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(1)  Costs and comparisons 

(2)  Additional applications 

(3)  Summary and wrap-up 



Costs arise from the front-end, the back-end, and their interaction 

Goals: 

§  Understand concrete costs 

§  Understand the different amortization regimes 

§  Understand current trade-offs 

Plan:    

§  Compare front-ends, by holding back-end constant 

§  Compare back-ends on two different circuits 

§  Examine various metrics (mostly running times) 

§  Examine the amortization regimes 



Front-end comparison 

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized 
implementation of  Pinocchio/GGPR [PGHR13, GGPR13]. 

Front-ends: implementations or re-implementations of  

§  Zaatar (ASIC) [SBVBPW13] 

§  BCTV (CPU) [BCTV14b] 

§  Buffet (ASIC) [WSRHBW15] 
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Evaluation platform: cluster at Texas Advanced Computing Center (TACC) 

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of  RAM. 

Front-end comparison 

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized 
implementation of  Pinocchio/GGPR [PGHR13, GGPR13]. 

Front-ends: implementations or re-implementations of  

§  Zaatar (ASIC) [SBVBPW13] 

§  BCTV (CPU) [BCTV14b] 

§  Buffet (ASIC) [WSRHBW15] 



(1)  What are the verifier’s costs? 

(2)  What are the prover’s costs? 

(3)  How do the front-ends compare to each other? 

(4)  Are the constants good or bad? 

Proof  length  288 bytes 

V per-instance  6 ms + (|x| + |y|)･3 µs 

V pre-processing  |C|･180 µs 

P per-instance  |C|･60 µs +|C|log |C|･0.9µs 

P’s memory requirements  O(|C|log|C|)   

 

 
(|C|: circuit size) 



Extrapolated prover execution time, normalized to Buffet 

How does the prover’s cost vary with the choice of  front-end? 



Extrapolated prover execution time, normalized to native execution 

All of  the front-ends have terrible concrete performance 



approach ASIC CPU ASIC 

m × m 
mat. mult 

215 7 215 

merge sort 
m elements 

256 32 512 

KMP  
str len: m 
substr len: k 

m=320, 
k=32 

m=160, 
k=16 

m=2900, 
k=256 

Zaatar BCTV Buffet 

The data reflect a “gate budget” of  ≈107 gates.  

Pre-processing costs 10-30 minutes; proving costs 8-13 minutes 

The maximum input size is far too small to be called practical 



Back-end comparison 

§  Data are from our re-implementations and match or exceed 
published results. 

§  All experiments are run on the same machines (2.7Ghz, 32GB 
RAM). Average 3 runs (experimental variation is minor). 
§  For a few systems, we extrapolate from detailed microbenchmarks 

§  Benchmarks: 128×128 matrix multiplication and clustering 
algorithm 



1.  What is the per-instance verification cost? 

2.  What are the cross-over points? 

3.  What is the server’s overhead versus native execution? 

# instances 

CPU time 

computation costs 

verification costs 

cross-over  
point 
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The prover’s costs are rather high. 
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The prover’s costs are rather high. 



Amortization comparison (of  built systems) 

Systems [CMT12, VSBW13, Thaler13] derived from [GKR08] require little or no 
amortization (but have some expressivity limitations) 

Of  the schemes that handle arbitrary circuits (that is, those based on 
arguments), preprocessing costs amortize differently. Ordered best to worst: 

1.  Bootstrapped GGPR-based SNARKs [BCTV14a, CTV15] 

§  Constant preprocessing; amortize over all computations (but 
concrete costs to prover are extremely high). 

2.  BCTV [BCTV14b]: “CPU” front-end + non-interactive GGPR back-end 

§  Amortize over all future computations of  the same length 

3. Pinocchio [PGHR13]: “ASIC” front-end + non-interactive GGPR back-end 

§  Amortize over all future uses of  a given computation 

4. Zaatar [SBVBPW13]: “ASIC” front-end + interactive GGPR/IKO back-end 

§  Amortize over a batch of  instances of  a given computation 

 



Summary of  concrete performance 

§  Front-end: generality brings a concrete price (but better in theory) 

§  Verifier’s “variable costs”: genuinely inexpensive 

§  Verifier’s “pre-processing”: depends on setting 

§  Prover’s computational costs: mostly disastrous 

§  Memory: creates scaling limit for verifier and prover 

Performance is plausibly acceptable in certain settings … 

§  It must be “regular” (to avoid setup costs), or there must be many 
identical instances (to amortize setup costs) 

§  The given computation needs to be small 

… But none of  the systems is at true practicality 



Summary of  front-ends 

“ASIC”  

circuit is unrolled CPU execution 

 

§  Verbose (costly) 

§  Good amortization 

§  Great programmability 

§  Concise 

§  Amortization worse 

§  Programmability not bad 

“CPU”  

 

each line translates to gates/constraints 

 
[SVPBBW12, SBVBPW13, VSBW13, PGHR13, 

BFRSBW13, BCGGMTV14, BBFR14, FL14, 
KPPSST14, WSRBW15, CFHKKNPZ15] 

