftarrow H(W_a^0, j) \oplus p_a T_G
                                                                                                         W_i \leftarrow W_{Gi} \oplus W_{Ei}
                                                                                                      end if
   {Second half gate}
   T_E \leftarrow H(W_h^0, j') \oplus H(W_h^1, j') \oplus W_a^0
                                                                                                  for i \in \mathsf{Outputs}(\hat{F}) do
   W_E^0 \leftarrow H(W_b^0, j') \oplus p_b(T_E \oplus W_a^0)
                                                                                                      Y_i \leftarrow W_i
   {Combine halves}
                                                                                                  return \hat{Y}
```

Free XOR

 $W^0 \leftarrow W_G^0 \oplus W_E^0$ return (W^0, T_G, T_E)

```
procedure \mathsf{Gb}(1^k, f):
                                                                                                procedure \text{En}(\hat{e}, \hat{x}):
   R \leftarrow \{0,1\}^{k-1}
                                                                                                    for e_i \in \hat{e} do
   for i \in Inputs(f) do
                                                                                                       X_i \leftarrow e_i \oplus x_i R
       W_i^0 \leftarrow \{0,1\}^k
                                                                                                   return \hat{X}
       W_i^1 \leftarrow W_i^0 \oplus R
       e_i \leftarrow W_i^0
                                                                                                procedure De(\hat{d}, \hat{Y}):
   for i \notin Inputs(f) \{in topo. order\} do
                                                                                                    for d_i \in \hat{d} do
       \{a,b\} \leftarrow \mathsf{GateInputs}(f,i)
                                                                                                       y_i \leftarrow d_i \oplus \mathsf{lsb}\, Y_i
       if i \in \mathsf{XorGates}(f) then
                                                                                                   return \hat{y}
          W_i^0 \leftarrow W_a^0 \oplus W_h^0
        else
                                                                                                procedure \text{Ev}(\hat{F}, \hat{X}):
           (W_i^0, T_{Gi}, T_{Ei}) \leftarrow \mathsf{GbAnd}(W_a^0, W_b^0)
                                                                                                    for i \in \mathsf{Inputs}(\hat{F}) do
          F_i \leftarrow (T_{Gi}, T_{Ei})
                                                                                                       W_i \leftarrow X_i
       end if
                                                                                                    for i \notin Inputs(\hat{F}) \{in topo. order\} do
       W_i^1 \leftarrow W_i^0 \oplus R
                                                                                                       \{a,b\} \leftarrow \mathsf{GateInputs}(\hat{F},i)
   for i \in \mathsf{Outputs}(f) do
       d_i \leftarrow \mathsf{lsb}(W_i^0)
                                                                                                       if i \in \mathsf{XorGates}(\hat{F}) then
   return (\hat{F}, \hat{e}, \hat{d})
                                                                                                          W_i \leftarrow W_a \oplus W_b
                                                                                                        else
private procedure GbAnd(W_a^0, W_b^0):
                                                                                                          s_a \leftarrow \mathsf{lsb}\,W_a; s_b \leftarrow \mathsf{lsb}\,W_b
   p_a \leftarrow \operatorname{lsb} W_a^0; p_b \leftarrow \operatorname{lsb} W_b^0
                                                                                                          j_1 \leftarrow \mathsf{NextIndex}(); j_2 \leftarrow \mathsf{NextIndex}()
   j \leftarrow \mathsf{NextIndex}(); j' \leftarrow \mathsf{NextIndex}()
                                                                                                          (T_{Gi}, T_{Ei}) \leftarrow F_i
                                                                                                          W_{Gi} \leftarrow H(W_a, j_1) \oplus s_a T_{Gi}
   {First half gate}
   T_G \leftarrow H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R
                                                                                                          W_{Ei} \leftarrow H(W_b, j_2) \oplus s_b(T_{Ei} \oplus W_a)
                                                                                                          W_i \leftarrow W_{Gi} \oplus W_{Ei}
   W_G^0 \leftarrow H(W_a^0, j) \oplus p_a T_G
                                                                                                       end if
   {Second half gate}
   T_E \leftarrow H(W_h^0, j') \oplus H(W_h^1, j') \oplus W_{\hat{a}}^0
                                                                                                   for i \in \mathsf{Outputs}(\hat{F}) do
   W_E^0 \leftarrow H(W_b^0, j') \oplus p_b(T_E \oplus W_a^0)
                                                                                                       Y_i \leftarrow W_i
    {Combine halves}
                                                                                                   return \hat{Y}
   W^0 \leftarrow W_G^0 \oplus W_E^0
```

Free XOR

4 calls of H for garbling AND

return (W^0, T_G, T_E)

Free XOR

4 calls of H

for garbling

 $W^0 \leftarrow W_G^0 \oplus W_E^0$

return (W^0, T_G, T_E)

AND

```
procedure Gb(1^k, f):
                                                                                              procedure \text{En}(\hat{e}, \hat{x}):
   R \leftarrow \{0,1\}^{k-1}
                                                                                                  for e_i \in \hat{e} do
   for i \in Inputs(f) do
                                                                                                      X_i \leftarrow e_i \oplus x_i R
       W_i^0 \leftarrow \{0,1\}^k
                                                                                                  return \hat{X}
       W_i^1 \leftarrow W_i^0 \oplus R
       e_i \leftarrow W_i^0
                                                                                              procedure De(\hat{d}, \hat{Y}):
   for i \notin Inputs(f) \{in topo. order\} do
                                                                                                  for d_i \in \hat{d} do
       \{a,b\} \leftarrow \mathsf{GateInputs}(f,i)
                                                                                                     y_i \leftarrow d_i \oplus \mathsf{lsb}\, Y_i
       if i \in \mathsf{XorGates}(f) then
                                                                                                  return \hat{y}
          W_i^0 \leftarrow W_a^0 \oplus W_h^0
       else
                                                                                              procedure \mathsf{Ev}(\hat{F},\hat{X}):
          (W_i^0, T_{Gi}, T_{Ei}) \leftarrow \mathsf{GbAnd}(W_a^0, W_b^0)
                                                                                                  for i \in Inputs(\hat{F}) do
          F_i \leftarrow (T_{Gi}, T_{Ei})
                                                                                                      W_i \leftarrow X_i
       end if
                                                                                                  for i \notin Inputs(\hat{F}) \{in topo. order\} do
       W_i^1 \leftarrow W_i^0 \oplus R
                                                                                                      \{a,b\} \leftarrow \mathsf{GateInputs}(\hat{F},i)
   for i \in \mathsf{Outputs}(f) do
      d_i \leftarrow \mathsf{lsb}(W_i^0)
                                                                                                      if i \in \mathsf{XorGates}(\hat{F}) then
   return (\hat{F}, \hat{e}, \hat{d})
                                                                                                         W_i \leftarrow W_a \oplus W_b
                                                                                                      else
private procedure GbAnd(W_a^0, W_b^0):
                                                                                                         s_a \leftarrow \mathsf{lsb}\,W_a : s_b \leftarrow \mathsf{lsb}\,W_b
   p_a \leftarrow \operatorname{lsb} W_a^0; p_b \leftarrow \operatorname{lsb} W_b^0
                                                                                                         j_1 \leftarrow \mathsf{NextIndex}(); j_2 \leftarrow \mathsf{NextIndex}()
                                                                                                         (T_{Gi}, T_{Ei}) \leftarrow F_i
   j \leftarrow \mathsf{NextIndex}(); j' \leftarrow \mathsf{NextIndex}()
                                                                                                         W_{Gi} \leftarrow H(W_a, j_1) \oplus s_a T_{Gi}
   {First half gate}
   T_G \leftarrow H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R
                                                                                                         W_{Ei} \leftarrow H(W_b, j_2) \oplus s_b(T_{Ei} \oplus W_a)
                                                                                                         W_i \leftarrow W_{Gi} \oplus W_{Ei}
   W_G^0 \leftarrow H(W_a^0, j) \oplus p_a T_G
                                                                                                      end if
   {Second half gate}
   T_E \leftarrow H(W_h^0, j') \oplus H(W_h^1, j') \oplus W_a^0
                                                                                                  for i \in \mathsf{Outputs}(\hat{F}) do
   W_E^0 \leftarrow H(W_b^0, j') \oplus p_b(T_E \oplus W_a^0)
                                                                                                     Y_i \leftarrow W_i
   {Combine halves}
                                                                                                  return \hat{Y}
```

2 table entries per AND!

