
Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Session 4: Security against
Malicious Adversaries

Yehuda Lindell

Bar-Ilan University

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• What can go wrong with malicious behavior?

– Using shares other than those defined by the
protocol, using arbitrary inputs to the OT protocol
and sending wrong shares of output wires…

– In the OT protocol we saw, the receiver can easily
and undetectably learn both of the sender’s
inputs

• Just chooses ℎ0, ℎ1 so that it knows both DLOGs

• This completely breaks the protocol!

The Malicious Case

2

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Proving Security
• Recall the definition

– Simulator interacts with a trusted party
• Simulator sends corrupted parties’ inputs

• Simulator receives corrupted parties’ outputs

– Output distribution of simulator and the honest parties is
like in a real execution

• Input extraction
– In order for the honest parties to output the same in a real

and ideal execution, the simulator must extract the input
used by the adversary

– A by-product of the definition is that the parties’ inputs in
the protocol are “explicit”

3

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Malicious Adversaries

• We will show a generic compiler which forces
the parties to operate as in the semi-honest
model
– It can be applied to any protocol

– Called the GMW compiler

• The basic idea:
– In every step, each Pi proves in zero knowledge

that its messages were computed according to the
protocol specification

4

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Zero knowledge – Reminder

• Prover P, verifier V, language L
• P proves that xL without revealing anything

– Completeness: V always accepts when xL, and an
honest P and V interact.

– Soundness: V accepts with negligible probability when
xL, for any P*.
• Computational soundness: only holds when P* is

polynomial-time

• Zero-knowledge:
– There exists a simulator S such that S(x) is

indistinguishable from the verifier’s output after a real
proof execution.

5

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Zero-Knowledge for NP

• A fundamental theorem:

– Any language in NP can be proven in zero
knowledge

• NP = the class of all languages that can be
verified efficiently

– There exists a polytime V such that

• For every 𝑥 ∈ 𝐿 there exists a 𝑤 such that 𝑉(𝑥, 𝑤) = 1

• For every 𝑥 ∉ 𝐿 and every 𝑤 it holds that 𝑉 𝑥, 𝑤 = 0

6

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Assume that each Pi runs a deterministic
program i. The compiler is the following:

– Each Pi commits to its input xi by sending Ci(ri,xi),
where ri is a random string used for the
commitment

– Let Ti
s be the transcript of Pi at step s of the

protocol, i.e. all messages received and sent by Pi
until that step

A Warmup

7

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Assume that each Pi runs a deterministic
program i. The compiler is the following:

– Define the language Li = {Ti
s s.t. xi,ri so that all

messages sent by Pi until step s are the output of i
applied to xi,ri and to all messages received by Pi up
to that step}

– When sending a message in step s prove in zero-
knowledge that Ti

s  Li

• (The overhead is polynomial, but might not be very
efficient)

A Warmup

8

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Two Subtle Issues

• The language has to be in NP
– The input commitment must be perfectly binding

• Actually not a must, but makes it easier

– Verifying requires knowing all of the incoming
messages to 𝑃𝑖
• This is fine for two-party protocols

• For multiparty protocols, it means that a type of secure
broadcast must be used

• The simulator must extract the inputs
– 𝑃𝑖 must run a ZK proof of knowledge that it knows the

committed value

9

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• The previous construction assumes that Pi’s
program i is deterministic

– But secure protocols cannot be deterministic

– Concretely, in GMW: the choice of shares, and the
sender’s input to the OT, must be random

• The compiler must ensure that Pi chooses its
random coins independently of the messages
received from other parties

Handling Randomized Protocols

10

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Handling Randomized Protocols

• We need to formalize an NP statement

• If we say “there exists randomness such
that…” then:

– Consider the ElGamal based oblivious transfer

• The receiver chooses ℎ0, ℎ1 so that it only knows one of
the DLOGs

– How is it possible to guarantee this?

