
Optimizations of Generic Protocols

for Semi-Honest Adversaries

Thomas Schneider (TU Darmstadt)

5th Bar-Ilan Winter School on Cryptography, Feb 2015

Secure Two-Party Computation

2

This Lecture: Semi-Honest (Passive) Adversaries

ff(x,y)

x y

DNA Searching [Troncoso-PastorizaKC07], ...

Auctions [NaorPS99], ...

Remote Diagnostics [BrickellPSW07], ...

Biometric Identification [ErkinFGKLT09], ...

Medical Diagnostics [BarniFKLSS09], ...

Secure Two-Party Computation

3

Oblivious Transfer (OT)

4

1-out-of-2 OT is an essential building block for secure computation.

OT
(x0, x1)

xr

r

How to Measure Efficiency of a Protocol?

✓ Runtime (depends on implementation & scenario)

5

How to Measure Efficiency of a Protocol?

✓ Runtime (depends on implementation & scenario)

✓ Communication
• # bits sent (important for networks with low bandwidth)
• # rounds (important for networks with high latency)

5

How to Measure Efficiency of a Protocol?

✓ Runtime (depends on implementation & scenario)

✓ Communication
• # bits sent (important for networks with low bandwidth)
• # rounds (important for networks with high latency)

? Computation
• Usually: count # crypto operations, e.g.,

• # modular exponentiations
• # point multiplications
• # hash function evaluations (SHA)
• # block cipher evaluations (AES)
• # One-Time Pad evaluations

• But also non-cryptographic operations do matter!

5

fa
st

er

Overview of this Lecture

6

Symmetric CryptoPublic Key Crypto One-Time Pad>> >>

Overview of this Lecture

6

Symmetric CryptoPublic Key Crypto One-Time Pad>> >>

Generic Protocols

Boolean Circuit

GMWYao

OT

Overview of this Lecture

6

Symmetric CryptoPublic Key Crypto One-Time Pad>> >>

Generic Protocols

Boolean Circuit

GMWYao

OT

Part 1: Efficient Garbled Circuits

Overview of this Lecture

6

Symmetric CryptoPublic Key Crypto One-Time Pad>> >>

Generic Protocols

Boolean Circuit

GMWYao

OT

Part 1: Efficient Garbled Circuits

Part 2: Efficient OTs

Overview of this Lecture

6

Symmetric CryptoPublic Key Crypto One-Time Pad>> >>

Generic Protocols

Boolean Circuit

GMWYao

OT

Part 1: Efficient Garbled Circuits

Part 2: Efficient OTs

Part 3: Efficient Circuits and Yao vs. GMW

f(·, ·)

Yao’s Garbled Circuits Protocol [Yao86]

7

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

f(·, ·)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

ec01,ec11

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC
ey

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC
ey

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

(ex;?) OT(x; (ex0, ex1))
ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC
ey

f(x,y) = eC(ex, ey)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

(ex;?) OT(x; (ex0, ex1))
ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC
ey

f(x,y) = eC(ex, ey)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

(ex;?) OT(x; (ex0, ex1))
ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

Part 1: Efficient Garbled Circuits

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC
ey

f(x,y) = eC(ex, ey)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

(ex;?) OT(x; (ex0, ex1))
ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

Part 1: Efficient Garbled Circuits

Part 2: Efficient OT

z

. . .

xn yn x1 y1y2x2

<<< c1c2

Garbled  
Circuit �C

f(·, ·)

eC
ey

f(x,y) = eC(ex, ey)

Yao’s Garbled Circuits Protocol [Yao86]

7

Circuit

z

. . .

�xn �yn �x1 �y1�y2�x2

�c1�c2

Garbled Table

Garbled  
Values

e.g., x < y

private data x = x1, .., xn private data y = y1, .., yn

(ex;?) OT(x; (ex0, ex1))
ec01,ec11

E(ex0
1, ey01 ; ec

g(0,0)
1)

E(ex0
1, ey11 ; ec

g(0,1)
1)

E(ex1
1, ey01 ; ec

g(1,0)
1)

E(ex1
1, ey11 ; ec

g(1,1)
1)

Part 1: Efficient Garbled Circuits

Part 3: Efficient Circuits

Part 2: Efficient OT

z

. . .

xn yn x1 y1y2x2

<<< c1c2

The GMW Protocol [GMW87]

8

^

�

a b

d

c

a = a1 ⊕ a2

The GMW Protocol [GMW87]

8

Secret share inputs:

^

�

a b

d

c

b = b1 ⊕ b2

a = a1 ⊕ a2

The GMW Protocol [GMW87]

8

Secret share inputs:

Non-Interactive XOR gates: c1 = a1 ⊕ b1 ; c2 = a2 ⊕ b2

^

�

a b

d

c

b = b1 ⊕ b2

a = a1 ⊕ a2

The GMW Protocol [GMW87]

8

Secret share inputs:

Non-Interactive XOR gates: c1 = a1 ⊕ b1 ; c2 = a2 ⊕ b2

Interactive AND gates: ^

�

a b

d

c

AND
c1, b1 c2, b2

d1 d2

b = b1 ⊕ b2

∧

a = a1 ⊕ a2

The GMW Protocol [GMW87]

8

Secret share inputs:

Non-Interactive XOR gates: c1 = a1 ⊕ b1 ; c2 = a2 ⊕ b2

Interactive AND gates:

Recombine outputs:

^

�

a b

d

c

AND
c1, b1 c2, b2

d1 d2

b = b1 ⊕ b2

d = d1 ⊕ d2

∧

a = a1 ⊕ a2

The GMW Protocol [GMW87]

8

Secret share inputs:

Non-Interactive XOR gates: c1 = a1 ⊕ b1 ; c2 = a2 ⊕ b2

Interactive AND gates:

Recombine outputs:

^

�

a b

d

c

AND
c1, b1 c2, b2

d1 d2

b = b1 ⊕ b2

d = d1 ⊕ d2

Part 3: Efficient Circuits

∧

Evaluating ANDs via Multiplication Triples [Beaver91]

9

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0
• Observe: v1⊕u2 = m0⊕ma2

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0
• Observe: v1⊕u2 = m0⊕ma2

• If a2=0 then v1⊕u2 = m0⊕m0 = 0 = a2b1

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0
• Observe: v1⊕u2 = m0⊕ma2

• If a2=0 then v1⊕u2 = m0⊕m0 = 0 = a2b1

• If a2=1 then v1⊕u2 = m0⊕m1 = b1 = a2b1

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0
• Observe: v1⊕u2 = m0⊕ma2

• If a2=0 then v1⊕u2 = m0⊕m0 = 0 = a2b1

• If a2=1 then v1⊕u2 = m0⊕m1 = b1 = a2b1

4. P1 and P2 repeat steps 1-3 with reversed roles to obtain (a1,u1); (b2,v2)

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0
• Observe: v1⊕u2 = m0⊕ma2

• If a2=0 then v1⊕u2 = m0⊕m0 = 0 = a2b1

• If a2=1 then v1⊕u2 = m0⊕m1 = b1 = a2b1

4. P1 and P2 repeat steps 1-3 with reversed roles to obtain (a1,u1); (b2,v2)
5. Pi sets ci = (aibi) ⊕ ui ⊕ vi

Evaluating ANDs via Multiplication Triples [Beaver91]

9

The Aim: Generate a multiplication triple (a1⊕a2) (b1⊕b2) = c1⊕c2

• P1’s output: a1,b1,c1

• P2’s output: a2,b2,c2

• Property: (a1⊕a2) (b1⊕b2) = c1⊕c2

• Observe that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

The Protocol:
1. P1: choose m0,m1 ∈R {0,1}; P2: choose a2 ∈R {0,1}

2. P1 and P2 run OT: P1 inputs (m0,m1), P2 inputs a2 and gets u2 = ma2

3. P1 sets b1 = m0⊕m1; v1 = m0
• Observe: v1⊕u2 = m0⊕ma2

• If a2=0 then v1⊕u2 = m0⊕m0 = 0 = a2b1

• If a2=1 then v1⊕u2 = m0⊕m1 = b1 = a2b1

4. P1 and P2 repeat steps 1-3 with reversed roles to obtain (a1,u1); (b2,v2)
5. Pi sets ci = (aibi) ⊕ ui ⊕ vi

Observe: c1⊕c2 = a1b1⊕u1⊕v1 ⊕ a2b2⊕u2⊕v2 = a1b1⊕a2b1⊕a1b2⊕a2b2

Evaluating ANDs via Multiplication Triples [Beaver91]