23

```
procedure Gb(1^k, f):
                                                                                           procedure \text{En}(\hat{e}, \hat{x}):
   R \leftarrow \{0,1\}^{k-1}
                                                                                              for e_i \in \hat{e} do
   for i \in Inputs(f) do
                                                                                                  X_i \leftarrow e_i \oplus x_i R
      W_i^0 \leftarrow \{0,1\}^k
                                                                                              return \hat{X}
      W_i^1 \leftarrow W_i^0 \oplus R
      e_i \leftarrow W_i^0
                                                                                           procedure De(\hat{d}, \hat{Y}):
   for i \notin Inputs(f) \{in topo. order\} do
      \{a,b\} \leftarrow \mathsf{GateInputs}(f,i)
       if i \in \mathsf{XorGates}(f) then
                                                                                              return \hat{y}
          W_i^0 \leftarrow W_a^0 \oplus W_h^0
       else
          (W_i^0, T_{Gi}, T_{Ei}) \leftarrow \mathsf{GbAnd}(W_a^0, W_b^0)
          F_i \leftarrow (T_{Gi}, T_{Ei})
      end if
      W_i^1 \leftarrow W_i^0 \oplus R
   for i \in \mathsf{Outputs}(f) do
      d_i \leftarrow \mathsf{lsb}(W_i^0)
   return (\hat{F}, \hat{e}, \hat{d})
                                                                                                  else
private procedure GbAnd(W_a^0, W_b^0):
   p_a \leftarrow \operatorname{lsb} W_a^0; p_b \leftarrow \operatorname{lsb} W_b^0
   j \leftarrow \mathsf{NextIndex}(); j' \leftarrow \mathsf{NextIndex}()
   {First half gate}
   T_G \leftarrow H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R
   W_G^0 \leftarrow H(W_a^0, j) \oplus p_a T_G
                                                                                                  end if
   {Second half gate}
   T_E \leftarrow H(W_h^0, j') \oplus H(W_h^1, j') \oplus W_a^0
   W_E^0 \leftarrow H(W_b^0, j') \oplus p_b(T_E \oplus W_a^0)
   {Combine halves}
```

2 table entries per AND!

for $d_i \in \hat{d}$ do $y_i \leftarrow d_i \oplus \mathsf{lsb}\, Y_i$ procedure $\text{Ev}(\hat{F}, \hat{X})$: for $i \in Inputs(\hat{F})$ do $W_i \leftarrow X_i$ **for** $i \notin Inputs(\hat{F}) \{in topo. order\}$ **do** $\{a,b\} \leftarrow \mathsf{GateInputs}(\hat{F},i)$ if $i \in \mathsf{XorGates}(\hat{F})$ then $W_i \leftarrow W_a \oplus W_b$ $s_a \leftarrow \mathsf{lsb}\,W_a : s_b \leftarrow \mathsf{lsb}\,W_b$ $j_1 \leftarrow \mathsf{NextIndex}(); j_2 \leftarrow \mathsf{NextIndex}()$ $(T_{Gi}, T_{Ei}) \leftarrow F_i$ $W_{Gi} \leftarrow H(W_a, j_1) \oplus s_a T_{Gi}$ $W_{Ei} \leftarrow H(W_b, j_2) \oplus s_b(T_{Ei} \oplus W_a)$ $W_i \leftarrow W_{Gi} \oplus W_{Ei}$ for $i \in \mathsf{Outputs}(\hat{F})$ do $Y_i \leftarrow W_i$ return \hat{Y}

2 calls of H for evaluating AND

4 calls of H for garbling AND

 $W^0 \leftarrow W_G^0 \oplus W_E^0$

return (W^0, T_G, T_E)

Free XOR

Part 2: Efficient OTs

http://encrypto.de/code/OTExtension

G. Asharov, Y. Lindell, T. Schneider, M. Zohner: *More efficient oblivious transfer and extensions for faster secure computation.*

In ACM CCS'13.

