
Michael Walfish

Dept. of Computer Science, Courant Institute, NYU

Bar-Ilan Winter School on Verifiable Computation
Class 10 (last one!)

January 6, 2016

Additional Applications and Summary

(1)  Costs and comparisons

(2) Additional applications

(3) Summary and wrap-up

Costs arise from the front-end, the back-end, and their interaction

Goals:

§  Understand concrete costs

§  Understand the different amortization regimes

§  Understand current trade-offs

Plan:

§  Compare front-ends, by holding back-end constant

§  Compare back-ends on two different circuits

§  Examine various metrics (mostly running times)

§  Examine the amortization regimes

Front-end comparison

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized
implementation of Pinocchio/GGPR [PGHR13, GGPR13].

Front-ends: implementations or re-implementations of

§  Zaatar (ASIC) [SBVBPW13]

§  BCTV (CPU) [BCTV14b]

§  Buffet (ASIC) [WSRHBW15]

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest PCD &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

Evaluation platform: cluster at Texas Advanced Computing Center (TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of RAM.

Front-end comparison

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized
implementation of Pinocchio/GGPR [PGHR13, GGPR13].

Front-ends: implementations or re-implementations of

§  Zaatar (ASIC) [SBVBPW13]

§  BCTV (CPU) [BCTV14b]

§  Buffet (ASIC) [WSRHBW15]

(1)  What are the verifier’s costs?

(2)  What are the prover’s costs?

(3)  How do the front-ends compare to each other?

(4)  Are the constants good or bad?

Proof length 288 bytes

V per-instance 6 ms + (|x| + |y|)･3 µs

V pre-processing |C|･180 µs

P per-instance |C|･60 µs +|C|log |C|･0.9µs

P’s memory requirements O(|C|log|C|)

(|C|: circuit size)

Extrapolated prover execution time, normalized to Buffet

How does the prover’s cost vary with the choice of front-end?

Extrapolated prover execution time, normalized to native execution

All of the front-ends have terrible concrete performance

approach ASIC CPU ASIC

m × m
mat. mult

215 7 215

merge sort
m elements

256 32 512

KMP
str len: m
substr len: k

m=320,
k=32

m=160,
k=16

m=2900,
k=256

Zaatar BCTV Buffet

The data reflect a “gate budget” of ≈107 gates.

Pre-processing costs 10-30 minutes; proving costs 8-13 minutes

The maximum input size is far too small to be called practical

Back-end comparison

§  Data are from our re-implementations and match or exceed
published results.

§  All experiments are run on the same machines (2.7Ghz, 32GB
RAM). Average 3 runs (experimental variation is minor).
§  For a few systems, we extrapolate from detailed microbenchmarks

§  Benchmarks: 128×128 matrix multiplication and clustering
algorithm

1.  What is the per-instance verification cost?

2.  What are the cross-over points?

3.  What is the server’s overhead versus native execution?

instances

CPU time

computation costs

verification costs

cross-over
point

ve
ri

fi
ca

ti
on

 c
os

t
(m

s
of

 C
P

U
 ti

m
e)

102

1011

108

105

1014

1017

0

1020

1023

1026

baseline 2
(103 ms)

baseline 1
(3.5 ms)

Ishai et al. (PCP-based efficient argument)

Pep
pe

r

CM
T

G
in

ge
r

128⨉128 matrix multiplication

Pin
occ

hio

Zaa
tar

Alls
pi

ce

Verification cost sometimes beats (unoptimized)
native execution.

0

3

6

9

12

15

0 2k 4k 6k 8k

local (slo
pe: 103 ms/inst)

Zaatar (slope: 26 ms/inst)

ve
ri

fi
ca

ti
on

 c
os

t
(m

in
ut

es
 o

f
C

P
U

 ti
m

e)

number of instances

Ginger (slope: 14 ms/inst)
cross-over point: 980k instances

Pinocchio (slope: 10 ms/inst)

1 day

...
.

CMT (slope: 36 ms/inst) Allspice (slope: 35 ms/inst)

9 months

...
.

cross-over point: 265M instances

Thaler (slope: 12 ms/inst)

TinyRAM (slope: 10 ms/inst)

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

The prover’s costs are rather high.

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

The prover’s costs are rather high.

Amortization comparison (of built systems)

Systems [CMT12, VSBW13, Thaler13] derived from [GKR08] require little or no
amortization (but have some expressivity limitations)

Of the schemes that handle arbitrary circuits (that is, those based on
arguments), preprocessing costs amortize differently. Ordered best to worst:

1. Bootstrapped GGPR-based SNARKs [BCTV14a, CTV15]

§  Constant preprocessing; amortize over all computations (but
concrete costs to prover are extremely high).

