Session 4: Security against
Malicious Adversaries

Yehuda Lindell
Bar-llan University

*(,QHEI]Q?
c"‘%\l \ Secure Computation and Efficiency
%'\A) Bar-llan University, Israel 2015

The Malicious Case

* What can go wrong with malicious behavior?

— Using shares other than those defined by the
protocol, using arbitrary inputs to the OT protocol
and sending wrong shares of output wires...

— In the OT protocol we saw, the receiver can easily
and undetectably learn both of the sender’s
Inputs

* Just chooses hy, hq so that it knows both DLOGs
* This completely breaks the protocol!

*(,QHE"(‘e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Proving Security

 Recall the definition

— Simulator interacts with a trusted party
e Simulator sends corrupted parties’ inputs
e Simulator receives corrupted parties’ outputs

— Output distribution of simulator and the honest parties is
like in a real execution

* Input extraction

— In order for the honest parties to output the same in a real
and ideal execution, the simulator must extract the input
used by the adversary

— A by-product of the definition is that the parties’ inputs in
the protocol are “explicit”

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'\y Bar-llan University, Israel 2015

Malicious Adversaries

 We will show a generic compiler which forces
the parties to operate as in the semi-honest
model

— It can be applied to any protocol
— Called the GMW compiler

* The basic idea:

— In every step, each P, proves in zero knowledge
that its messages were computed according to the
protocol specification

*(,QHEI]Q?
c"‘(b\l \ Secure Computation and Efficiency
i'\;) Bar-llan University, Israel 2015 4

Zero knowledge — Reminder

* Prover P, verifier V, language L

* P proves that xel without revealing anything

— Completeness: V always accepts when xel, and an
honest P and V interact.

— Soundness: V accepts with negligible probability when
x¢lL, for any P*.
* Computational soundness: only holds when P* is
polynomial-time
* Zero-knowledge:

— There exists a simulator S such that S(x) is
indistinguishable from the verifier’s output after a real
proof execution.

*(,QHE"(‘e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Zero-Knowledge for NP

e A fundamental theorem:

— Any language in NP can be proven in zero
knowledge

NP =the class of all languages that can be
verified efficiently

— There exists a polytime V such that
* For every x € L there existsaw suchthatV(x,w) =1
* Forevery x ¢ L and every w it holds that V(x,w) = 0

(‘}gz\\enc{,
S \
Y 4
<
H

A Warmup

* Assume that each P, runs a deterministic
program I 1. The compiler is the following:
— Each P, commits to its input x; by sending C,(r,,x.),

where r; is a random string used for the
commitment

— Let T:° be the transcript of P, at step s of the
protocol, i.e. all messages received and sent by P,
until that step

*cznenge
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

A Warmup

— Define the language L = {T° s.t. dx,r. so that all
messages sent by P. until step s are the output of I'].
applied to x,r, and to all messages received by P, up
to that step}

— When sending a message in step s prove in zero-
knowledge that T° € L.

* (The overhead is polynomial, but might not be very
efficient)

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Two Subtle Issues

* The language has to be in NP
— The input commitment must be perfectly binding
* Actually not a must, but makes it easier

— Verifying requires knowing all of the incoming
messages to P;
* This is fine for two-party protocols

* For multiparty protocols, it means that a type of secure
broadcast must be used

* The simulator must extract the inputs

— P; must run a ZK proof of knowledge that it knows the
committed value

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Handling Randomized Protocols

* The previous construction assumes that Pi’s
program 1 1. is deterministic
— But secure protocols cannot be deterministic

— Concretely, in GMW: the choice of shares, and the
sender’s input to the OT, must be random

* The compiler must ensure that P, chooses its
random coins independently of the messages
received from other parties

*(,QHE"(‘e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Handling Randomized Protocols

e We need to formalize an NP statement

* |If we say “there exists randomness such
that...” then:

— Consider the EIGamal based oblivious transfer

* The receiver chooses hy, h{ so that it only knows one of
the DLOGs

— How is it possible to guarantee this?