OT - Bad News

- [ImpagliazzoRudich89]: there's no black-box reduction from OT to OWFs

OT - Bad News

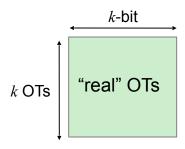
- [ImpagliazzoRudich89]: there's no black-box reduction from OT to OWFs
- Several OT protocols based on public-key cryptography
 - e.g., [NaorPinkas01] yields ~1,000 OTs per second

OT - Bad News

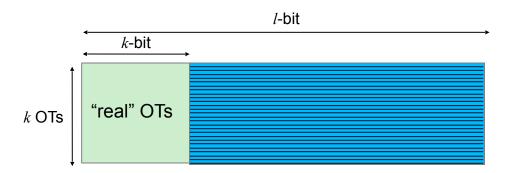
- [ImpagliazzoRudich89]: there's no black-box reduction from OT to OWFs
- Several OT protocols based on public-key cryptography
 - e.g., [NaorPinkas01] yields ~1,000 OTs per second
- Since public-key crypto is expensive, OT was believed to be inefficient

- [Beaver95]: OTs can be precomputed (only OTP in online phase)

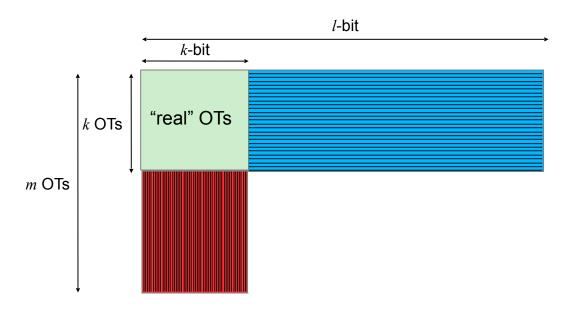
- [Beaver95]: OTs can be precomputed (only OTP in online phase)
- OT Extensions (similar to hybrid encryption): use symmetric crypto to stretch few "real" OTs into longer/many OTs



- [Beaver95]: OTs can be precomputed (only OTP in online phase)
- OT Extensions (similar to hybrid encryption): use symmetric crypto to stretch few "real" OTs into longer/many OTs
 - [Beaver96]: OT on long strings from short seeds

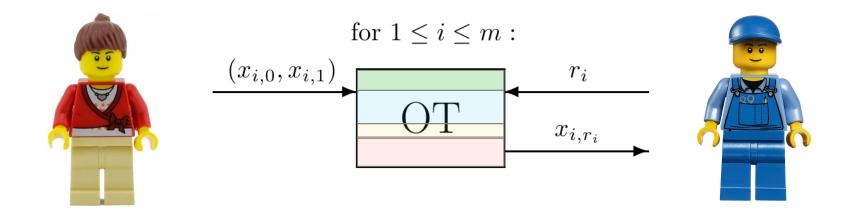


- [Beaver95]: OTs can be precomputed (only OTP in online phase)
- OT Extensions (similar to hybrid encryption): use symmetric crypto to stretch few "real" OTs into longer/many OTs
 - [Beaver96]: OT on long strings from short seeds
 - [IshaiKilianNissimPetrank03]: many OTs from few OTs



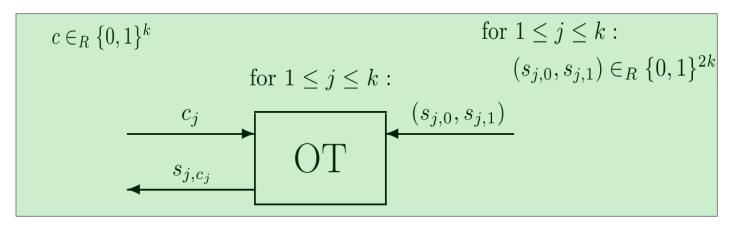
OT Extension of [IKNP03] (1)

- Alice inputs m pairs of ℓ -bit strings $(x_{i,0}, x_{i,1})$
- Bob inputs m-bit string r and obtains x_{i,r_i} in i-th OT



OT Extension of [IKNP03] (2)

Alice and Bob perform k "real" OTs on random seeds with reverse roles
 (k: security parameter)



OT Extension of [IKNP03] (3)

- Bob generates a random $m \times k$ bit matrix T and masks his choices r
- The matrix is masked with the stretched seeds of the "real" OTs

$$\mathbf{T} \in_{R} \{0,1\}^{m \times k}$$
for $1 \leq j \leq k$:
$$u_{j,0} = PRG(s_{j,0}) \oplus \mathbf{T}[j]$$
for $1 \leq j \leq k$:
$$\mathbf{V}[j] = u_{j,c_{j}} \oplus PRG(s_{j,c_{j}})$$

$$u_{j,1} = PRG(s_{j,1}) \oplus \mathbf{T}[j] \oplus \mathbf{r}$$

PRG: pseudo-random generator (instantiated with AES)

OT Extension of [IKNP03] (4)

- Transpose matrices **V** and **T**
- Alice masks her inputs and obliviously sends them to Bob

$$\mathbf{V'} = \mathbf{V}^{T}$$

$$for 1 \leq i \leq m :$$

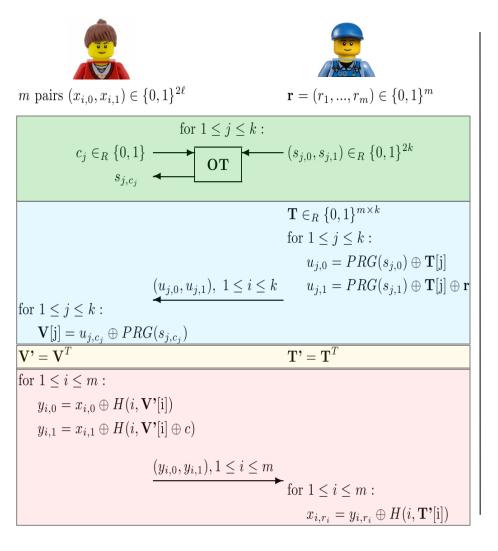
$$y_{i,0} = x_{i,0} \oplus H(i, \mathbf{V'}[i])$$

$$y_{i,1} = x_{i,1} \oplus H(i, \mathbf{V'}[i] \oplus c)$$

$$\underbrace{(y_{i,0}, y_{i,1}), 1 \leq i \leq m}_{for 1 \leq i \leq m :$$

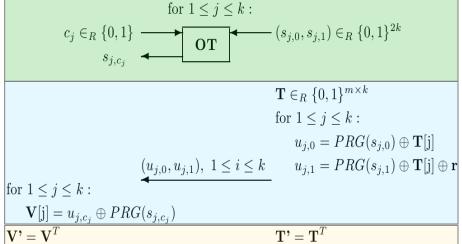
$$x_{i,r_i} = y_{i,r_i} \oplus H(i, \mathbf{T'}[i])$$

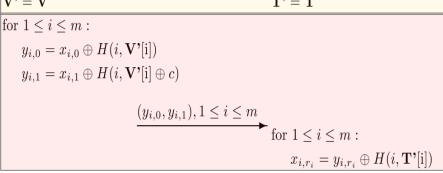
H: correlation robust function (instantiated with hash function)



$$m \text{ pairs } (x_{i,0}, x_{i,1}) \in \{0, 1\}^{2\ell}$$

$$\mathbf{r} = (r_1, ..., r_m) \in \{0, 1\}^m$$

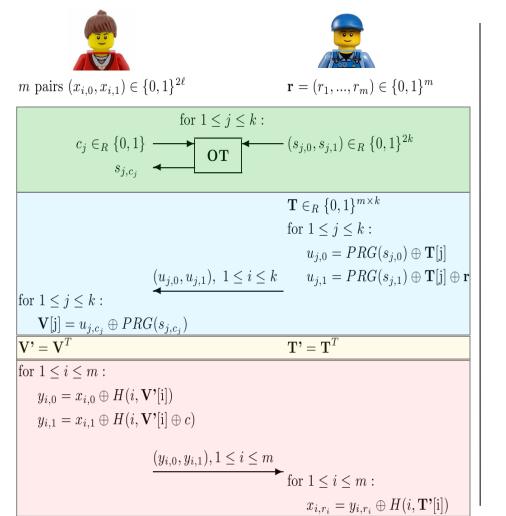




Per OT:

1 # PRG evaluations 2

2 # H evaluations 1

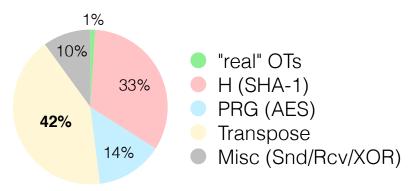


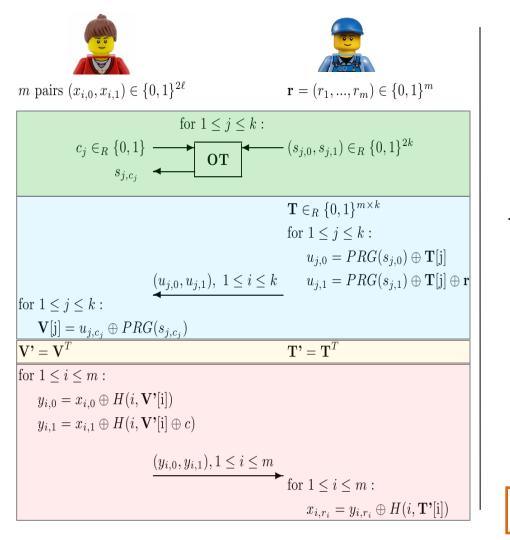
Per OT:

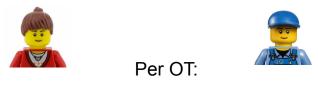
1 # PRG evaluations 2

2 # H evaluations 1

Time distribution for 10 Million OTs (in 21s): 2.1 microseconds per OT



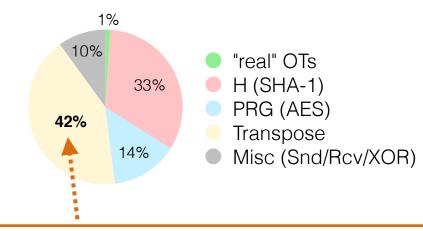




1 # PRG evaluations 2

2 # H evaluations 1

Time distribution for 10 Million OTs (in 21s): 2.1 microseconds per OT



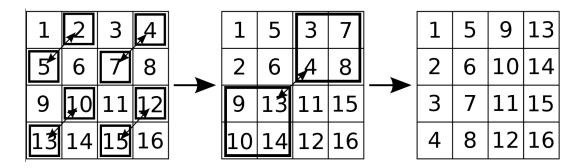
Non-crypto part was bottleneck!!!