2. BCTV [BCTV14b]: “CPU” front-end + non-interactive GGPR back-end

§  Amortize over all future computations of the same length

3. Pinocchio [PGHR13]: “ASIC” front-end + non-interactive GGPR back-end

§  Amortize over all future uses of a given computation

4. Zaatar [SBVBPW13]: “ASIC” front-end + interactive GGPR/IKO back-end

§  Amortize over a batch of instances of a given computation

Summary of concrete performance

§  Front-end: generality brings a concrete price (but better in theory)

§  Verifier’s “variable costs”: genuinely inexpensive

§  Verifier’s “pre-processing”: depends on setting

§  Prover’s computational costs: mostly disastrous

§  Memory: creates scaling limit for verifier and prover

Performance is plausibly acceptable in certain settings …

§  It must be “regular” (to avoid setup costs), or there must be many
identical instances (to amortize setup costs)

§  The given computation needs to be small

… But none of the systems is at true practicality

Summary of front-ends

“ASIC”

circuit is unrolled CPU execution

§  Verbose (costly)

§  Good amortization

§  Great programmability

§  Concise

§  Amortization worse

§  Programmability not bad

“CPU”

each line translates to gates/constraints

[SVPBBW12, SBVBPW13, VSBW13, PGHR13,

BFRSBW13, BCGGMTV14, BBFR14, FL14,
KPPSST14, WSRBW15, CFHKKNPZ15]

[BCGTV13, BCTV14a, BCTV14b, CTV15]

C prog MIPS
.exe

CPU state

…

fetch-decode-execute

C prog

(1)  Costs and comparisons

(2) Additional applications

(3) Summary and wrap-up

D1 = M1,1�Z1 + … + M1,m�Zm (mod q),

D2 = M2,1�Z1 + … + M2,m�Zm (mod q),

Dn = Mn,1�Z1 + … + Mn,m�Zm (mod q)

For H, we use an algebraic collision-resistant hash function

… ……

Choice of (m=7296, n=64, q=219) from [Micciancio & Regev 08]

D = H (Z)

[Ajtai STOC96, Goldreich, Goldwasser, Halevi, ECCC96]

A client can be assured that a MapReduce job was
performed correctly—without ever touching the data.

map(), reduce(), in_digests

out_digests

The two phases are handled separately:

mappers

in_digest = hash(in);

out = map(in);

for r=1,…,R:
 d[r] = hash(out[r])

reducers

for m=1,…,M:
 e[m] = hash(in[m]);

out = reduce(in);

out_digest = hash(out);

client
Mi Ri

?

?

Hidden state applications

lookup()

“yes”, proof
client server

accept/reject

list of faces

Key idea: External storage plus zero knowledge proof
variants [PGHR OAKLAND13]

Requires small adjustments in protocol (b/c digests don’t hide state)

Other applications: tolling, regression analysis, etc.

 Upshot: write C programs, get powerful guarantees

Evaluation questions

(1)  When does the client save resources relative to
locally executing the computation?

(2)  What are the costs of supporting hidden state?

Compiler pipeline implemented in C++, Java, Go, Python

Server is distributed; communication uses OpenMPI

Evaluation platform: a cluster at Texas Advanced Computing
Center (TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB
of RAM.

Pantry

baseline
C

P
U

 ti
m

e
(m

in
ut

es
)

number of nucleotides in the input dataset (billions)

A client saves resources with sufficiently large inputs

§  Nucleotide substring search: A mapper gets 600k nucleotides
and outputs matching locations. One reducer per 10 mappers.

§  The graph is an extrapolation but is nonetheless encouraging.

Cost of supporting hidden state applications

Server holds 128 face fingerprints (hidden state: 15KB)

The good news:

§  Proof size: 288 bytes

§  Client’s CPU time: 7 ms

The bad news:

§  Network cost (setup) and storage cost (ongoing): 170MB

§  Server’s CPU time: 7.8 minutes

(1)  Costs and comparisons

(2) Additional applications

(3) Summary and wrap-up

Classes at a glance (numbers in blue refer to class number)

back-end
(probabilistic proof protocol)

front-end
(program translator)

main(){
 ...
}

…

“ASIC”

“CPU” interactive
args.

interactive
proofs (IPs)

(QAPs)

2

bootstrapping (recursive use of the machinery)

non-interactive
args.

7, 10

8, 9

n
o

8, 9

3, 4

10

8, 9

5

(QAPs)

6

*

* * *

*

*

*

* Indicates that the mechanism has been implemented

p
r
e
p
r
o
c

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest PCD &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

arbitrary ASIC

CPU

structured ASIC

interactive
proofs (IPs)

args

§  Unconditionally secure delegation for all of PSPACE (YTK $100)

§  2-msg delegation for 𝒩𝒫 with standard assumptions (YTK)

§  Publicly-verif. 2-msg delegation for 𝒫 with std. assumptions (YTK)

§  Zero knowledge with standard assumptions that is inexpensive in
practice

§  More efficient reductions from programs to circuits

§  More efficient encodings of execution traces

§  Probabilistic proof protocols that do not require circuits

§  Avoiding preprocessing/amortization in a way that is inexpensive
in practice

§  Special-purpose algorithms for outsourcing pieces of computations,
which integrate with circuit verification

Lots of open problems and questions

Final thoughts

§  Exciting area with lots to do!

§  A cautionary tale …

§  But I am optimistic!

