Additional Applications and Summary

Bar-Ilan Winter School on Verifiable Computation
Class 10 (last one!)

January 6, 2016

Michael Walfish
Dept. of Computer Science, Courant Institute, NYU

(2) Additional applications

(3) Summary and wrap-up

Costs

Goals:

arise from the front-end, the back-end, and their interaction

Understand concrete costs
Understand the different amortization regimes

Understand current trade-offs

Compare front-ends, by holding back-end constant
Compare back-ends on two different circuits
Examine various metrics (mostly running times)

Examine the amortization regimes

Front-end comparison

Back-end: libsnark, which 1s BCTV’s [BcTv14b] optimized
implementation of Pinocchio/GGPR [pGHR13, GGPR13].

Front-ends: implementations or re-implementations of
= Zaatar (ASIC) [sBvBPW13]

= BCTV (CPU) [BcTV14b]

= Buffet (ASIC) [wsrRHBW15]

applicable computations

concrete straight general function
costs “regular” line pure stateful loops pointers
lowest CMT++
Thaler13 <
¢
&
CMT 0
CMTI12
Allspice
VSBW13
Zaatar Geppetto
Pepper Ginger SBVBPW13 CFH..PZ15 Buffet
SMBW12 SVPBBW12 Pinocchio Pantry = WSRBWIS
PGHRI13 BFRSBW13
BCTV
BCTV14b
BCGTV
BCGTV13
highest PCD &
bootstrapping

BCTV14a, CTV1S

Front-end comparison

Back-end: libsnark, which 1s BCTV’s [BcTv14b] optimized
implementation of Pinocchio/GGPR [pGHR13, GGPR13].

Front-ends: implementations or re-implementations of
= Zaatar (ASIC) [sBvBPW13]

= BCTV (CPU) [BcTV14b]

= Buffet (ASIC) [WSrRHBW15]

Evaluation platform: cluster at Texas Advanced Computing Center (TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of RAM.

(1) What are the verifier’s costs?

(2) What are the prover’s costs?

Proof length 288 bytes

V per-instance 6ms+ (|x| +|yl)3us

V pre-processing |C|-180 us

P per-instance |C|-60us +|Cllog |C]|-0.9us

P’s memory requirements O(|C|log|C])

(| C|: circuit size)

(3) How do the front-ends compare to each other?

(4) Are the constants good or bad?

How does the prover’s cost vary with the choice of front-end?

Extrapolated prover execution time, normalized to Buffet

104 =) 4
(ol +
Q Q <
RN S
103
> v
2 =
10 3! Q)
— M a8
= N =
10 b = += =
;N < INS A @
Matrix multiplication Merge sort Knuth-Morris-Pratt

m=215 k=512 n=256, £=2900

All of the front-ends have terrible concrete performance

Extrapolated prover execution time, normalized to native execution

=) >
5 & > = -
1010 R/ s S Q .
E 0 o N m o
S @A 9 3
& &<
108 = N N p:qs -
—
< O 5 O
+~ [
s 25T
10° § & NS
104
102 ks 2 =
< IS <
: S S S
Matrix multiplication Merge sort Knuth-Morris-Pratt

m=215 k=512 n=256, £=2900

The maximum input size 1s far too small to be called practical

Zaatar BCTV Buffet

approach ASIC CPU ASIC
m > m 215 7 215
mat. mult

merge sort 256 39 512
m elements

KMP

m=2320, m=160, m=2900,

str len: m k=32 k=16 k=256

substr len: k

The data reflect a “gate budget” of ~107 gates.

Pre-processing costs 10-30 minutes; proving costs 8-13 minutes

Back-end comparison

= Data are from our re-implementations and match or exceed
published results.

= All experiments are run on the same machines (2.7Ghz, 32GB
RAM). Average 3 runs (experimental variation is minor).

= For a few systems, we extrapolate from detailed microbenchmarks

= Benchmarks: 128%128 matrix multiplication and clustering
algorithm

1. What 1s the per-instance verification cost?

2. What are the cross-over points?

computation costs

verification costs

\

1instances

CPU time

Cross-over
point

3. What is the server’s overhead versus native execution?

Verification cost sometimes beats (unoptimized)
native execution.

1026
23 Ishai et al. (PCP-based efficient argument)
10
FNETY 20
2g 10
&)
g 107 U
= 128128 matrix multiplication
S 2 10
£ 5
O é’ 1011

baseline 2 108

(103 ms))
1 05 Q@/ > Q? @'5 Oc}/’\’ \éi\'cp
----- 2.
""" 1 -G --- SR _
0 e SRl
baseline 1

(3.5 ms)

verification cost
(minutes of CPU time)

o
& ...
<

Ginger (slope: 14 ms/inst)
cross-over point: 9080k instances

—
SRR

Pinocchio (slope: 10 ms/inst)

slope: 26 ms/ inst)

7.aatar (

0 2k 4k 6k 8k
number of instances

The prover’s costs are rather high.

1013

D 9AIIRU 0} PIZI[RULIOU
1S0D S JIJYIOM

128)

PAM clustering (m=20, d

128)

matrix multiplication (m

The prover’s costs are rather high.

1013

—
—
o
—

on —
S o & > o
— — — — —

D 9AIIRU 0} PIZI[RULIOU
1S0D S JIJYIOM

128)

PAM clustering (m=20, d

128)

matrix multiplication (m

Amortization comparison (of built systems)

Systems [CMT12, vSBW13, Thaler13] derived from [GKROS8] require little or no
amortization (but have some expressivity limitations)

Of the schemes that handle arbitrary circuits (that 1s, those based on
arguments), preprocessing costs amortize differently. Ordered best to worst:

1. Bootstrapped GGPR-based SNARKSs [BCTV14a, CTV15]

= Constant preprocessing; amortize over all computations (but
concrete costs to prover are extremely high).