Algorithmic Optimization: Efficient Matrix Transposition

- Naive matrix transposition performs *mk* load/process/store operations

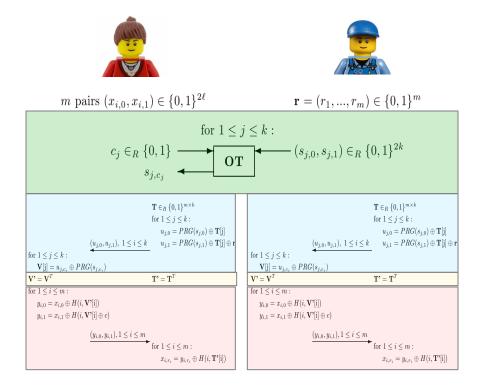
Algorithmic Optimization: Efficient Matrix Transposition

- Naive matrix transposition performs *mk* load/process/store operations
- Eklundh's algorithm reduces number of operations to $O(m \log_2 k)$ swaps
 - Swap whole registers instead of bits
 - Transposing 10 times faster



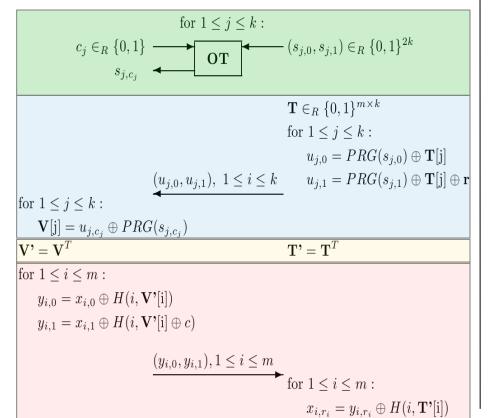
Algorithmic Optimization: Parallelization

- OT extension can easily be parallelized by splitting the *T* matrix into sub-matrices
- Since columns are independent,
 OT is highly parallelizable



$$m \text{ pairs } (x_{i,0}, x_{i,1}) \in \{0, 1\}^{2\ell}$$

$$\mathbf{r} = (r_1, ..., r_m) \in \{0, 1\}^m$$



Per OT:

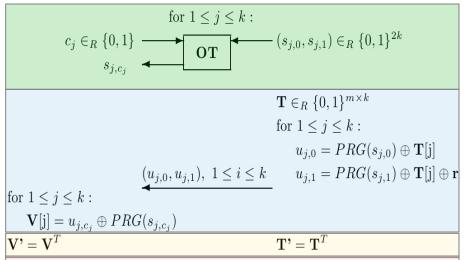
2ℓ

Bits sent

2*k*

$$m \text{ pairs } (x_{i,0}, x_{i,1}) \in \{0, 1\}^{2\ell}$$

$$\mathbf{r} = (r_1, ..., r_m) \in \{0, 1\}^m$$



for
$$1 \leq i \leq m$$
:

$$y_{i,0} = x_{i,0} \oplus H(i, \mathbf{V'[i]})$$

$$y_{i,1} = x_{i,1} \oplus H(i, \mathbf{V'[i]} \oplus c)$$

$$\underbrace{(y_{i,0}, y_{i,1}), 1 \leq i \leq m}_{\text{for } 1 \leq i \leq m} :$$

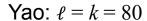
$$x_{i,r_i} = y_{i,r_i} \oplus H(i, \mathbf{T'[i]})$$

Per OT:

2ℓ

Bits sent

2*k*

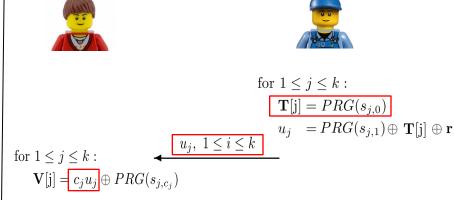


GMW: $\ell = 1$, k = 80

Protocol Optimization: General OT Extension

- Instead of generating a random T matrix, we derive it from $s_{i,0}$
- Reduces data sent by Bob by factor 2


```
\mathbf{T} \in_{R} \{0,1\}^{m \times k}
for 1 \leq j \leq k:
u_{j,0} = PRG(s_{j,0}) \oplus \mathbf{T}[j]
for 1 \leq j \leq k:
\mathbf{V}[j] = u_{j,c_{j}} \oplus PRG(s_{j,c_{j}})
u_{j,1} = PRG(s_{j,1}) \oplus \mathbf{T}[j] \oplus \mathbf{r}
```



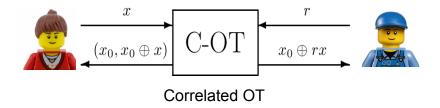
Specific OT Functionalities

- Secure computation protocols often require a specific OT functionality

Specific OT Functionalities

- Secure computation protocols often require a specific OT functionality
 - Yao with free XORs requires strings x_0 , x_1 to be XOR-correlated

- Correlated OT: random x_0 and $x_1 = x_0 \oplus x$

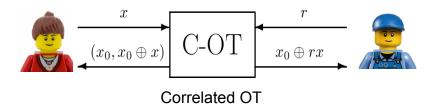


e.g., for Yao

Specific OT Functionalities

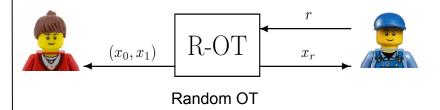
- Secure computation protocols often require a specific OT functionality
 - Yao with free XORs requires strings x_0 , x_1 to be XOR-correlated
 - GMW with multiplication triples can use random strings

- Correlated OT: random x_0 and $x_1 = x_0 \oplus x$



e.g., for Yao

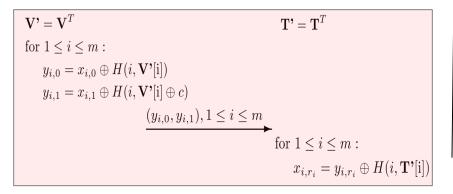
- Random OT: random x_0 and x_1

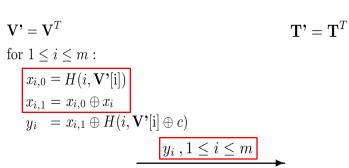


e.g., for GMW

Specific OT Functionalities: Correlated OT (C-OT)

- Choose x_{i,0} as random output of H (modeled as RO here)
- Compute $x_{i,1}$ as $x_{i,0} \oplus x_i$ to obliviously transfer XOR-correlated values
- Reduces data sent by Alice by factor 2





for
$$1 \le i \le m$$
:
 $x_{i,r_i} = r_i y_i \oplus H(i, \mathbf{T'}[i])$

Specific OT Functionalities: Random OT (R-OT)

- Choose $x_{i,0}$ and $x_{i,1}$ as random outputs of H (modeled as RO here)