[BCGTV13, BCTV14a, BCTV14b, CTV15] 

C prog MIPS 
.exe 

CPU state 

…

fetch-decode-execute   
 

C prog 



(1)  Costs and comparisons 

(2)  Additional applications 

(3)  Summary and wrap-up 





D1 = M1,1�Z1 + … + M1,m�Zm  (mod q), 

D2 = M2,1�Z1 + … + M2,m�Zm  (mod q), 

 

Dn = Mn,1�Z1 + … + Mn,m�Zm (mod q) 

For H, we use an algebraic collision-resistant hash function 

… ……

Choice of  (m=7296, n=64, q=219) from [Micciancio & Regev 08] 

D = H (Z) 

[Ajtai STOC96, Goldreich, Goldwasser, Halevi, ECCC96] 



A client can be assured that a MapReduce job was 
performed correctly—without ever touching the data. 

map(), reduce(), in_digests 

out_digests 

The two phases are handled separately: 

mappers 

in_digest = hash(in); 

out = map(in); 

for r=1,…,R: 
     d[r] = hash(out[r]) 

reducers 

for m=1,…,M: 
    e[m] = hash(in[m]); 

out = reduce(in); 

out_digest = hash(out); 

client 
Mi Ri 

?  

?  



Hidden state applications 

lookup(     ) 

“yes”, proof  
client server 

accept/reject 

list of  faces 

Key idea: External storage plus zero knowledge proof  
variants [PGHR OAKLAND13]  

Requires small adjustments in protocol (b/c digests don’t hide state) 

Other applications: tolling, regression analysis, etc.  

 Upshot: write C programs, get powerful guarantees 



Evaluation questions 

(1)  When does the client save resources relative to 
locally executing the computation? 

(2)  What are the costs of  supporting hidden state? 



Compiler pipeline implemented in C++, Java, Go, Python 

Server is distributed; communication uses OpenMPI   

Evaluation platform: a cluster at Texas Advanced Computing 
Center (TACC) 

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB 
of  RAM. 
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A client saves resources with sufficiently large inputs 

§  Nucleotide substring search: A mapper gets 600k nucleotides 
and outputs matching locations. One reducer per 10 mappers. 

§  The graph is an extrapolation but is nonetheless encouraging. 



Cost of  supporting hidden state applications 

Server holds 128 face fingerprints (hidden state: 15KB) 

 

The good news: 

§  Proof  size: 288 bytes 

§  Client’s CPU time: 7 ms 

 

The bad news: 

§  Network cost (setup) and storage cost (ongoing): 170MB 

§  Server’s CPU time: 7.8 minutes 



(1)  Costs and comparisons 

(2)  Additional applications 

(3)  Summary and wrap-up 



Classes at a glance (numbers in blue refer to class number) 

back-end 
(probabilistic proof  protocol) 

front-end 
(program translator) 

main(){ 
 ... 
} 

…

“ASIC” 

“CPU” interactive 
args. 

interactive 
proofs (IPs) 

(QAPs) 

2 

bootstrapping (recursive use of  the machinery) 

non-interactive 
args. 

7, 10 

8, 9 

n
o 

8, 9 

3, 4 

10 

8, 9 

5 

(QAPs) 
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*

* * *

*
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*

* Indicates that the mechanism has been implemented   

p
r
e
p
r
o
c 



applicable computations 

concrete 
costs “regular” 

straight 
line pure stateful 

general 
loops 

function 
pointers 

lowest CMT++ 
Thaler13 

CMT 
CMT12 

Allspice 
VSBW13 

Pepper 
SMBW12 

Ginger 
SVPBBW12 

Zaatar 
SBVBPW13 

Pinocchio 
PGHR13 

Geppetto 
CFH..PZ15 

     Pantry 
  BFRSBW13 

Buffet 
WSRBW15 

highest PCD & 
bootstrapping 
BCTV14a, CTV15 

BCTV 
BCTV14b 
BCGTV 
BCGTV13 

arbitrary ASIC 
 

CPU 
 

structured ASIC 

interactive 
proofs (IPs) 

args 



§  Unconditionally secure delegation for all of  PSPACE (YTK $100) 

§  2-msg delegation for 𝒩𝒫 with standard assumptions (YTK) 

§  Publicly-verif. 2-msg delegation for 𝒫 with std. assumptions (YTK) 

§  Zero knowledge with standard assumptions that is inexpensive in 
practice 

§  More efficient reductions from programs to circuits 

§  More efficient encodings of  execution traces 

§  Probabilistic proof  protocols that do not require circuits 

§  Avoiding preprocessing/amortization in a way that is inexpensive 
in practice 

§  Special-purpose algorithms for outsourcing pieces of  computations, 
which integrate with circuit verification 

Lots of  open problems and questions 



Final thoughts 

§  Exciting area with lots to do! 

§  A cautionary tale … 

§  But I am optimistic! 