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

P1 sends P2: d1=x1⊕a1; e1=y1⊕b1

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

P1 sends P2: d1=x1⊕a1; e1=y1⊕b1

P2 sends P1: d2=x2⊕a2; e2=y2⊕b2

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

P1 sends P2: d1=x1⊕a1; e1=y1⊕b1

P2 sends P1: d2=x2⊕a2; e2=y2⊕b2

P1 and P2 locally compute: d=d1⊕d2; e=e1⊕e2

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

P1 sends P2: d1=x1⊕a1; e1=y1⊕b1

P2 sends P1: d2=x2⊕a2; e2=y2⊕b2

P1 and P2 locally compute: d=d1⊕d2; e=e1⊕e2

P1 outputs: z1 = db1⊕ea1⊕c1⊕de

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

P1 sends P2: d1=x1⊕a1; e1=y1⊕b1

P2 sends P1: d2=x2⊕a2; e2=y2⊕b2

P1 and P2 locally compute: d=d1⊕d2; e=e1⊕e2

P1 outputs: z1 = db1⊕ea1⊕c1⊕de
P2 outputs: z2 = db2⊕ea2⊕c2

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Evaluating ANDs via Multiplication Triples [Beaver91]

The aim: Compute AND using multiplication triple

Given: a1,b1,c1 and a2,b2,c2 such that c1⊕c2= a1b1⊕a2b1⊕a1b2⊕a2b2

P1 sends P2: d1=x1⊕a1; e1=y1⊕b1

P2 sends P1: d2=x2⊕a2; e2=y2⊕b2

P1 and P2 locally compute: d=d1⊕d2; e=e1⊕e2

P1 outputs: z1 = db1⊕ea1⊕c1⊕de
P2 outputs: z2 = db2⊕ea2⊕c2

On the board: it holds z1⊕z2 = (x1⊕x2)(y1⊕y2)

10

AND
c1, b1 c2, b2

d1 d2

x1, y1 x2, y2

z1 z2
∧

Part 1: Efficient Garbled Circuits

11

A
B

AB

Garbled Circuits [Yao86]

12

01 01

01

01

01

Conventional circuit

(Slide from Viet-Tung Hoang)

Garbled Circuits [Yao86]

12

0 1

0

0

0

Conventional circuit

(Slide from Viet-Tung Hoang)

Garbled Circuits [Yao86]

12

Garbled circuit

0 1

0

0

0

Conventional circuit

(Slide from Viet-Tung Hoang)

Garbled Circuits [Yao86]

12

Garbled circuit

0 1

0

0

0

Conventional circuit

(Slide from Viet-Tung Hoang)

given input keys, can compute output key only

keys look random

13

Garbled Gate [Yao86]

given two input keys,
can compute only output key

(Slide from Viet-Tung Hoang)

A C D

X Y

B

X

X

X

Y 0

1

2

3

13

Garbled Gate [Yao86]

given two input keys,
can compute only output key

(Slide from Viet-Tung Hoang)

A D

X

X

X

Y 0

1

2

3

13

Garbled Gate [Yao86]

given two input keys,
can compute only output key

(Slide from Viet-Tung Hoang)

A D

X

X 1

Formalization: Garbling Schemes [BellareHoangRogaway12]

14

ev
f
x

y

Ev
En

De
Gbf

1k

e

F

d
x X

Y
y

(Slide from Viet-Tung Hoang)

Formalization: Garbling Schemes [BellareHoangRogaway12]

14

ev
f
x

y

Ev
En

De
Gbf

1k

e

F

d
x X

Y
y

Correctness 
(∀	
 f,	
 x,	
 k),	
 if	

(F,	
 e,	
 d)	
 ← Gb(1k,	
 f),	

X	
 ← En(e,	
 x),	

Y ←	
 Ev	
 (F,	
 X),	

y	
 ← De(d,	
 Y)	
 	
 	
 then	
 	

 y = ev(f,	
 x)

(Slide from Viet-Tung Hoang)

Formalization: Garbling Schemes [BellareHoangRogaway12]

14

ev
f
x

y

Ev
En

De
Gbf

1k

e

F

d
x X

Y
y

Correctness 
(∀	
 f,	
 x,	
 k),	
 if	

(F,	
 e,	
 d)	
 ← Gb(1k,	
 f),	

X	
 ← En(e,	
 x),	

Y ←	
 Ev	
 (F,	
 X),	

y	
 ← De(d,	
 Y)	
 	
 	
 then	
 	

 y = ev(f,	
 x)

(Slide from Viet-Tung Hoang)

Privacy (informal): 
Given (F, X, d) learn nothing but y=f(x).

Overview of Efficient Garbled Circuit Constructions

15(Slide from Payman Mohassel)

1990 Point-and-Permute [BeaverMicaliRogaway]

1999 3-row reduction [NaorPinkasSumner]

2008 Free-XOR [KolesnikovSchneider]

2009 2-row reduction [PinkasSchneiderSmartWilliams]

2012 Garbling via AES [KreuterShelatShen]

2013 Fixed-key AES [BellareHoangKeelveedhiRogaway]

2014 FleXor [KolesnikovMohasselRosulek]

2015 HalfGates [ZahurRosulekEvans]

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Wires: 
Assign random keys ki, Ki to all wires i

16

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Wires: 
Assign random keys ki, Ki to all wires i

Garbling:  
For each gate use double-encryption 
and randomly permute entries: 
Ea(Eb(x))  
Ea(EB(x))  
EA(Eb(x))  
EA(EB(X))

16

a, A

b, B
x, X

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Wires: 
Assign random keys ki, Ki to all wires i

Garbling:  
For each gate use double-encryption 
and randomly permute entries: 
Ea(Eb(x))  
Ea(EB(x))  
EA(Eb(x))  
EA(EB(X))

Outputs:  
For each output wire i: provide mapping [(0, ki), (1, Ki)]

16

a, A

b, B
x, X

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Evaluator needs to know which entry was decrypted successfully

17

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with efficiently verifiable range: 

Ek(m) = [r, fk(r) ⊕ (m || 0n)], where f is a pseudo-random function 
(by pseudorandomness of f, prob. of obtaining 0n with incorrect k is negl.)

17

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with efficiently verifiable range: 

Ek(m) = [r, fk(r) ⊕ (m || 0n)], where f is a pseudo-random function 
(by pseudorandomness of f, prob. of obtaining 0n with incorrect k is negl.)

⇒ Need to decrypt multiple entries until decryption succeeds

17

1) Encryption with Efficiently Verifiable Range [LindellPinkas04]

Evaluator needs to know which entry was decrypted successfully

⇒ Use encryption function with efficiently verifiable range: 

Ek(m) = [r, fk(r) ⊕ (m || 0n)], where f is a pseudo-random function 
(by pseudorandomness of f, prob. of obtaining 0n with incorrect k is negl.)

⇒ Need to decrypt multiple entries until decryption succeeds

§ Expected number of decryptions requires is 2.5

17

2) Point and Permute [BeaverMicaliRogaway90]

For every wire i, choose a random signal bit pi together with the key.

0

1

2

3

1 0 10

0 1

2) Point and Permute [BeaverMicaliRogaway90]

For every wire i, choose a random signal bit pi together with the key.

The signal bits of the input wires determine which entry to decrypt.

0

1

2

3

1 0 10

0 1

2) Point and Permute [BeaverMicaliRogaway90]

For every wire i, choose a random signal bit pi together with the key.

The signal bits of the input wires determine which entry to decrypt.

0

1

2

3

1 0

2) Point and Permute [BeaverMicaliRogaway90]

For every wire i, choose a random signal bit pi together with the key.

The signal bits of the input wires determine which entry to decrypt.

0

1

2

3

1 0

2 * 1 + 0 = 2

2) Point and Permute [BeaverMicaliRogaway90]

For every wire i, choose a random signal bit pi together with the key.

The signal bits of the input wires determine which entry to decrypt.

0

1

2

3

1 0

=> decrypt entry #2

2 * 1 + 0 = 2

2) Point and Permute [BeaverMicaliRogaway90]

For every wire i, choose a random signal bit pi together with the key.

The signal bits of the input wires determine which entry to decrypt.

0

1

2

3

1 0 10

0 1

2) Point and Permute [BeaverMicaliRogaway90]

Advantages of point-and-permute:
• Exactly one entry needs to be decrypted

19

2) Point and Permute [BeaverMicaliRogaway90]

Advantages of point-and-permute:
• Exactly one entry needs to be decrypted
• Simplifies output decryption

19

2) Point and Permute [BeaverMicaliRogaway90]

Advantages of point-and-permute:
• Exactly one entry needs to be decrypted
• Simplifies output decryption

19

0 1

1 0

If output permutation pi = 0 then output is permutation bit

If output permutation pi = 1 then output is negated permutation bit

2) Point and Permute [BeaverMicaliRogaway90]

Advantages of point-and-permute:
• Exactly one entry needs to be decrypted
• Simplifies output decryption

19

0 1

1 0

If output permutation pi = 0 then output is permutation bit

If output permutation pi = 1 then output is negated permutation bit

⇒ Sender simply reveals for each output wire the bit pi to receiver.