- No data sent by Alice

$$\mathbf{V'} = \mathbf{V}^{T} \qquad \mathbf{T'} = \mathbf{T}^{T}$$
for $1 \le i \le m$:
$$y_{i,0} = x_{i,0} \oplus H(i, \mathbf{V'}[i])$$

$$y_{i,1} = x_{i,1} \oplus H(i, \mathbf{V'}[i] \oplus c)$$

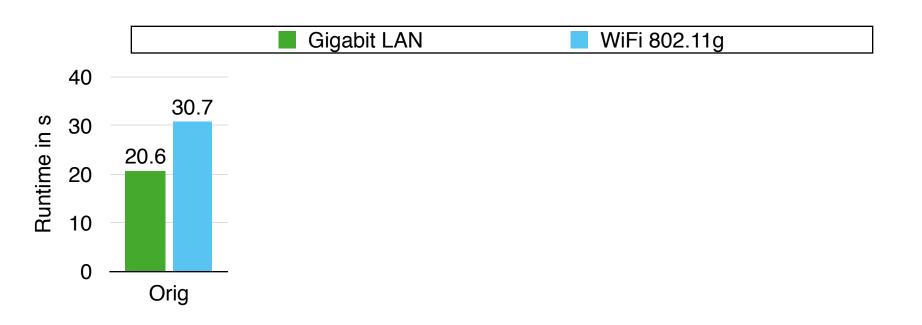
$$\xrightarrow{(y_{i,0}, y_{i,1}), 1 \le i \le m} \qquad \text{for } 1 \le i \le m$$
:
$$x_{i,r_{i}} = y_{i,r_{i}} \oplus H(i, \mathbf{T'}[i])$$

$$\mathbf{V'} = \mathbf{V}^{T}$$
for $1 \le i \le m$:
$$x_{i,0} = H(i, \mathbf{V'}[i])$$

$$x_{i,1} = H(i, \mathbf{V'}[i] \oplus c)$$

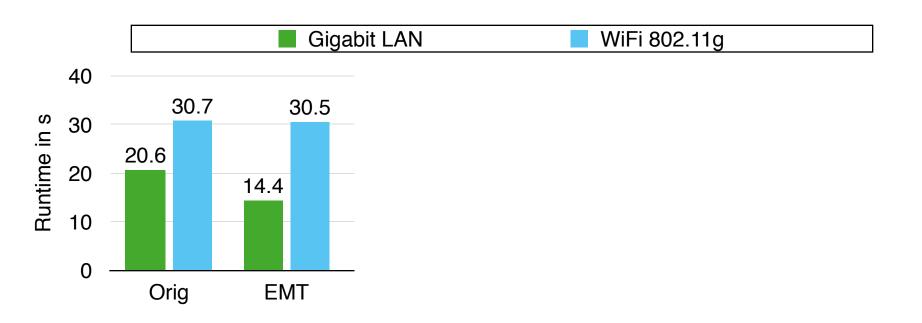
$$\mathbf{T'} = \mathbf{T}^{T}$$
for $1 \le i \le m$:
$$x_{i,r_i} = H(i, \mathbf{T'}[i])$$

Performance Evaluation: Original Implementation



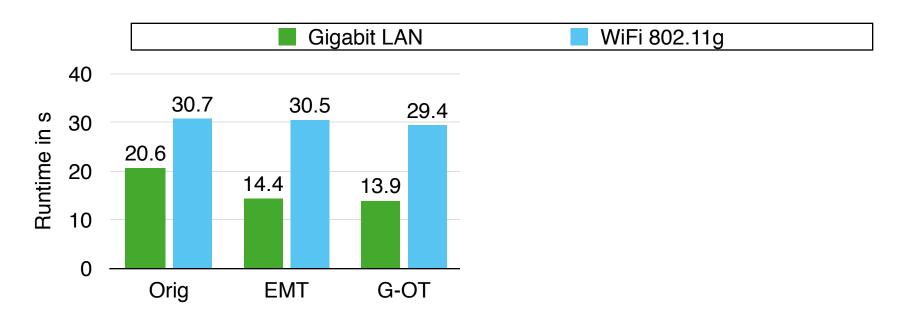
- C++ implementation of [SZ13] implementing OT extension of [IKNP03]
- Performance for 10 Million OTs on 80-bit strings

Performance Evaluation: Efficient Matrix Transposition



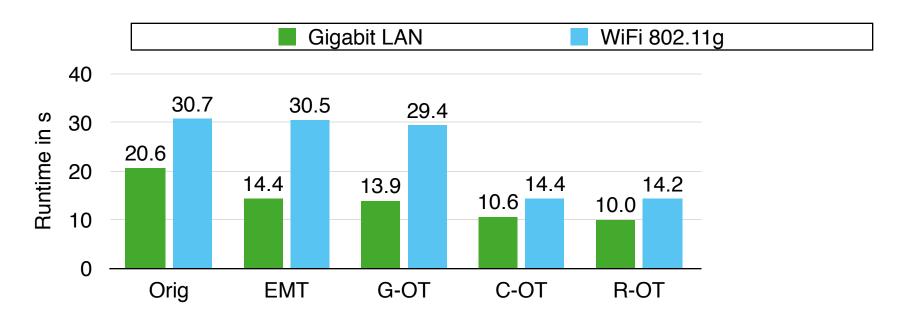
- Efficient matrix transposition improves computation
- Only decreases runtime in LAN where computation is the bottleneck

Performance Evaluation: General OT



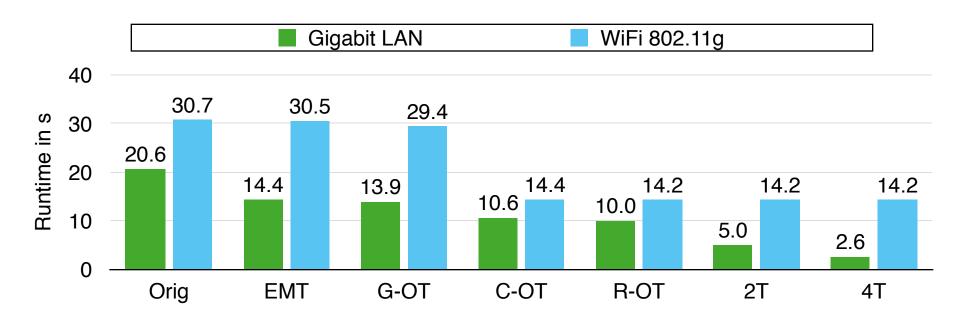
- Generate T matrix from seeds improves communication Bob → Alice
- Runtimes only slightly faster (bottleneck: communication Alice → Bob)

Performance Evaluation: Correlated/Random OT



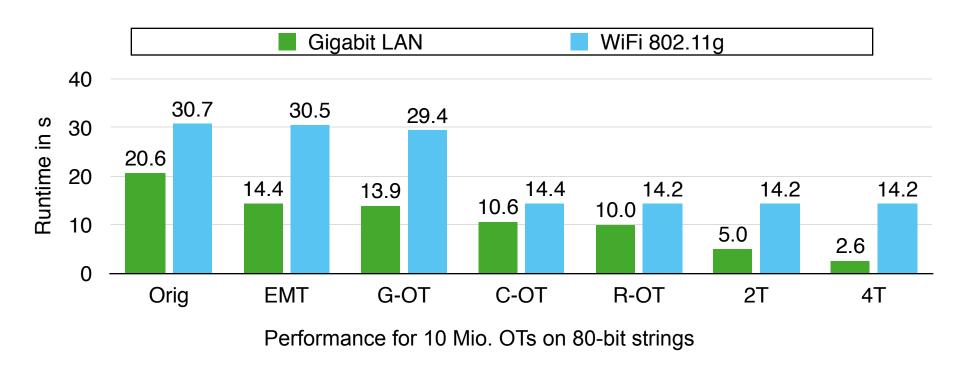
- Correlated/Random OT improved communication Alice → Bob
- WiFi runtime faster by factor 2 (bottleneck: communication Bob → Alice)

Performance Evaluation: Parallelization



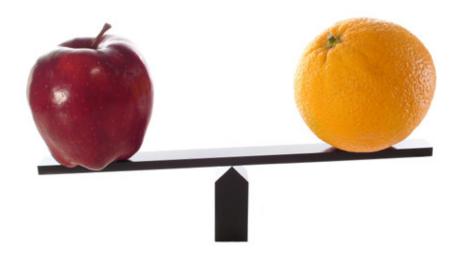
- Parallel OT extension with 2 and 4 threads improved computation
- LAN runtime decreases linear in # of threads
- WiFi runtime remains the same (bottleneck: communication)

Performance Evaluation: Summary



- OT is very efficient
- **Communication** is the **bottleneck** for OT (even without using AES-NI)

Part 3: Efficient Circuits and Yao vs. GMW



T. Schneider, M. Zohner:

GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In FC'13.

Yao - the Apple

How to eat an apple?

Yao - the Apple

How to eat an apple? bite-by-bite

Yao - the Apple

How to eat an apple?

bite-by-bite

+ Yao has constant #rounds

Yao - the Apple

How to eat an apple?

bite-by-bite

- + Yao has constant #rounds
- Evaluating a garbled gate requires symmetric crypto in the online phase

How to eat an orange?

How to eat an orange?

1) peel (almost all the effort)

How to eat an orange?

1) peel (almost all the effort)

2) eat (easy)

How to eat an orange?

- 1) peel (almost all the effort)
 Setup phase:
 - precompute multiplication triples for each AND gate using 2 R-OTs and constant #rounds
 - + no need to know function, only max. #ANDs

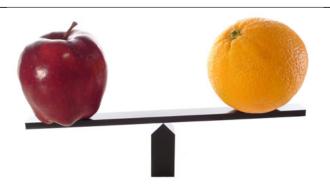
2) eat (easy)

How to eat an orange?

- 1) peel (almost all the effort)
 Setup phase:
 - precompute multiplication triples for each AND gate using 2 R-OTs and constant #rounds
 - + no need to know function, only max. #ANDs

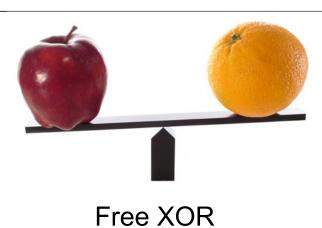
- 2) eat (easy)
 - Online phase:
 - + evaluating circuit needs OTP operations only
