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• What can go wrong with malicious behavior? 

– Using shares other than those defined by the 
protocol, using arbitrary inputs to the OT protocol 
and sending wrong shares of output wires… 

– In the OT protocol we saw, the receiver can easily 
and undetectably learn both of the sender’s 
inputs 

• Just chooses ℎ0, ℎ1 so that it knows both DLOGs 

• This completely breaks the protocol! 

The Malicious Case 
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Proving Security 
• Recall the definition 

– Simulator interacts with a trusted party 
• Simulator sends corrupted parties’ inputs 

• Simulator receives corrupted parties’ outputs 

– Output distribution of simulator and the honest parties is 
like in a real execution 

• Input extraction 
– In order for the honest parties to output the same in a real 

and ideal execution, the simulator must extract the input 
used by the adversary 

– A by-product of the definition is that the parties’ inputs in 
the protocol are “explicit” 
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Malicious Adversaries 

• We will show a generic compiler which forces 
the parties to operate as in the semi-honest 
model 
– It can be applied to any protocol 

– Called the GMW compiler 

• The basic idea: 
– In every step, each Pi proves in zero knowledge 

that its messages were computed according to the 
protocol specification 
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Zero knowledge – Reminder  

• Prover P, verifier V, language L 
• P proves that xL without revealing anything 

– Completeness: V always accepts when xL, and an 
honest P and V interact. 

– Soundness: V accepts with negligible probability when 
xL, for any P*. 
• Computational soundness: only holds when P* is 

polynomial-time 

• Zero-knowledge: 
– There exists a simulator S such that S(x) is 

indistinguishable from the verifier’s output after a real 
proof execution. 
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Zero-Knowledge for NP 

• A fundamental theorem: 

– Any language in NP can be proven in zero 
knowledge 

• NP = the class of all languages that can be 
verified efficiently 

– There exists a polytime V such that 

• For every 𝑥 ∈ 𝐿 there exists a 𝑤 such that 𝑉(𝑥, 𝑤) = 1 

• For every 𝑥 ∉ 𝐿 and every 𝑤 it holds that 𝑉 𝑥, 𝑤 = 0 
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• Assume that each Pi runs a deterministic 
program i. The compiler is the following:  

– Each Pi commits to its input xi by sending Ci(ri,xi), 
where ri is a random string used for the 
commitment 

– Let Ti
s be the transcript of Pi at step s of the 

protocol, i.e. all messages received and sent by Pi 
until that step 

A Warmup 
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• Assume that each Pi runs a deterministic 
program i. The compiler is the following:  

– Define the language Li = {Ti
s s.t. xi,ri so that all 

messages sent by Pi until step s are the output of i 
applied to xi,ri and to all messages received by Pi up 
to that step} 

– When sending a message in step s prove in zero-
knowledge that Ti

s  Li 

• (The overhead is polynomial, but might not be very 
efficient) 

A Warmup 
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Two Subtle Issues 

• The language has to be in NP 
– The input commitment must be perfectly binding 

• Actually not a must, but makes it easier  

– Verifying requires knowing all of the incoming 
messages to 𝑃𝑖 
• This is fine for two-party protocols 

• For multiparty protocols, it means that a type of secure 
broadcast must be used 

• The simulator must extract the inputs 
– 𝑃𝑖 must run a ZK proof of knowledge that it knows the 

committed value  
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• The previous construction assumes that Pi’s 
program i is deterministic 

– But secure protocols cannot be deterministic 

– Concretely, in GMW: the choice of shares, and the 
sender’s input to the OT, must be random 

• The compiler must ensure that Pi chooses its 
random coins independently of the messages 
received from other parties 

Handling Randomized Protocols  
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Handling Randomized Protocols 

• We need to formalize an NP statement 

• If we say “there exists randomness such 
that…” then: 

– Consider the ElGamal based oblivious transfer 

• The receiver chooses ℎ0, ℎ1 so that it only knows one of 
the DLOGs 

– How is it possible to guarantee this? 