2) Point and Permute [BeaverMicaliRogaway90]

Advantages of point-and-permute:
• Exactly one entry needs to be decrypted
• Simplifies output decryption

19

0 1

1 0

If output permutation pi = 0 then output is permutation bit

If output permutation pi = 1 then output is negated permutation bit

⇒ Sender simply reveals for each output wire the bit pi to receiver.

In the following we always assume usage of point and permute.
p(k) is the permutation bit of key k.

3) 3-Row Reduction [NaorPinkasSumner99]

Encryption function: ET(kl, kr; ko) = ko ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T), 
where F is a pseudo-random function, e.g., instantiated with AES.

20

3) 3-Row Reduction [NaorPinkasSumner99]

Encryption function: ET(kl, kr; ko) = ko ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T), 
where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.
ET(kl,kr; c) = c ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || i) != 0  
⇒ c = F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T). 

⇒ One of the two output keys is derived from the input keys.

20

3) 3-Row Reduction [NaorPinkasSumner99]

Encryption function: ET(kl, kr; ko) = ko ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T), 
where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.
ET(kl,kr; c) = c ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || i) != 0  
⇒ c = F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T). 

⇒ One of the two output keys is derived from the input keys.

ET(a,B; c)
ET(A,b; c)
ET(A,B; C)

20

remaining 3 table entries as before}

3) 3-Row Reduction [NaorPinkasSumner99]

Encryption function: ET(kl, kr; ko) = ko ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T), 
where F is a pseudo-random function, e.g., instantiated with AES.

Idea: Eliminate first table entry by fixing it to be 0.
ET(kl,kr; c) = c ⊕ F(kl, p(kl) || T) ⊕ F(kr, p(kr) || i) != 0  
⇒ c = F(kl, p(kl) || T) ⊕ F(kr, p(kr) || T). 

⇒ One of the two output keys is derived from the input keys.

ET(a,B; c)
ET(A,b; c)
ET(A,B; C)

⇒ Communication is reduced from 4 to 3 table entries.
20

remaining 3 table entries as before}

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

21

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).
R = a ⊕ A = b ⊕ B = c ⊕ C = …

21

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).
R = a ⊕ A = b ⊕ B = c ⊕ C = …

Garble XOR: set output key c = a ⊕ b

21

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).
R = a ⊕ A = b ⊕ B = c ⊕ C = …

Garble XOR: set output key c = a ⊕ b

Evaluate XOR: set output key kc = ka ⊕ kb

21

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).
R = a ⊕ A = b ⊕ B = c ⊕ C = …

Garble XOR: set output key c = a ⊕ b

Evaluate XOR: set output key kc = ka ⊕ kb

Correctness: c = a ⊕ b = (R ⊕ a) ⊕ (R ⊕ b) = A ⊕ B

 C = c ⊕ R = a ⊕ b ⊕ R = a ⊕ B = A ⊕ b

21

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).
R = a ⊕ A = b ⊕ B = c ⊕ C = …

Garble XOR: set output key c = a ⊕ b

Evaluate XOR: set output key kc = ka ⊕ kb

Correctness: c = a ⊕ b = (R ⊕ a) ⊕ (R ⊕ b) = A ⊕ B

 C = c ⊕ R = a ⊕ b ⊕ R = a ⊕ B = A ⊕ b

Security (intuitively): Evaluator knows one key per wire, so never learns R
§ Requires random oracle or non-standard circularity assumption

21

4) Free XOR [KolesnikovSchneider08]

Encryption function: ET(kl, kr; ko) = ko ⊕ H(kl || kr || T), 
where H is a random oracle, e.g., instantiated with SHA-2

Idea: Choose keys s.t. each pair has distance R (unknown to evaluator).
R = a ⊕ A = b ⊕ B = c ⊕ C = …

Garble XOR: set output key c = a ⊕ b

Evaluate XOR: set output key kc = ka ⊕ kb

Correctness: c = a ⊕ b = (R ⊕ a) ⊕ (R ⊕ b) = A ⊕ B

 C = c ⊕ R = a ⊕ b ⊕ R = a ⊕ B = A ⊕ b

Security (intuitively): Evaluator knows one key per wire, so never learns R
§ Requires random oracle or non-standard circularity assumption

Can be combined with 3-row reduction.
21

5) Garbling via AES

22

Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

5) Garbling via AES

22

Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: ET(kl, kr; ko) = ko ⊕ AES-256(kl || kr; T)

5) Garbling via AES

22

Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: ET(kl, kr; ko) = ko ⊕ AES-256(kl || kr; T)

=> Needs to run expensive AES key schedule per gate
=> Also assumes a related-key assumptions (not great for AES)

5) Garbling via AES

22

Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: ET(kl, kr; ko) = ko ⊕ AES-256(kl || kr; T)

=> Needs to run expensive AES key schedule per gate
=> Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:
Choose fixed key X and run AES key schedule once
ET(kl, kr; ko) = ko ⊕ AES-128(X; K) ⊕ K with K = 2kl ⊕ 4kr ⊕ T

5) Garbling via AES

22

Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: ET(kl, kr; ko) = ko ⊕ AES-256(kl || kr; T)

=> Needs to run expensive AES key schedule per gate
=> Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:
Choose fixed key X and run AES key schedule once
ET(kl, kr; ko) = ko ⊕ AES-128(X; K) ⊕ K with K = 2kl ⊕ 4kr ⊕ T

Requires assuming an “ideal cipher” assumption on AES

5) Garbling via AES

22

Since 2008 many Intel and AMD CPUs have hardware support for AES:
Advanced Encryption Standard New Instructions (AES-NI)

[KreuterShelatShen12]: ET(kl, kr; ko) = ko ⊕ AES-256(kl || kr; T)

=> Needs to run expensive AES key schedule per gate
=> Also assumes a related-key assumptions (not great for AES)

[BellareHoangKeelveedhiRogaway13]:
Choose fixed key X and run AES key schedule once
ET(kl, kr; ko) = ko ⊕ AES-128(X; K) ⊕ K with K = 2kl ⊕ 4kr ⊕ T

Requires assuming an “ideal cipher” assumption on AES
Can be combined with free XOR and 3-row reduction

6) HalfGates - Today’s Most Efficient Scheme [ZRE14]

23

procedure Gb(1k, f):
R ⌘ {0, 1}k�11
for i 2 Inputs(f) do
W 0

i ⌘ {0, 1}k
W 1

i W 0
i �R

ei W 0
i

for i /2 Inputs(f) {in topo. order} do
{a, b} GateInputs(f, i)
if i 2 XorGates(f) then
W 0

i W 0
a �W 0

b

else
(W 0

i , TGi, TEi) GbAnd(W 0
a ,W

0
b)

Fi (TGi, TEi)
end if
W 1

i W 0
i �R

for i 2 Outputs(f) do
di lsb(W 0

i)

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b):

pa lsbW 0
a ; pb lsbW 0

b

j NextIndex(); j0 NextIndex()
{First half gate}
TG H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G H(W 0

a , j)� paTG

{Second half gate}
TE H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E H(W 0

b , j
0)� pb(TE �W 0

a)
{Combine halves}
W 0 W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei 2 ê do
Xi ei � xiR

return X̂

procedure De(d̂, Ŷ):
for di 2 d̂ do
yi di � lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i 2 Inputs(F̂) do
Wi Xi

for i /2 Inputs(F̂) {in topo. order} do
{a, b} GateInputs(F̂ , i)

if i 2 XorGates(F̂) then
Wi Wa �Wb

else
sa lsbWa; sb lsbWb

j1 NextIndex(); j2 NextIndex()
(TGi, TEi) Fi

WGi H(Wa, j1)� saTGi

WEi H(Wb, j2)� sb(TEi �Wa)
Wi WGi �WEi

end if
for i 2 Outputs(F̂) do
Yi Wi

return Ŷ

Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .

7

6) HalfGates - Today’s Most Efficient Scheme [ZRE14]

23

procedure Gb(1k, f):
R ⌘ {0, 1}k�11
for i 2 Inputs(f) do
W 0

i ⌘ {0, 1}k
W 1

i W 0
i �R

ei W 0
i

for i /2 Inputs(f) {in topo. order} do
{a, b} GateInputs(f, i)
if i 2 XorGates(f) then
W 0

i W 0
a �W 0

b

else
(W 0

i , TGi, TEi) GbAnd(W 0
a ,W

0
b)

Fi (TGi, TEi)
end if
W 1

i W 0
i �R

for i 2 Outputs(f) do
di lsb(W 0

i)

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b):

pa lsbW 0
a ; pb lsbW 0

b

j NextIndex(); j0 NextIndex()
{First half gate}
TG H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G H(W 0

a , j)� paTG

{Second half gate}
TE H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E H(W 0

b , j
0)� pb(TE �W 0

a)
{Combine halves}
W 0 W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei 2 ê do
Xi ei � xiR

return X̂

procedure De(d̂, Ŷ):
for di 2 d̂ do
yi di � lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i 2 Inputs(F̂) do
Wi Xi

for i /2 Inputs(F̂) {in topo. order} do
{a, b} GateInputs(F̂ , i)

if i 2 XorGates(F̂) then
Wi Wa �Wb

else
sa lsbWa; sb lsbWb

j1 NextIndex(); j2 NextIndex()
(TGi, TEi) Fi

WGi H(Wa, j1)� saTGi

WEi H(Wb, j2)� sb(TEi �Wa)
Wi WGi �WEi

end if
for i 2 Outputs(F̂) do
Yi Wi

return Ŷ

Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .

7

Free XOR

6) HalfGates - Today’s Most Efficient Scheme [ZRE14]

23

procedure Gb(1k, f):
R ⌘ {0, 1}k�11
for i 2 Inputs(f) do
W 0

i ⌘ {0, 1}k
W 1

i W 0
i �R

ei W 0
i

for i /2 Inputs(f) {in topo. order} do
{a, b} GateInputs(f, i)
if i 2 XorGates(f) then
W 0

i W 0
a �W 0

b

else
(W 0

i , TGi, TEi) GbAnd(W 0
a ,W

0
b)

Fi (TGi, TEi)
end if
W 1

i W 0
i �R

for i 2 Outputs(f) do
di lsb(W 0

i)

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b):

pa lsbW 0
a ; pb lsbW 0

b

j NextIndex(); j0 NextIndex()
{First half gate}
TG H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G H(W 0

a , j)� paTG

{Second half gate}
TE H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E H(W 0

b , j
0)� pb(TE �W 0

a)
{Combine halves}
W 0 W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei 2 ê do
Xi ei � xiR

return X̂

procedure De(d̂, Ŷ):
for di 2 d̂ do
yi di � lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i 2 Inputs(F̂) do
Wi Xi

for i /2 Inputs(F̂) {in topo. order} do
{a, b} GateInputs(F̂ , i)

if i 2 XorGates(F̂) then
Wi Wa �Wb

else
sa lsbWa; sb lsbWb

j1 NextIndex(); j2 NextIndex()
(TGi, TEi) Fi

WGi H(Wa, j1)� saTGi

WEi H(Wb, j2)� sb(TEi �Wa)
Wi WGi �WEi

end if
for i 2 Outputs(F̂) do
Yi Wi

return Ŷ

Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .

7

4 calls of H
for garbling 
AND

Free XOR

6) HalfGates - Today’s Most Efficient Scheme [ZRE14]

23

procedure Gb(1k, f):
R ⌘ {0, 1}k�11
for i 2 Inputs(f) do
W 0

i ⌘ {0, 1}k
W 1

i W 0
i �R

ei W 0
i

for i /2 Inputs(f) {in topo. order} do
{a, b} GateInputs(f, i)
if i 2 XorGates(f) then
W 0

i W 0
a �W 0

b

else
(W 0

i , TGi, TEi) GbAnd(W 0
a ,W

0
b)

Fi (TGi, TEi)
end if
W 1

i W 0
i �R

for i 2 Outputs(f) do
di lsb(W 0

i)

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b):

pa lsbW 0
a ; pb lsbW 0

b

j NextIndex(); j0 NextIndex()
{First half gate}
TG H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G H(W 0

a , j)� paTG

{Second half gate}
TE H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E H(W 0

b , j
0)� pb(TE �W 0

a)
{Combine halves}
W 0 W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei 2 ê do
Xi ei � xiR

return X̂

procedure De(d̂, Ŷ):
for di 2 d̂ do
yi di � lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i 2 Inputs(F̂) do
Wi Xi

for i /2 Inputs(F̂) {in topo. order} do
{a, b} GateInputs(F̂ , i)

if i 2 XorGates(F̂) then
Wi Wa �Wb

else
sa lsbWa; sb lsbWb

j1 NextIndex(); j2 NextIndex()
(TGi, TEi) Fi

WGi H(Wa, j1)� saTGi

WEi H(Wb, j2)� sb(TEi �Wa)
Wi WGi �WEi

end if
for i 2 Outputs(F̂) do
Yi Wi

return Ŷ

Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .

7

2 table entries per AND!

4 calls of H
for garbling 
AND

Free XOR

6) HalfGates - Today’s Most Efficient Scheme [ZRE14]

23

2 calls of H
for evaluating 
AND

procedure Gb(1k, f):
R ⌘ {0, 1}k�11
for i 2 Inputs(f) do
W 0

i ⌘ {0, 1}k
W 1

i W 0
i �R

ei W 0
i

for i /2 Inputs(f) {in topo. order} do
{a, b} GateInputs(f, i)
if i 2 XorGates(f) then
W 0

i W 0
a �W 0

b

else
(W 0

i , TGi, TEi) GbAnd(W 0
a ,W

0
b)

Fi (TGi, TEi)
end if
W 1

i W 0
i �R

for i 2 Outputs(f) do
di lsb(W 0

i)

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b):

pa lsbW 0
a ; pb lsbW 0

b

j NextIndex(); j0 NextIndex()
{First half gate}
TG H(W 0

a , j)�H(W 1
a , j)� pbR

W 0
G H(W 0

a , j)� paTG

{Second half gate}
TE H(W 0

b , j
0)�H(W 1

b , j
0)�W 0

a

W 0
E H(W 0

b , j
0)� pb(TE �W 0

a)
{Combine halves}
W 0 W 0

G �W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei 2 ê do
Xi ei � xiR

return X̂

procedure De(d̂, Ŷ):
for di 2 d̂ do
yi di � lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i 2 Inputs(F̂) do
Wi Xi

for i /2 Inputs(F̂) {in topo. order} do
{a, b} GateInputs(F̂ , i)

if i 2 XorGates(F̂) then
Wi Wa �Wb

else
sa lsbWa; sb lsbWb

j1 NextIndex(); j2 NextIndex()
(TGi, TEi) Fi

WGi H(Wa, j1)� saTGi

WEi H(Wb, j2)� sb(TEi �Wa)
Wi WGi �WEi

end if
for i 2 Outputs(F̂) do
Yi Wi

return Ŷ

Figure 2: Our complete garbling scheme. NextIndex is a stateful procedure that simply increments an internal counter.

Following the description in Section 3.1, we garble each gate using a composition of two half-gates. Conceptually,
W b

Gi and W b
Ei denote the output wire labels for these two half-gates (generator-side and evaluator-side, respectively)

that comprise the ith gate. The final logical output wire label for the ith gate is then set to be W 0

i = W 0

Gi � W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In (a), generator knows pb while
in (b) the evaluator knows vb � pb = lsbWb. The second rows show the two ciphertexts of each half-gate, before they
are permuted according to their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0

Gc � f(x, pb)R to make the row reduction clearer in the next step. The third rows
show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in Figure 2. For simplicity of
discussion and proof, the we assume all gates are either AND or XOR.

4 Security
We now prove the security of our scheme, using the prv.simS and obv.simS security definitions of Bellare, Hoang, and
Rogaway [5]. The scheme shown in Figure 2 does not provide authenticity, simply because authenticity is not required
in many use cases including semi-honest Yao’s circuits. However, there are well-known, standard modifications to
the decoding procedure that can add authenticity, which we describe separately in Section 4.3. Finally, since we only
consider circuits with just AND and XOR gates, everything about the function f is public and we do not define a
separate function �(f) to extract public information about f .

7

2 table entries per AND!