 - communication per layer of AND gates

Yao

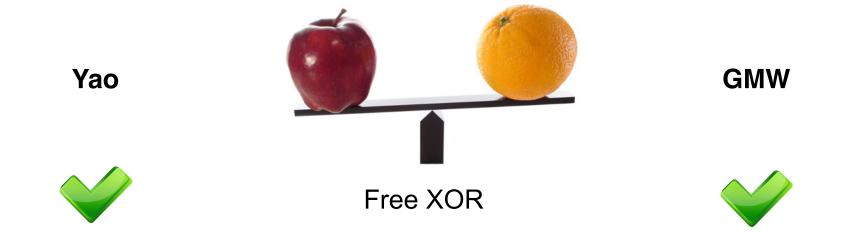


GMW

Yao

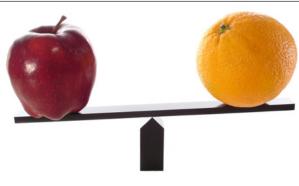


GMW



S: 4, R: 2 (online) symmetric crypto per AND setup: S: 6, R: 6

Yao



Free XOR

GMW

S: 4, R: 2 (online) symmetric crypto per AND

S→R: 2*t*

communication [bit] per AND

setup: S: 6, R: 6

setup: $S \rightarrow R:t \parallel R \rightarrow S:t$ online: $S \rightarrow R:2 \parallel R \rightarrow S:2$

O(1)

Yao **GMW** Free XOR S: 4, R: 2 (online) symmetric crypto per AND setup: S: 6, R: 6 setup: $S \rightarrow R:t \parallel R \rightarrow S:t$ S→R: 2*t* communication [bit] per AND online: $S \rightarrow R:2 \parallel R \rightarrow S:2$

rounds

setup: O(1)

online: O(ANDdepth(f))

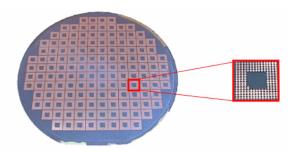
Yao **GMW** Free XOR S: 4, R: 2 (online) symmetric crypto per AND setup: S: 6, R: 6 setup: $S \rightarrow R:t \parallel R \rightarrow S:t$ S→R: 2*t* communication [bit] per AND online: $S \rightarrow R:2 \parallel R \rightarrow S:2$ setup: O(1) O(1)rounds online: O(ANDdepth(f)) memory per wire [bit]

t: symmetric security parameter

Efficient Circuit Constructions for Secure Computation

Classical circuit design:

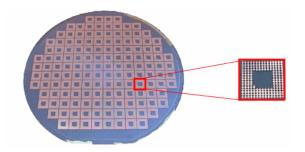
- few gates (⇒ small chip area)
- low depth (⇒ high clock frequency)



Efficient Circuit Constructions for Secure Computation

Classical circuit design:

- few gates (⇒ small chip area)
- low depth (⇒ high clock frequency)

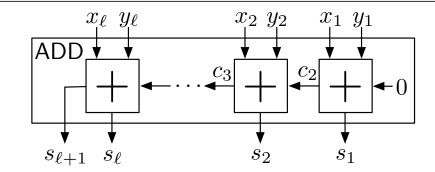


Circuits for secure computation:

- low ANDsize (#non-XORs ⇒ communication and symmetric crypto)
- low ANDdepth (#rounds in GMW's online phase)

Example Circuit: Addition

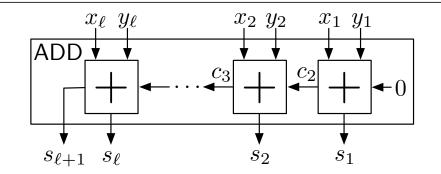
Ripple-Carry-Adder



 $s_i = x_i \oplus y_i \oplus c_i$ $c_{i+1} = ((x_i \oplus y_i) \land (x_i \oplus c_i)) \oplus x_i$ [BoyarPeraltaPochuev00] **ANDsize** = ℓ , ANDdepth = ℓ

Example Circuit: Addition

Ripple-Carry-Adder

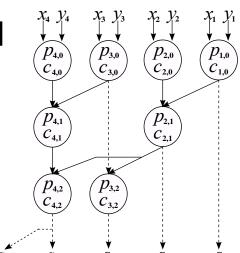


$$S_i = X_i \oplus Y_i \oplus C_i$$

 $c_{i+1} = ((x_i \oplus y_i) \land (x_i \oplus c_i)) \oplus x_i$ [BoyarPeraltaPochuev00]

ANDsize = ℓ , ANDdepth = ℓ

Ladner-Fischer-Adder [LF80]



$$p_{i,0}=X_i\oplus y_i$$
, $C_{i,0}=X_i\wedge y_i$

$$p_{i,j}=p_{i,j-1} \land p_{k,j-1}$$

$$C_{i,j}=(p_{i,j-1} \land C_{k,j-1}) \lor C_{i,j-1}$$

ANDsize = ℓ +1.25 ℓ log₂(ℓ), ANDdepth = 1+2 log₂(ℓ)

Circuit	Size \mathbf{S}	Depth $\mathbf D$		
Addition				
Ripple-carry ADD/SUB_{RC}^{ℓ}	ℓ	ℓ		
Ladner-Fischer ADD_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+\ell$	$2\lceil \log_2 \ell \rceil + 1$		
LF subtraction SUB_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+2\ell$	$2\lceil \log_2 \ell \rceil + 2$		
Carry-save $ADD_{CSA}^{(\ell,3)}$ RC network $ADD_{RC}^{(\ell,n)}$	$\ell + \mathbf{S}(\mathrm{ADD}^{\ell})$	$\mathbf{D}(\mathrm{ADD}^{\ell})+1$		
RC network $ADD_{RC}^{(\ell,n)}$	$\ell n - \ell + n - \lceil \log_2 n \rceil - 1$	$\lceil \log_2 n - 1 \rceil + \ell$		
CSA network $ADD_{CSA}^{(\ell,n)}$	$\ell n - 2\ell + n - \lceil \log_2 n \rceil$	$\lceil \log_2 n - 1 \rceil$		
	$+\mathbf{S}(\mathrm{ADD}_{LF}^{\ell+\lceil\log_2 n\rceil})$	$+\mathbf{D}(\mathrm{ADD}_{LF}^{\ell+\lceil\log_2 n\rceil})$		