• There always exists randomness so that one is chosen 
at random in the group and one is chosen knowing the 
DLOG 
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GMW Compiler Components 
• Input commitment 

– A secure protocol for computing the functionality
 (𝑥, 𝑟), 𝜆, … , 𝜆 → 𝜆, Com 𝑥; 𝑟 , … , Com 𝑥; 𝑟  

– Note that this already contains input extraction 

• Coin tossing 
– A secure protocol for “committed” coin tossing        

    𝜆, … , 𝜆 → (𝑏, 𝑟), Com 𝑏; 𝑟 , … , Com 𝑏; 𝑟  
 where 𝑏 ∈ {0,1} and 𝑟 ∈ 0,1 𝑛 are random 

– Observe: no party can control the coins it receives 

• Protocol emulation 
– Prove correctness of each message relative to committed 

in put and committed coins in zero knowledge 
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GMW Compiler 

 

 

• For “simplicity”, we will consider two parties 
from here on 
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Input Commitment 

• Functionality 𝒙, 𝒓 , 𝝀 → 𝝀, 𝐂𝐨𝐦 𝒙; 𝒓  

• Protocol 
– 𝑃1 computes 𝑐 = Com 𝑥; 𝑟  and sends 𝑐 to 𝑃2 

– 𝑃1 proves a zero-knowledge proof of knowledge that 
it knows (𝑥, 𝑟) such that 𝑐 = Com(𝑥; 𝑟) 

• Proof of security 
– 𝑃1 is corrupted: verify proof and extract “witness”; 

send (𝑥, 𝑟) to the trusted party 

– 𝑃2 is corrupted: commit to garbage and run zero 
knowledge simulator  
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Coin Tossing 

• Functionality 𝝀, 𝝀 → (𝒃, 𝒓), 𝐂𝐨𝐦 𝒃; 𝒓  

• Use “truncated” Blum coin tossing: 

– Repeat for 𝑖 = 0, … , 𝑛: 
• 𝑃1 chooses random (𝑏𝑖 , 𝑟𝑖) and sends 𝑐𝑖 = 𝐶𝑜𝑚(𝑏𝑖; 𝑟𝑖) to 𝑃2 

• 𝑃2 sends a random 𝛽𝑖 ∈ {0,1} to 𝑃1 

– 𝑃1 sets 𝑏 = 𝑏0 ⊕ 𝛽0 and 𝑟 = (𝑏1 ⊕ 𝛽1, … , 𝑏𝑛 ⊕ 𝛽𝑛) and 
sends 𝑐 = Com(𝑏; 𝑟) to 𝑃2 

– 𝑃1 proves a zero-knowledge proof of knowledge that this is 
correct 
• It is an NP statement 
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Security 

• 𝑷𝟏 is corrupted 
– Simulator receives (𝑏, 𝑟) from trusted party 

– Simulator rewinds in each iteration to make each bit correct 

• Note that the simulator does not get the decommitment of 𝑏𝑖  like in Blum 

• However, it can run all the way to the end and run the extractor for the 
proof 

– Quite complex 

• 𝑷𝟐 is corrupted 
– Simulator receives 𝑐 from trusted party 

– Simulator runs first part honestly with adversary 

– Simulator gives 𝑐 at end and simulates the zero knowledge  
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Better Coin Tossing 

• This is very expensive 

– It actually suffices to toss only one coin per bit 

– This still requires many rounds 

 

• It is possible to toss many coins in a constant 
number of rounds efficiently 
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Protocol Emulation 

• The input and randomness of each party is fixed 

– This is run by each party (in each direction) 

• Parties send each message and prove in zero 
knowledge that it is correct according to the 
protocol 

– Reduce security to semi-honest 

– A subtlety: need augmented semi-honest where the 
corrupted party may replace its input 

• The full proof of security is very complex (see 
Goldreich04) 
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Demonstration on Yao 

• Parties run input commitment phase 
• Parties run coin tossing phase 
• Parties run oblivious transfer 

– Use zero knowledge to ensure that receiver chooses ℎ0, ℎ1 
correctly 

– Use zero knowledge to ensure that sender provides correct 
garbled values (relative to randomness) 

• 𝑷𝟏 constructs garbled circuit 
– Proves in zero knowledge that it is correct relative to 

randomness 

• 𝑷𝟏 sends garbled values 
– Use zero knowledge to ensure that sender provides correct 

garbled values 
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Complexity 

• Amount of randomness needed is huge 

– Can use a PRG but then this must be proven inside 
ZK as well 

• Need to prove a very complex NP statement 

– Entire garbled circuit is constructed correctly 

– Each gate uses PRF computations (e.g., AES) 
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Summary 
• It is possible to convert protocol secure for semi-

honest into one secure for malicious 
– This is very surprising! 

• Observe that the compiler can all be achieved with 
one-way functions 
– This is even more surprising: from a complexity 

perspective getting semi-honest is “harder” than 
transforming semi-honest to malicious 

• Obtaining security against malicious adversaries is 
hard 
– Recommendation: read full proof (Goldreich’s book). 
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