4 calls of H
for garbling 
AND

Free XOR

Part 2: Efficient OTs

24

G. Asharov, Y. Lindell, T. Schneider, M. Zohner: 
More efficient oblivious transfer and extensions for faster secure computation.
In ACM CCS’13.

http://encrypto.de/code/OTExtension

OT - Bad News

25

- [ImpagliazzoRudich89]: there’s no black-box reduction from OT to OWFs 

OT - Bad News

25

- [ImpagliazzoRudich89]: there’s no black-box reduction from OT to OWFs 

- Several OT protocols based on public-key cryptography
 - e.g., [NaorPinkas01] yields ~1,000 OTs per second

OT - Bad News

25

- [ImpagliazzoRudich89]: there’s no black-box reduction from OT to OWFs 

- Several OT protocols based on public-key cryptography
 - e.g., [NaorPinkas01] yields ~1,000 OTs per second

- Since public-key crypto is expensive, OT was believed to be inefficient

OT - Good News

26

- [Beaver95]: OTs can be precomputed (only OTP in online phase)

OT - Good News

26

- [Beaver95]: OTs can be precomputed (only OTP in online phase)

- OT Extensions (similar to hybrid encryption): 
 use symmetric crypto to stretch few “real” OTs into longer/many OTs

“real” OTs

k-bit

k OTs

OT - Good News

26

- [Beaver95]: OTs can be precomputed (only OTP in online phase)

- OT Extensions (similar to hybrid encryption): 
 use symmetric crypto to stretch few “real” OTs into longer/many OTs
 - [Beaver96]: OT on long strings from short seeds

[Beaver96]“real” OTs

l-bit
k-bit

k OTs

OT - Good News

26

- [Beaver95]: OTs can be precomputed (only OTP in online phase)

- OT Extensions (similar to hybrid encryption): 
 use symmetric crypto to stretch few “real” OTs into longer/many OTs
 - [Beaver96]: OT on long strings from short seeds
 - [IshaiKilianNissimPetrank03]: many OTs from few OTs

[Beaver96]“real” OTs

[IKNP03]

l-bit
k-bit

k OTs

m OTs

OT Extension of [IKNP03] (1)

27

- Alice inputs m pairs of ℓ𝓁-bit strings (xi,0 , xi,1)
 
- Bob inputs m-bit string r and obtains xi,ri in i-th OT

OT Extension of [IKNP03] (2)

28

- Alice and Bob perform k “real” OTs on random seeds with reverse roles 
 (k: security parameter)

OT Extension of [IKNP03] (3)

29

- Bob generates a random m x k bit matrix T and masks his choices r

- The matrix is masked with the stretched seeds of the “real” OTs

PRG: pseudo-random generator (instantiated with AES)

OT Extension of [IKNP03] (4)

30

H: correlation robust function (instantiated with hash function)

- Transpose matrices V and T

- Alice masks her inputs and obliviously sends them to Bob

Computation Complexity of OT Extension

31

Computation Complexity of OT Extension

31

Per OT:

PRG evaluations

H evaluations

1

2

2

1

10%

42%

14%

33%

1%

"real" OTs
H (SHA-1)
PRG (AES)
Transpose
Misc (Snd/Rcv/XOR)

Computation Complexity of OT Extension

31

Time distribution for 10 Million OTs (in 21s):
2.1 microseconds per OT

Per OT:

PRG evaluations

H evaluations

1

2

2

1

10%

42%

14%

33%

1%

"real" OTs
H (SHA-1)
PRG (AES)
Transpose
Misc (Snd/Rcv/XOR)

Computation Complexity of OT Extension

31

Time distribution for 10 Million OTs (in 21s):
2.1 microseconds per OT

Non-crypto part was bottleneck!!!

Per OT:

PRG evaluations

H evaluations

1

2

2

1

Algorithmic Optimization: Efficient Matrix Transposition

32

- Naive matrix transposition performs mk load/process/store operations

Algorithmic Optimization: Efficient Matrix Transposition

32

- Naive matrix transposition performs mk load/process/store operations

- Eklundh's algorithm reduces number of operations to O(m log2 k) swaps
- Swap whole registers instead of bits
- Transposing 10 times faster

Algorithmic Optimization: Parallelization

33

- OT extension can easily be
parallelized by splitting the T matrix
into sub-matrices

- Since columns are independent, 
OT is highly parallelizable

Communication Complexity of OT Extension

34

2ℓ𝓁

Per OT:

Bits sent 2k

Communication Complexity of OT Extension

34

2ℓ𝓁

Per OT:

Bits sent

Yao: ℓ𝓁 = k = 80 GMW: ℓ𝓁 = 1, k = 80

Alice Bob

Bob

Alice

2k

Protocol Optimization: General OT Extension

35

- Instead of generating a random T matrix, we derive it from sj,0

- Reduces data sent by Bob by factor 2

Specific OT Functionalities

36

- Secure computation protocols often require a specific OT functionality

Specific OT Functionalities

36

- Secure computation protocols often require a specific OT functionality
 - Yao with free XORs requires strings x0, x1 to be XOR-correlated

Correlated OT

- Correlated OT: random x0 and x1 = x0 ⊕ x

e.g., for Yao

Specific OT Functionalities

36

- Secure computation protocols often require a specific OT functionality
 - Yao with free XORs requires strings x0, x1 to be XOR-correlated
 - GMW with multiplication triples can use random strings

Correlated OT Random OT

- Correlated OT: random x0 and x1 = x0 ⊕ x - Random OT: random x0 and x1

e.g., for Yao e.g., for GMW

- Choose xi,0 as random output of H (modeled as RO here)

- Compute xi,1 as xi,0 ⊕ xi to obliviously transfer XOR-correlated values 

- Reduces data sent by Alice by factor 2

Specific OT Functionalities: Correlated OT (C-OT)

37

- Choose xi,0 and xi,1 as random outputs of H (modeled as RO here) 

- No data sent by Alice

Specific OT Functionalities: Random OT (R-OT)

38

R
un

tim
e

in
 s

0

10

20

30

40

Orig EMT G-OT C-OT R-OT 2T 4T

14.214.214.214.4

29.430.530.7

2.65.0
10.010.6

13.914.4
20.6

Gigabit LAN WiFi 802.11g

Performance Evaluation: Original Implementation

39

- C++ implementation of [SZ13] implementing OT extension of [IKNP03]

- Performance for 10 Million OTs on 80-bit strings

R
un

tim
e

in
 s

0

10

20

30

40

Orig EMT G-OT C-OT R-OT 2T 4T

14.214.214.214.4

29.430.530.7

2.65.0
10.010.6

13.914.4
20.6

Gigabit LAN WiFi 802.11g

Performance Evaluation: Efficient Matrix Transposition

40

- Efficient matrix transposition – improves computation

- Only decreases runtime in LAN where computation is the bottleneck

R
un

tim
e

in
 s

0

10

20

30

40

Orig EMT G-OT C-OT R-OT 2T 4T

14.214.214.214.4

29.430.530.7

2.65.0
10.010.6

13.914.4
20.6

Gigabit LAN WiFi 802.11g

Performance Evaluation: General OT

41

- Generate T matrix from seeds – improves communication Bob → Alice

- Runtimes only slightly faster (bottleneck: communication Alice → Bob)

R
un

tim
e

in
 s

0

10

20

30

40

Orig EMT G-OT C-OT R-OT 2T 4T

14.214.214.214.4

29.430.530.7

2.65.0
10.010.6

13.914.4
20.6

Gigabit LAN WiFi 802.11g

Performance Evaluation: Correlated/Random OT

42

- Correlated/Random OT – improved communication Alice → Bob

- WiFi runtime faster by factor 2 (bottleneck: communication Bob → Alice)

Performance Evaluation: Parallelization

43

- Parallel OT extension with 2 and 4 threads – improved computation

- LAN runtime decreases linear in # of threads

- WiFi runtime remains the same (bottleneck: communication)

R
un

tim
e

in
 s

0

10

20

30

40

Orig EMT G-OT C-OT R-OT 2T 4T

14.214.214.214.4

29.430.530.7

2.65.0
10.010.6

13.914.4
20.6

Gigabit LAN WiFi 802.11g

Performance Evaluation: Summary

44

- OT is very efficient

- Communication is the bottleneck for OT (even without using AES-NI)

Performance for 10 Mio. OTs on 80-bit strings

R
un

tim
e

in
 s

0

10

20

30

40

Orig EMT G-OT C-OT R-OT 2T 4T

14.214.214.214.4

29.430.530.7

2.65.0
10.010.6

13.914.4
20.6

Gigabit LAN WiFi 802.11g

Part 3: Efficient Circuits and Yao vs. GMW

45

T. Schneider, M. Zohner: 
GMW vs. Yao? Efficient secure two-party computation with low depth circuits.
In FC’13.

Yao - the Apple

How to eat an apple?

46

Yao - the Apple

How to eat an apple?
bite-by-bite

46

Yao - the Apple

How to eat an apple?
bite-by-bite

46

+ Yao has constant #rounds

Yao - the Apple

How to eat an apple?
bite-by-bite

46

+ Yao has constant #rounds
- Evaluating a garbled gate requires

symmetric crypto in the online phase

GMW - the Orange

How to eat an orange?