Multiplication				
RCN school method MUL_{RC}^{ℓ}	$2\ell^2-\ell$	$2\ell-1$		
CSN school method MUL_{CSN}^{ℓ}	$2\ell^2 + 1.25\ell\lceil\log_2\ell\rceil - \ell + 2$	$3\lceil \log_2 \ell \rceil + 4$		
RC squaring SQR_{RC}^{ℓ}	$\ell^2 - \ell$	$2\ell - 3$		
LF squaring SQR_{LF}^{ℓ}	$\ell^2 + 1.25\ell \lceil \log_2 \ell \rceil - 1.5\ell - 2$	$3\lceil \log_2 \ell \rceil + 3$		
Comparison				
Equality EQ $^{\ell}$	$\ell-1$	$\lceil \log_2 \ell ceil$		
Sequential greater than GT_S^ℓ	ℓ	ℓ		
D&C greater than GT_{DC}^{ℓ}	$3\ell - \lceil \log_2 \ell \rceil - 2$	$\lceil \log_2 \ell \rceil + 1$		
Selection				
Multiplexer MUX ^ℓ	ℓ	1		

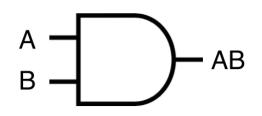
Circuit	Size \mathbf{S}	Depth $\mathbf D$		
Addition				
Ripple-carry ADD/SUB_{RC}^{ℓ}	ℓ	ℓ		
Ladner-Fischer ADD_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+\ell$	$2\lceil \log_2 \ell \rceil + 1$		
LF subtraction SUB_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+2\ell$	$2\lceil \log_2 \ell \rceil + 2$		
Carry-save $ADD_{CSA}^{(\ell,3)}$ RC network $ADD_{RC}^{(\ell,n)}$	$\ell + \mathbf{S}(\mathrm{ADD}^{\ell})$	$\mathbf{D}(\mathrm{ADD}^{\ell})+1$		
RC network $ADD_{RC}^{(\ell,n)}$	$\ell n - \ell + n - \lceil \log_2 n \rceil - 1$	$\lceil \log_2 n - 1 \rceil + \ell$		
CSA network $ADD_{CSA}^{(\ell,n)}$	$ \ell n - 2\ell + n - \lceil \log_2 n \rceil \\ + \mathbf{S}(\mathrm{ADD}_{LF}^{\ell + \lceil \log_2 n \rceil}) $	$\lceil \log_2 n - 1 \rceil + \mathbf{D}(ADD_{LF}^{\ell + \lceil \log_2 n \rceil})$		
Multiplication	•			
RCN school method MUL_{RC}^{ℓ}	$2\ell^2 - \ell$	$2\ell-1$		
CSN school method MUL_{CSN}^{ℓ}	$2\ell^2 + 1.25\ell\lceil\log_2\ell\rceil - \ell + 2$	$3\lceil \log_2 \ell \rceil + 4$		
RC squaring SQR_{RC}^{ℓ}	$\ell^2 - \ell$	$2\ell - 3$		
LF squaring SQR_{LF}^{ℓ}	$\ell^2 + 1.25\ell \lceil \log_2 \ell \rceil - 1.5\ell - 2$	$3\lceil \log_2 \ell \rceil + 3$		
Comparison				
Equality EQ^{ℓ}	$\ell-1$	$\lceil \log_2 \ell ceil$		
Sequential greater than GT_S^ℓ	ℓ	ℓ		
D&C greater than GT_{DC}^{ℓ}	$3\ell - \lceil \log_2 \ell \rceil - 2$	$\lceil \log_2 \ell \rceil + 1$		
Selection				
Multiplexer MUX ^ℓ	ℓ	1		

Circuit	Size \mathbf{S}	Depth $\mathbf D$		
Addition				
Ripple-carry ADD/SUB_{RC}^{ℓ}	ℓ	ℓ		
Ladner-Fischer ADD_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+\ell$	$2\lceil \log_2 \ell \rceil + 1$		
LF subtraction SUB_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+2\ell$	$2\lceil\log_2\ell\rceil+2$		
Carry-save $ADD_{CSA}^{(\ell,3)}$ RC network $ADD_{RC}^{(\ell,n)}$	$\ell + \mathbf{S}(\mathrm{ADD}^{\ell})$	$\mathbf{D}(\mathrm{ADD}^{\ell})+1$		
RC network $ADD_{RC}^{(\ell,n)}$	$\ell n - \ell + n - \lceil \log_2 n \rceil - 1$	$\lceil \log_2 n - 1 \rceil + \ell$		
CSA network $ADD_{CSA}^{(\ell,n)}$	$ \ell n - 2\ell + n - \lceil \log_2 n \rceil \\ + \mathbf{S}(\mathrm{ADD}_{LF}^{\ell + \lceil \log_2 n \rceil}) $	$\lceil \log_2 n - 1 \rceil + \mathbf{D}(ADD_{LF}^{\ell + \lceil \log_2 n \rceil})$		
Multiplication				
RCN school method MUL_{RC}^{ℓ}	$2\ell^2 - \ell$	$2\ell-1$		
CSN school method MUL_{CSN}^{ℓ}	$2\ell^2 + 1.25\ell\lceil\log_2\ell\rceil - \ell + 2$	$3\lceil \log_2 \ell \rceil + 4$		