* There always exists randomness so that one is chosen
at random in the group and one is chosen knowing the
DLOG

(‘}gz\\ence
s ‘
: 8
<
2

GMW Compiler Components

* |Input commitment
— A secure protocol for computing the functionality
((x,7),4,..,4) = (/1, Com(x;), ..., Com(x; r))
— Note that this already contains input extraction
* Coin tossing

— A secure protocol for “committed” coin tossing
(4,..,4) - ((b,r),Com(b;r), ...,Com(b;r))
where b € {0,1} and r € {0,1}" are random

— Observe: no party can control the coins it receives

e Protocol emulation

— Prove correctness of each message relative to committed
in put and committed coins in zero knowledge

*cznen(-e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

12

GMW Compiler

* For “simplicity”, we will consider two parties
from here on

Input Commitment

* Functionality ((x,7),4) - (4, Com(x; 1))
* Protocol

— P; computes ¢ = Com(x;r) and sends c to P,

— P; proves a zero-knowledge proof of knowledge that
it knows (x,) such that c = Com(x; 1)

* Proof of security

— P, is corrupted: verify proof and extract “witness”;
send (x, 1) to the trusted party

— P, is corrupted: commit to garbage and run zero
knowledge simulator

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Coin Tossing

* Functionality (4, 2) — ((b,), Com(b; 1))

* Use “truncated” Blum coin tossing:
— Repeatfori =0, ..., n:
* P, chooses random (b;,1;) and sends ¢; = Com(b;; 1;) to P,
* P, sends arandom f5; € {0,1} to P;

— Py setsb =by D fyandr = (by D b4, ..., b, D B,,) and
sends ¢ = Com(b; 1) to P,

— P, proves a zero-knowledge proof of knowledge that this is
correct

* |[tis an NP statement

(‘}gz\\ence
S ’ \
Y 4
s
s

Security

P, is corrupted
— Simulator receives (b, r) from trusted party

— Simulator rewinds in each iteration to make each bit correct
* Note that the simulator does not get the decommitment of b; like in Blum

* However, it can run all the way to the end and run the extractor for the
proof

— Quite complex
* P, is corrupted
— Simulator receives ¢ from trusted party

— Simulator runs first part honestly with adversary
— Simulator gives ¢ at end and simulates the zero knowledge

(‘}gz\\ence
S ’ \
Y 4
g
s

Better Coin Tossing

* This is very expensive
— It actually suffices to toss only one coin per bit
— This still requires many rounds

* Itis possible to toss many coins in a constant
number of rounds efficiently

(‘}gz\\enc{,
o .
: 8
<
2

Protocol Emulation

 The input and randomness of each party is fixed
— This is run by each party (in each direction)

* Parties send each message and prove in zero

knowledge that it is correct according to the
protocol

— Reduce security to semi-honest

— A subtlety: need augmented semi-honest where the
corrupted party may replace its input

* The full proof of security is very complex (see
Goldreich04)

(‘}gz\\ence
s ‘
Y 4
<
H

Demonstration on Yao

* Parties run input commitment phase
* Parties run coin tossing phase

 Parties run oblivious transfer

— Use zero knowledge to ensure that receiver chooses hy, hy
correctly

— Use zero knowledge to ensure that sender provides correct
garbled values (relative to randomness)

* P4 constructs garbled circuit

— Proves in zero knowledge that it is correct relative to
randomness

* P4 sends garbled values

— Use zero knowledge to ensure that sender provides correct
garbled values

(‘}gz\\ence
S ’ \
Y 4
s
s

Complexity

« Amount of randomness needed is huge

— Can use a PRG but then this must be proven inside
ZK as well

* Need to prove a very complex NP statement
— Entire garbled circuit is constructed correctly
— Each gate uses PRF computations (e.g., AES)

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

Summary

* Itis possible to convert protocol secure for semi-
honest into one secure for malicious
— This is very surprising!

* Observe that the compiler can all be achieved with
one-way functions

— This is even more surprising: from a complexity
perspective getting semi-honest is “harder” than
transforming semi-honest to malicious

* Obtaining security against malicious adversaries is
hard

— Recommendation: read full proof (Goldreich’s book).

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