47

GMW - the Orange

How to eat an orange?
1) peel (almost all the effort)

47

GMW - the Orange

How to eat an orange?
1) peel (almost all the effort)

47

2) eat (easy)

GMW - the Orange

How to eat an orange?
1) peel (almost all the effort)

47

2) eat (easy)

Setup phase:
- precompute multiplication triples for each AND

gate using 2 R-OTs and constant #rounds
+ no need to know function, only max. #ANDs

GMW - the Orange

How to eat an orange?
1) peel (almost all the effort)

47

2) eat (easy)

Setup phase:
- precompute multiplication triples for each AND

gate using 2 R-OTs and constant #rounds
+ no need to know function, only max. #ANDs

Online phase:
+ evaluating circuit needs OTP operations only
- communication per layer of AND gates

Yao vs. GMW

48

Yao GMW

t: symmetric security parameter

Yao vs. GMW

48

Yao GMW

t: symmetric security parameter

Free XOR

Yao vs. GMW

48

Yao GMW

symmetric crypto per ANDS: 4, R: 2 (online) setup: S: 6, R: 6

t: symmetric security parameter

Free XOR

Yao vs. GMW

48

Yao GMW

symmetric crypto per ANDS: 4, R: 2 (online) setup: S: 6, R: 6

communication [bit] per ANDS→R: 2t setup: S→R:t || R→S:t
online: S→R:2 || R→S:2

t: symmetric security parameter

Free XOR

Yao vs. GMW

48

Yao GMW

symmetric crypto per ANDS: 4, R: 2 (online) setup: S: 6, R: 6

communication [bit] per ANDS→R: 2t setup: S→R:t || R→S:t
online: S→R:2 || R→S:2

roundsO(1) setup: O(1) 
online: O(ANDdepth(f))

t: symmetric security parameter

Free XOR

Yao vs. GMW

48

Yao GMW

symmetric crypto per ANDS: 4, R: 2 (online) setup: S: 6, R: 6

communication [bit] per ANDS→R: 2t setup: S→R:t || R→S:t
online: S→R:2 || R→S:2

memory per wire [bit]t 1

roundsO(1) setup: O(1) 
online: O(ANDdepth(f))

t: symmetric security parameter

Free XOR

Efficient Circuit Constructions for Secure Computation

49

Classical circuit design:
- few gates (⇒ small chip area)

- low depth (⇒ high clock frequency)

Efficient Circuit Constructions for Secure Computation

Circuits for secure computation:
- low ANDsize (#non-XORs ⇒ communication and symmetric crypto)

- low ANDdepth (#rounds in GMW’s online phase)

49

Classical circuit design:
- few gates (⇒ small chip area)

- low depth (⇒ high clock frequency)

Example Circuit: Addition

50

Chapter 3 Circuit Optimizations and Constructions

Table 3.2: Size: E�cient Circuit Constructions (for n unsigned `-bit values)
Circuit Standard Free XOR
#gates 2-input 3-input 2-input non-XOR

ADD, SUB (§3.3.1) 2 2` � 2 `
ADDSUB (§3.3.1.3) `+ 1 2` `
MUL (Textbook) (§3.3.2.1) `2 + 2` � 2 2`2 � 4`+ 2 2`2 � `
MUL (Karatsuba) (§3.3.2.2) ⇡ 9`1.6 � 13` � 34`
CMP (§3.3.3.1) 1 ` � 1 `
MUX (§3.3.3.2) 0 ` `
MIN, MAX (§3.3.3.3) n � 1 2`(n � 1) + 2 2`(n � 1) + n+ 1

The first 1-bit adder has constant input c1 = 0 and can be replaced by a smaller half-
adder with two inputs. Each 1-bit adder has as inputs the carry-in bit c

i

from the
previous 1-bit adder and the two input bits x

i

, y
i

. The outputs are the carry-out
bit c

i+1 = (x
i

^ y
i

) _ (x
i

^ c
i

) _ (y
i

^ c
i

) = (x
i

, y
i

, c
i

)[00010111] and the sum bit
s
i

= x
i

� y
i

� c
i

= (x
i

, y
i

, c
i

)[01101001]. All occurring gates are even and can be
optimized to a small number of XOR gates. An equivalent construction for computing
c
i+1 with the same number of non-XOR gates was given in [BPP00, BDP00].

x` y` x1 y1y2x2

s`+1 s` s2 s1

. . . +++ c2c3
0

ADD

Figure 3.3: Circuit: Addition (ADD)

3.3.1.2 Subtraction (SUB)

Subtraction in two’s complement representation is defined as x�y = x+¬y+1. Hence,
a subtraction circuit (SUB) can be constructed analogously to the addition circuit from
1-bit subtractors (�) as shown in Fig. 3.4. Each 1-bit subtractor computes the carry-
out bit c

i+1 = (x
i

^¬y
i

)_(x
i

^c
i

)_(¬y
i

^c
i

) = (x
i

, y
i

, c
i

))[01001101] and the di↵erence
bit d

i

= x
i

� ¬y
i

� c
i

= (x
i

, y
i

, c
i

)[10010110]. The size of SUB is equal to that of ADD.

3.3.1.3 Controlled Addition/Subtraction (ADDSUB)

A controlled addition/subtraction circuit (ADDSUB) which can add or subtract two
unsigned `-bit values x and y depending on a control input bit ctrl can be naturally
constructed as combination of ADD, SUB, and controlled inversion (CNOT) which is

40

Ripple-Carry-Adder

si = xi ⊕ yi ⊕ ci

ci+1 = ((xi ⊕ yi) ∧ (xi ⊕ ci)) ⊕ xi [BoyarPeraltaPochuev00] 
ANDsize = ℓ𝓁, ANDdepth = ℓ𝓁

Example Circuit: Addition

50

Chapter 3 Circuit Optimizations and Constructions

Table 3.2: Size: E�cient Circuit Constructions (for n unsigned `-bit values)
Circuit Standard Free XOR
#gates 2-input 3-input 2-input non-XOR

ADD, SUB (§3.3.1) 2 2` � 2 `
ADDSUB (§3.3.1.3) `+ 1 2` `
MUL (Textbook) (§3.3.2.1) `2 + 2` � 2 2`2 � 4`+ 2 2`2 � `
MUL (Karatsuba) (§3.3.2.2) ⇡ 9`1.6 � 13` � 34`
CMP (§3.3.3.1) 1 ` � 1 `
MUX (§3.3.3.2) 0 ` `
MIN, MAX (§3.3.3.3) n � 1 2`(n � 1) + 2 2`(n � 1) + n+ 1

The first 1-bit adder has constant input c1 = 0 and can be replaced by a smaller half-
adder with two inputs. Each 1-bit adder has as inputs the carry-in bit c

i

from the
previous 1-bit adder and the two input bits x

i

, y
i

. The outputs are the carry-out
bit c

i+1 = (x
i

^ y
i

) _ (x
i

^ c
i

) _ (y
i

^ c
i

) = (x
i

, y
i

, c
i

)[00010111] and the sum bit
s
i

= x
i

� y
i

� c
i

= (x
i

, y
i

, c
i

)[01101001]. All occurring gates are even and can be
optimized to a small number of XOR gates. An equivalent construction for computing
c
i+1 with the same number of non-XOR gates was given in [BPP00, BDP00].

x` y` x1 y1y2x2

s`+1 s` s2 s1

. . . +++ c2c3
0

ADD

Figure 3.3: Circuit: Addition (ADD)

3.3.1.2 Subtraction (SUB)

Subtraction in two’s complement representation is defined as x�y = x+¬y+1. Hence,
a subtraction circuit (SUB) can be constructed analogously to the addition circuit from
1-bit subtractors (�) as shown in Fig. 3.4. Each 1-bit subtractor computes the carry-
out bit c

i+1 = (x
i

^¬y
i

)_(x
i

^c
i

)_(¬y
i

^c
i

) = (x
i

, y
i

, c
i

))[01001101] and the di↵erence
bit d

i

= x
i

� ¬y
i

� c
i

= (x
i

, y
i

, c
i

)[10010110]. The size of SUB is equal to that of ADD.