RC squaring SQR_{RC}^{ℓ}	$\ell^2 - \ell$	$2\ell - 3$		
LF squaring SQR_{LF}^{ℓ}	$\ell^2 + 1.25\ell \lceil \log_2 \ell \rceil - 1.5\ell - 2$	$3\lceil \log_2 \ell \rceil + 3$		
Comparison				
Equality EQ^{ℓ}	$\ell-1$	$\lceil \log_2 \ell ceil$		
Sequential greater than GT_S^ℓ	ℓ	ℓ		
D&C greater than GT_{DC}^{ℓ}	$3\ell - \lceil \log_2 \ell \rceil - 2$	$\lceil \log_2 \ell \rceil + 1$		
Selection				
Multiplexer MUX ^ℓ	ℓ	1		

Circuit	Size \mathbf{S}	Depth D		
Addition				
Ripple-carry ADD/SUB_{RC}^{ℓ}	ℓ	ℓ		
Ladner-Fischer ADD_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+\ell$	$2\lceil \log_2 \ell \rceil + 1$		
LF subtraction SUB_{LF}^{ℓ}	$1.25\ell\lceil\log_2\ell\rceil+2\ell$	$2\lceil \log_2 \ell \rceil + 2$		
Carry-save $ADD_{CSA}^{(\ell,3)}$ RC network $ADD_{RC}^{(\ell,n)}$	$\ell + \mathbf{S}(\mathrm{ADD}^{\ell})$	$\mathbf{D}(\mathrm{ADD}^{\ell})+1$		
RC network $ADD_{RC}^{(\ell,n)}$	$\ell n - \ell + n - \lceil \log_2 n \rceil - 1$	$\lceil \log_2 n - 1 \rceil + \ell$		
CSA network $ADD_{CSA}^{(\ell,n)}$	$ \ell n - 2\ell + n - \lceil \log_2 n \rceil \\ + \mathbf{S}(\mathrm{ADD}_{LF}^{\ell + \lceil \log_2 n \rceil}) $	$\lceil \log_2 n - 1 \rceil + \mathbf{D}(ADD_{LF}^{\ell + \lceil \log_2 n \rceil})$		
Multiplication				
RCN school method MUL_{RC}^{ℓ}	$2\ell^2 - \ell$	$2\ell-1$		
CSN school method MUL_{CSN}^{ℓ}	$2\ell^2 + 1.25\ell\lceil\log_2\ell\rceil - \ell + 2$	$3\lceil \log_2 \ell \rceil + 4$		
RC squaring SQR_{RC}^{ℓ}	$\ell^2 - \ell$	$2\ell - 3$		
LF squaring SQR_{LF}^{ℓ}	$\ell^2 + 1.25\ell \lceil \log_2 \ell \rceil - 1.5\ell - 2$	$3\lceil \log_2 \ell \rceil + 3$		
Comparison				
Equality EQ^{ℓ}	$\ell-1$	$\lceil \log_2 \ell ceil$		
Sequential greater than GT_S^ℓ	ℓ	ℓ		
D&C greater than GT_{DC}^{ℓ}	$3\ell - \lceil \log_2 \ell \rceil - 2$	$\lceil \log_2 \ell \rceil + 1$		
Selection				
Multiplexer MUX ^ℓ	ℓ	1		

Part 1: In Garbled Circuits, each non-XOR gate:

- small # of fixed-key AES evaluations
- send 2 ciphertexts



Part 1: In Garbled Circuits, each non-XOR gate:

- small # of fixed-key AES evaluations
- send 2 ciphertexts

Part 2: OT extension

- send 1 ciphertext + |payload|
- communication is essentially the bottleneck

Part 1: In Garbled Circuits, each non-XOR gate:

- small # of fixed-key AES evaluations
- send 2 ciphertexts

Part 2: OT extension

- send 1 ciphertext + |payload|
- communication is essentially the bottleneck

- Part 3: Circuits and Yao vs. GMW
- can trade-off size for depth
- Yao has constant #rounds ⇒ good for networks with high latency (Internet)
- GMW can precompute all crypto, good for low-latency networks (LAN)

Part 1: In Garbled Circuits, each non-XOR gate:

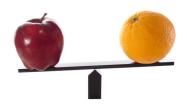
- small # of fixed-key AES evaluations
- send 2 ciphertexts

Part 2: OT extension

- send 1 ciphertext + |payload|
- communication is essentially the bottleneck

Part 3: Circuits and Yao vs. GMW

- can trade-off size for depth
- Yao has constant #rounds ⇒ good for networks with high latency (Internet)
- GMW can precompute all crypto, good for low-latency networks (LAN)



Symmetric crypto is so efficient that communication is the bottleneck.

Thanks for your attention!

Questions?

Contact: http://encrypto.de