• There always exists randomness so that one is chosen
at random in the group and one is chosen knowing the
DLOG

11

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

GMW Compiler Components
• Input commitment

– A secure protocol for computing the functionality
 (𝑥, 𝑟), 𝜆, … , 𝜆 → 𝜆, Com 𝑥; 𝑟 , … , Com 𝑥; 𝑟

– Note that this already contains input extraction

• Coin tossing
– A secure protocol for “committed” coin tossing

 𝜆, … , 𝜆 → (𝑏, 𝑟), Com 𝑏; 𝑟 , … , Com 𝑏; 𝑟
 where 𝑏 ∈ {0,1} and 𝑟 ∈ 0,1 𝑛 are random

– Observe: no party can control the coins it receives

• Protocol emulation
– Prove correctness of each message relative to committed

in put and committed coins in zero knowledge

12

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

GMW Compiler

• For “simplicity”, we will consider two parties
from here on

13

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Input Commitment

• Functionality 𝒙, 𝒓 , 𝝀 → 𝝀, 𝐂𝐨𝐦 𝒙; 𝒓

• Protocol
– 𝑃1 computes 𝑐 = Com 𝑥; 𝑟 and sends 𝑐 to 𝑃2

– 𝑃1 proves a zero-knowledge proof of knowledge that
it knows (𝑥, 𝑟) such that 𝑐 = Com(𝑥; 𝑟)

• Proof of security
– 𝑃1 is corrupted: verify proof and extract “witness”;

send (𝑥, 𝑟) to the trusted party

– 𝑃2 is corrupted: commit to garbage and run zero
knowledge simulator

14

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Coin Tossing

• Functionality 𝝀, 𝝀 → (𝒃, 𝒓), 𝐂𝐨𝐦 𝒃; 𝒓

• Use “truncated” Blum coin tossing:

– Repeat for 𝑖 = 0, … , 𝑛:
• 𝑃1 chooses random (𝑏𝑖 , 𝑟𝑖) and sends 𝑐𝑖 = 𝐶𝑜𝑚(𝑏𝑖; 𝑟𝑖) to 𝑃2

• 𝑃2 sends a random 𝛽𝑖 ∈ {0,1} to 𝑃1

– 𝑃1 sets 𝑏 = 𝑏0 ⊕ 𝛽0 and 𝑟 = (𝑏1 ⊕ 𝛽1, … , 𝑏𝑛 ⊕ 𝛽𝑛) and
sends 𝑐 = Com(𝑏; 𝑟) to 𝑃2

– 𝑃1 proves a zero-knowledge proof of knowledge that this is
correct
• It is an NP statement

15

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Security

• 𝑷𝟏 is corrupted
– Simulator receives (𝑏, 𝑟) from trusted party

– Simulator rewinds in each iteration to make each bit correct

• Note that the simulator does not get the decommitment of 𝑏𝑖 like in Blum

• However, it can run all the way to the end and run the extractor for the
proof

– Quite complex

• 𝑷𝟐 is corrupted
– Simulator receives 𝑐 from trusted party

– Simulator runs first part honestly with adversary

– Simulator gives 𝑐 at end and simulates the zero knowledge

16

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Better Coin Tossing

• This is very expensive

– It actually suffices to toss only one coin per bit

– This still requires many rounds

• It is possible to toss many coins in a constant
number of rounds efficiently

17

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Protocol Emulation

• The input and randomness of each party is fixed

– This is run by each party (in each direction)

• Parties send each message and prove in zero
knowledge that it is correct according to the
protocol

– Reduce security to semi-honest

– A subtlety: need augmented semi-honest where the
corrupted party may replace its input

• The full proof of security is very complex (see
Goldreich04)

18

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Demonstration on Yao

• Parties run input commitment phase
• Parties run coin tossing phase
• Parties run oblivious transfer

– Use zero knowledge to ensure that receiver chooses ℎ0, ℎ1
correctly

– Use zero knowledge to ensure that sender provides correct
garbled values (relative to randomness)

• 𝑷𝟏 constructs garbled circuit
– Proves in zero knowledge that it is correct relative to

randomness

• 𝑷𝟏 sends garbled values
– Use zero knowledge to ensure that sender provides correct

garbled values

19

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Complexity

• Amount of randomness needed is huge

– Can use a PRG but then this must be proven inside
ZK as well

• Need to prove a very complex NP statement

– Entire garbled circuit is constructed correctly

– Each gate uses PRF computations (e.g., AES)

20

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Summary
• It is possible to convert protocol secure for semi-

honest into one secure for malicious
– This is very surprising!

• Observe that the compiler can all be achieved with
one-way functions
– This is even more surprising: from a complexity

perspective getting semi-honest is “harder” than
transforming semi-honest to malicious

• Obtaining security against malicious adversaries is
hard
– Recommendation: read full proof (Goldreich’s book).

21