3.3.1.3 Controlled Addition/Subtraction (ADDSUB)

A controlled addition/subtraction circuit (ADDSUB) which can add or subtract two
unsigned `-bit values x and y depending on a control input bit ctrl can be naturally
constructed as combination of ADD, SUB, and controlled inversion (CNOT) which is

40

Ripple-Carry-Adder

si = xi ⊕ yi ⊕ ci

ci+1 = ((xi ⊕ yi) ∧ (xi ⊕ ci)) ⊕ xi [BoyarPeraltaPochuev00] 
ANDsize = ℓ𝓁, ANDdepth = ℓ𝓁

Ladner-Fischer-Adder [LF80]

ANDsize = ℓ𝓁+1.25 ℓ𝓁 log2(ℓ𝓁), ANDdepth = 1+2 log2(ℓ𝓁)

x 4 y 4 x 3 y 3 x 2 y 2 x 1 y 1

p 4,0
c 4,0

p 3,0
c 3,0

p 2,0
c 2,0

p 1,0
c 1,0

p 4,1
c 4,1

p 2,1
c 2,1

p 4,2
c 4,2

p 3,2
c 3,2

s 5 s 4 s 3 s 2 s 1

pi,0=xi⊕yi, ci,0=xi∧yi

pi,j=pi,j-1∧pk,j-1
ci,j=(pi,j-1∧ck,j-1)∨ci,j-1

Example Circuits Summarized in [SchneiderZohner13]

51

290 T. Schneider and M. Zohner

A Summary of Circuit Building Blocks

Table 7. Size and Depth of Circuit Constructions (dH : Hamming weight)

Circuit Size S Depth D
Addition

Ripple-carry ADD/SUBℓ
RC ℓ ℓ

Ladner-Fischer ADDℓ
LF 1.25ℓ⌈log2 ℓ⌉+ ℓ 2⌈log2 ℓ⌉+ 1

LF subtraction SUBℓ
LF 1.25ℓ⌈log2 ℓ⌉+ 2ℓ 2⌈log2 ℓ⌉+ 2

Carry-save ADD(ℓ,3)
CSA ℓ + S(ADDℓ) D(ADDℓ)+1

RC network ADD(ℓ,n)
RC ℓn− ℓ+ n− ⌈log2 n⌉ − 1 ⌈log2 n− 1⌉+ ℓ

CSA network ADD(ℓ,n)
CSA

ℓn− 2ℓ+ n− ⌈log2 n⌉ ⌈log2 n− 1⌉
+S(ADD

ℓ+⌈log2 n⌉
LF) +D(ADD

ℓ+⌈log2 n⌉
LF)

Multiplication
RCN school method MULℓ

RC 2ℓ2 − ℓ 2ℓ− 1
CSN school method MULℓ

CSN 2ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − ℓ+ 2 3⌈log2 ℓ⌉+ 4
RC squaring SQRℓ

RC ℓ2 − ℓ 2ℓ− 3
LF squaring SQRℓ

LF ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − 1.5ℓ − 2 3⌈log2 ℓ⌉+ 3
Comparison
Equality EQℓ ℓ− 1 ⌈log2 ℓ⌉
Sequential greater than GTℓ

S ℓ ℓ
D&C greater than GTℓ

DC 3ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉+ 1
Selection
Multiplexer MUXℓ ℓ 1

Minimum MIN(ℓ,n) (n− 1)(S(GTℓ)+ℓ) ⌈log2 n⌉(D(GTℓ)+1)

Minimum index MIN(ℓ,n)
IDX (n− 1)(S(GTℓ)+ℓ+ ⌈log2 n⌉) ⌈log2 n⌉(D(GTℓ)+1)

Set Operations
Set union ∪ℓ ℓ 1
Set intersection ∩ℓ ℓ 1
Set inclusion ⊆ℓ 2ℓ − 1 ⌈log2 ℓ⌉+ 1
Count
Full Adder count CNTℓ

FA 2ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉
Boyar-Peralta count CNTℓ

BP ℓ− dH(ℓ) ⌊log2 ℓ⌋
Distances

Manhattan distance DSTℓ
M 2S(SUBℓ)+S(ADD(ℓ,3))+1 D(SUBℓ)+D(ADD(ℓ,3))+1

Euclidean distance DSTℓ
E

2S(SUBℓ)+2S(SQRℓ) D(SUBℓ)
+S(ADD(2ℓ,4))+2S(MUXℓ) +D(SQRℓ)+3

B Depth Efficient Distance Circuits

B.1 Manhattan Distance

The Manhattan distance DSTℓ
M between two points p1 = (xℓ

1, y
ℓ
1) and p2 =

(xℓ
2, y

ℓ
2) is the distance in a two dimensional space allowing only horizontal and

vertical moves and is computed as |xℓ
1 − xℓ

2| + |yℓ1 − yℓ2|. [5] give such a circuit
DSTℓ

M,C with size S(DSTℓ
M,C) = 9ℓ and depth D(DSTℓ

M,C) = 2ℓ+ 2. They use

4 multiplexer circuits MUXℓ (cf. [18]), 2 GTℓ
S circuits (§3.3), 2 SUBℓ

RC circuits
(cf. [18]), and one ADDℓ

RC circuit (§3.1).

Can trade-off larger size for better depth.

Example Circuits Summarized in [SchneiderZohner13]

51

290 T. Schneider and M. Zohner

A Summary of Circuit Building Blocks

Table 7. Size and Depth of Circuit Constructions (dH : Hamming weight)

Circuit Size S Depth D
Addition

Ripple-carry ADD/SUBℓ
RC ℓ ℓ

Ladner-Fischer ADDℓ
LF 1.25ℓ⌈log2 ℓ⌉+ ℓ 2⌈log2 ℓ⌉+ 1

LF subtraction SUBℓ
LF 1.25ℓ⌈log2 ℓ⌉+ 2ℓ 2⌈log2 ℓ⌉+ 2

Carry-save ADD(ℓ,3)
CSA ℓ + S(ADDℓ) D(ADDℓ)+1

RC network ADD(ℓ,n)
RC ℓn− ℓ+ n− ⌈log2 n⌉ − 1 ⌈log2 n− 1⌉+ ℓ

CSA network ADD(ℓ,n)
CSA

ℓn− 2ℓ+ n− ⌈log2 n⌉ ⌈log2 n− 1⌉
+S(ADD

ℓ+⌈log2 n⌉
LF) +D(ADD

ℓ+⌈log2 n⌉
LF)

Multiplication
RCN school method MULℓ

RC 2ℓ2 − ℓ 2ℓ− 1
CSN school method MULℓ

CSN 2ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − ℓ+ 2 3⌈log2 ℓ⌉+ 4
RC squaring SQRℓ

RC ℓ2 − ℓ 2ℓ− 3
LF squaring SQRℓ

LF ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − 1.5ℓ − 2 3⌈log2 ℓ⌉+ 3
Comparison
Equality EQℓ ℓ− 1 ⌈log2 ℓ⌉
Sequential greater than GTℓ

S ℓ ℓ
D&C greater than GTℓ

DC 3ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉+ 1
Selection
Multiplexer MUXℓ ℓ 1

Minimum MIN(ℓ,n) (n− 1)(S(GTℓ)+ℓ) ⌈log2 n⌉(D(GTℓ)+1)

Minimum index MIN(ℓ,n)
IDX (n− 1)(S(GTℓ)+ℓ+ ⌈log2 n⌉) ⌈log2 n⌉(D(GTℓ)+1)

Set Operations
Set union ∪ℓ ℓ 1
Set intersection ∩ℓ ℓ 1
Set inclusion ⊆ℓ 2ℓ − 1 ⌈log2 ℓ⌉+ 1
Count
Full Adder count CNTℓ

FA 2ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉
Boyar-Peralta count CNTℓ

BP ℓ− dH(ℓ) ⌊log2 ℓ⌋
Distances

Manhattan distance DSTℓ
M 2S(SUBℓ)+S(ADD(ℓ,3))+1 D(SUBℓ)+D(ADD(ℓ,3))+1

Euclidean distance DSTℓ
E

2S(SUBℓ)+2S(SQRℓ) D(SUBℓ)
+S(ADD(2ℓ,4))+2S(MUXℓ) +D(SQRℓ)+3

B Depth Efficient Distance Circuits

B.1 Manhattan Distance

The Manhattan distance DSTℓ
M between two points p1 = (xℓ

1, y
ℓ
1) and p2 =

(xℓ
2, y

ℓ
2) is the distance in a two dimensional space allowing only horizontal and

vertical moves and is computed as |xℓ
1 − xℓ

2| + |yℓ1 − yℓ2|. [5] give such a circuit
DSTℓ

M,C with size S(DSTℓ
M,C) = 9ℓ and depth D(DSTℓ

M,C) = 2ℓ+ 2. They use

4 multiplexer circuits MUXℓ (cf. [18]), 2 GTℓ
S circuits (§3.3), 2 SUBℓ

RC circuits
(cf. [18]), and one ADDℓ

RC circuit (§3.1).

Can trade-off larger size for better depth.