2. BCTYV [BCcTV14b]: “CPU” front-end + non-interactive GGPR back-end

= Amortize over all future computations of the same length

3. Pinocchio [PGHR13]: “ASIC” front-end + non-interactive GGPR back-end

= Amortize over all future uses of a given computation

4. Zaatar [SBVBPW13]: “ASIC” front-end + interactive GGPR/IKO back-end

= Amortize over a batch of instances of a given computation

Summary of concrete performance

= Front-end: generality brings a concrete price (but better in theory)

= Verifier’s “variable costs”: genuinely inexpensive
= Verifier’s “pre-processing”’: depends on setting

= Prover’s computational costs: mostly disastrous

= Memory: creates scaling limit for verifier and prover

Performance is plausibly acceptable in certain settings ...

= It must be “regular” (to avoid setup costs), or there must be many
identical instances (to amortize setup costs)

= The given computation needs to be small

... But none of the systems is at true practicality

C prog

MIPS
.€Xe

Summary of front-ends

fetch-decode-execute

/ \

\
CPU state

circuit 1s unrolled CPU execution
[BCGTV13, BCTV14a, BCTV14b, CTV15]

C prog

~

each line translates to gates/constraints

[SVPBBW12, SBVBPW13, VSBW13, PGHR13,
BFRSBW13, BCGGMTV14, BBFR14, FL14,

KPPSST14, WSRBW15, CFHKKNPZ15]

“CPUN
= Verbose (costly)

= Good amortization

= Great programmability

“ASIC”
= (Concise
= Amortization worse

= Programmability not bad

(1) Costs and comparisons

(3) Summary and wrap-up

For H, we use an algebraic collision-resistant hash function

[Ajtai STOC96, Goldreich, Goldwasser, Halevi, ECCC96]

f
Dl — Ml’l.zl +
= ° +
D=H@) — { =2 . M2,
_ Dn = Mn,l.zl +

o T My 0 Z, (mod q),
ot M, 0 Z, (mod g),

.+ M, *Z, (mod q)

Choice of (m=7296, n=64, q=2'°) from [Micciancio & Regev 08]

\

/

A client can be assured that a MapReduce job was
performed correctly—without ever touching the data.

The two phases are handled separately:

client

==

out_digests

mappers

in_digest = hash(in);
out = map(in); s
for r=1,...,R:)

d[r] = hash(out[r])

2R

map(), reduce(), in_digests o '
—)
M; “J R; HJ

\W/

reducers

for m=1,... M:
2
e[m]| = hash(in[m]);

out = reduce(in);

out_digest = hash(out);| | —

Hidden state applications

client) server

T3 IE)

yes”, proof

accept/reject

list of faces

Key 1dea: External storage plus zero knowledge proof
variants [PGHR OAKLAND13]

Requires small adjustments in protocol (b/c digests don’t hide state)

Other applications: tolling, regression analysis, etc.

Evaluation questions

(1) When does the client save resources relative to
locally executing the computation?

(2) What are the costs of supporting hidden state?

Compiler pipeline implemented in C++, Java, Go, Python

Server 1s distributed; communication uses OpenMPI

Evaluation platform: a cluster at Texas Advanced Computing
Center (TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB
of RAM.

A client saves resources with sufficiently large inputs

24

~ baseline
D)

5 18
E

E

a 12 Pantry
2 6

O

0
0 12 24 36 48 60

number of nucleotides in the input dataset (billions)

= Nucleotide substring search: A mapper gets 600k nucleotides
and outputs matching locations. One reducer per 10 mappers.

= The graph is an extrapolation but 1s nonetheless encouraging.

Cost of supporting hidden state applications

Server holds 128 face fingerprints (hidden state: 15KB)

The good news:
* Proof size: 288 bytes
* Client’s CPU time: 7 ms

The bad news:
= Network cost (setup) and storage cost (ongoing): 170MB

= Server’s CPU time: 7.8 minutes

(1) Costs and comparisons

(2) Additional applications

Classes at a glance (numbers in blue refer to class number)

front-end back-end
(program translator) (probabilistic proof protocol)

8, 9E “CpPU” i Interactive interactive non-interactive

i : proofs (IPs) args. args.
main(){|—"" : oo ;
','_-_-_-_-_-_-_-_-_-_-_-_-_—_I' I(l) r '2' T —————— 3_ 21— - - -E ----- ! 8, 9 :
) - HH R SRR

: _'ggi[l- P (QAPs) (QAPs)

| Al § T

7 100 “ASIC” i P iU ks 0

) L I o ~—---° —===c ===

C

* Indicates that the mechanism has been implemented

| . .
| applicable computations :

|
concrete straight | general | function
costs “regular” line | pure stateful loops 1 pointers

lowest

|
: : &
interactive M
proofs (IPs)

- T
Pepper Ginger :
SMBW12 SVPBBW12 |
|
\ J \ J 1
args < Y | . Y :
structured ASIC : arbitrary ASIC |
]
: |
highest | !
| |
:]
: |

Lots of open problems and questions

* Unconditionally secure delegation for all of PSPACE (YTK $100)
= 2-msg delegation for NP with standard assumptions (Y TK)
= Publicly-verif. 2-msg delegation for P with std. assumptions (Y TK)

= Zero knowledge with standard assumptions that is inexpensive in
practice

= More efficient reductions from programs to circuits
= More efficient encodings of execution traces
= Probabilistic proof protocols that do not require circuits

= Avoiding preprocessing/amortization in a way that 1s inexpensive
in practice

= Special-purpose algorithms for outsourcing pieces of computations,
which integrate with circuit verification

Final thoughts

= Exciting area with lots to do!
= A cautionary tale ...

= But I am optimistic!