Example Circuits Summarized in [SchneiderZohner13]

51

290 T. Schneider and M. Zohner

A Summary of Circuit Building Blocks

Table 7. Size and Depth of Circuit Constructions (dH : Hamming weight)

Circuit Size S Depth D
Addition

Ripple-carry ADD/SUBℓ
RC ℓ ℓ

Ladner-Fischer ADDℓ
LF 1.25ℓ⌈log2 ℓ⌉+ ℓ 2⌈log2 ℓ⌉+ 1

LF subtraction SUBℓ
LF 1.25ℓ⌈log2 ℓ⌉+ 2ℓ 2⌈log2 ℓ⌉+ 2

Carry-save ADD(ℓ,3)
CSA ℓ + S(ADDℓ) D(ADDℓ)+1

RC network ADD(ℓ,n)
RC ℓn− ℓ+ n− ⌈log2 n⌉ − 1 ⌈log2 n− 1⌉+ ℓ

CSA network ADD(ℓ,n)
CSA

ℓn− 2ℓ+ n− ⌈log2 n⌉ ⌈log2 n− 1⌉
+S(ADD

ℓ+⌈log2 n⌉
LF) +D(ADD

ℓ+⌈log2 n⌉
LF)

Multiplication
RCN school method MULℓ

RC 2ℓ2 − ℓ 2ℓ− 1
CSN school method MULℓ

CSN 2ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − ℓ+ 2 3⌈log2 ℓ⌉+ 4
RC squaring SQRℓ

RC ℓ2 − ℓ 2ℓ− 3
LF squaring SQRℓ

LF ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − 1.5ℓ − 2 3⌈log2 ℓ⌉+ 3
Comparison
Equality EQℓ ℓ− 1 ⌈log2 ℓ⌉
Sequential greater than GTℓ

S ℓ ℓ
D&C greater than GTℓ

DC 3ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉+ 1
Selection
Multiplexer MUXℓ ℓ 1

Minimum MIN(ℓ,n) (n− 1)(S(GTℓ)+ℓ) ⌈log2 n⌉(D(GTℓ)+1)

Minimum index MIN(ℓ,n)
IDX (n− 1)(S(GTℓ)+ℓ+ ⌈log2 n⌉) ⌈log2 n⌉(D(GTℓ)+1)

Set Operations
Set union ∪ℓ ℓ 1
Set intersection ∩ℓ ℓ 1
Set inclusion ⊆ℓ 2ℓ − 1 ⌈log2 ℓ⌉+ 1
Count
Full Adder count CNTℓ

FA 2ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉
Boyar-Peralta count CNTℓ

BP ℓ− dH(ℓ) ⌊log2 ℓ⌋
Distances

Manhattan distance DSTℓ
M 2S(SUBℓ)+S(ADD(ℓ,3))+1 D(SUBℓ)+D(ADD(ℓ,3))+1

Euclidean distance DSTℓ
E

2S(SUBℓ)+2S(SQRℓ) D(SUBℓ)
+S(ADD(2ℓ,4))+2S(MUXℓ) +D(SQRℓ)+3

B Depth Efficient Distance Circuits

B.1 Manhattan Distance

The Manhattan distance DSTℓ
M between two points p1 = (xℓ

1, y
ℓ
1) and p2 =

(xℓ
2, y

ℓ
2) is the distance in a two dimensional space allowing only horizontal and

vertical moves and is computed as |xℓ
1 − xℓ

2| + |yℓ1 − yℓ2|. [5] give such a circuit
DSTℓ

M,C with size S(DSTℓ
M,C) = 9ℓ and depth D(DSTℓ

M,C) = 2ℓ+ 2. They use

4 multiplexer circuits MUXℓ (cf. [18]), 2 GTℓ
S circuits (§3.3), 2 SUBℓ

RC circuits
(cf. [18]), and one ADDℓ

RC circuit (§3.1).

Can trade-off larger size for better depth.

Example Circuits Summarized in [SchneiderZohner13]

51

290 T. Schneider and M. Zohner

A Summary of Circuit Building Blocks

Table 7. Size and Depth of Circuit Constructions (dH : Hamming weight)

Circuit Size S Depth D
Addition

Ripple-carry ADD/SUBℓ
RC ℓ ℓ

Ladner-Fischer ADDℓ
LF 1.25ℓ⌈log2 ℓ⌉+ ℓ 2⌈log2 ℓ⌉+ 1

LF subtraction SUBℓ
LF 1.25ℓ⌈log2 ℓ⌉+ 2ℓ 2⌈log2 ℓ⌉+ 2

Carry-save ADD(ℓ,3)
CSA ℓ + S(ADDℓ) D(ADDℓ)+1

RC network ADD(ℓ,n)
RC ℓn− ℓ+ n− ⌈log2 n⌉ − 1 ⌈log2 n− 1⌉+ ℓ

CSA network ADD(ℓ,n)
CSA

ℓn− 2ℓ+ n− ⌈log2 n⌉ ⌈log2 n− 1⌉
+S(ADD

ℓ+⌈log2 n⌉
LF) +D(ADD

ℓ+⌈log2 n⌉
LF)

Multiplication
RCN school method MULℓ

RC 2ℓ2 − ℓ 2ℓ− 1
CSN school method MULℓ

CSN 2ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − ℓ+ 2 3⌈log2 ℓ⌉+ 4
RC squaring SQRℓ

RC ℓ2 − ℓ 2ℓ− 3
LF squaring SQRℓ

LF ℓ2 + 1.25ℓ⌈log2 ℓ⌉ − 1.5ℓ − 2 3⌈log2 ℓ⌉+ 3
Comparison
Equality EQℓ ℓ− 1 ⌈log2 ℓ⌉
Sequential greater than GTℓ

S ℓ ℓ
D&C greater than GTℓ

DC 3ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉+ 1
Selection
Multiplexer MUXℓ ℓ 1

Minimum MIN(ℓ,n) (n− 1)(S(GTℓ)+ℓ) ⌈log2 n⌉(D(GTℓ)+1)

Minimum index MIN(ℓ,n)
IDX (n− 1)(S(GTℓ)+ℓ+ ⌈log2 n⌉) ⌈log2 n⌉(D(GTℓ)+1)

Set Operations
Set union ∪ℓ ℓ 1
Set intersection ∩ℓ ℓ 1
Set inclusion ⊆ℓ 2ℓ − 1 ⌈log2 ℓ⌉+ 1
Count
Full Adder count CNTℓ

FA 2ℓ− ⌈log2 ℓ⌉ − 2 ⌈log2 ℓ⌉
Boyar-Peralta count CNTℓ

BP ℓ− dH(ℓ) ⌊log2 ℓ⌋
Distances

Manhattan distance DSTℓ
M 2S(SUBℓ)+S(ADD(ℓ,3))+1 D(SUBℓ)+D(ADD(ℓ,3))+1

Euclidean distance DSTℓ
E

2S(SUBℓ)+2S(SQRℓ) D(SUBℓ)
+S(ADD(2ℓ,4))+2S(MUXℓ) +D(SQRℓ)+3

B Depth Efficient Distance Circuits

B.1 Manhattan Distance

The Manhattan distance DSTℓ
M between two points p1 = (xℓ

1, y
ℓ
1) and p2 =

(xℓ
2, y

ℓ
2) is the distance in a two dimensional space allowing only horizontal and

vertical moves and is computed as |xℓ
1 − xℓ

2| + |yℓ1 − yℓ2|. [5] give such a circuit
DSTℓ

M,C with size S(DSTℓ
M,C) = 9ℓ and depth D(DSTℓ

M,C) = 2ℓ+ 2. They use

4 multiplexer circuits MUXℓ (cf. [18]), 2 GTℓ
S circuits (§3.3), 2 SUBℓ

RC circuits
(cf. [18]), and one ADDℓ

RC circuit (§3.1).

Can trade-off larger size for better depth.

Summary

52

Summary

Part 1: In Garbled Circuits, each non-XOR gate:
- small # of fixed-key AES evaluations
- send 2 ciphertexts

52

Summary

Part 1: In Garbled Circuits, each non-XOR gate:
- small # of fixed-key AES evaluations
- send 2 ciphertexts

Part 2: OT extension
- send 1 ciphertext + |payload|
- communication is essentially the bottleneck

52

Summary

Part 1: In Garbled Circuits, each non-XOR gate:
- small # of fixed-key AES evaluations
- send 2 ciphertexts

Part 2: OT extension
- send 1 ciphertext + |payload|
- communication is essentially the bottleneck

Part 3: Circuits and Yao vs. GMW
- can trade-off size for depth
- Yao has constant #rounds ⇒ good for networks with high latency (Internet)

- GMW can precompute all crypto, good for low-latency networks (LAN)

52

Summary

Part 1: In Garbled Circuits, each non-XOR gate:
- small # of fixed-key AES evaluations
- send 2 ciphertexts

Part 2: OT extension
- send 1 ciphertext + |payload|
- communication is essentially the bottleneck

Part 3: Circuits and Yao vs. GMW
- can trade-off size for depth
- Yao has constant #rounds ⇒ good for networks with high latency (Internet)

- GMW can precompute all crypto, good for low-latency networks (LAN)

52

Symmetric crypto is so efficient that communication is the bottleneck.

Thanks for your attention!

Contact: http://encrypto.de

Questions?

