
Encryption and Message Authentication
Bar-Ilan Winter School1

Benny Applebaum

Tel-Aviv University

January, 2014

1These slides are partially based on Benny Chor’s slides.



And Finally, Let’s Talk Business

Encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 2 / 48



And Finally, Let’s Talk Business

Encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 2 / 48



Basic Setting

1 Eve listens to the communication.

2 Alice and Bob share a secret random key k
R← {0, 1}n.

3 Goal: Alice would like to send Bob a message m confidentially.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 3 / 48



Basic Setting

1 Eve listens to the communication.

2 Alice and Bob share a secret random key k
R← {0, 1}n.

3 Goal: Alice would like to send Bob a message m confidentially.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 3 / 48



Basic Setting

1 Eve listens to the communication.

2 Alice and Bob share a secret random key k
R← {0, 1}n.

3 Goal: Alice would like to send Bob a message m confidentially.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 3 / 48



Basic Setting

1 Eve listens to the communication.

2 Alice and Bob share a secret random key k
R← {0, 1}n.

3 Goal: Alice would like to send Bob a message m confidentially.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 3 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Security Goals

There are some different goals we may be after

No adversary can learn m

No adversary can learn any meaningful information about m.

No adversary can learn any information about m

Important questions:

What are the adversary’s capabilities (e.g., passive/active) and
knowledge (prior information)?

What are the adversary’s computational resources?

Different answers lead to different security definitions.

Meta question:

Can we formalize secrecy mathematically?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 4 / 48



Encryption Syntax

Definition

A symmetric encryption scheme consists of:

Encryption Algorithm: E maps a key k ∈ {0, 1}∗ and a plaintext
m ∈ {0, 1}∗ into a ciphertext Ek(m).

Decryption Algorithm: D maps a key k ∈ {0, 1}∗ and a
ciphertext c ∈ {0, 1}∗ into a plaintext Dk(c).

The scheme should be correct:

∀m ∈ {0, 1}∗, k ∈ {0, 1}∗ : Dk(Ek(m)) = m.

Note: Both algorithms are efficient and may be randomized.
So far, no requirement of secrecy.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 5 / 48



Encryption Syntax

Definition

A symmetric encryption scheme consists of:

Encryption Algorithm: E maps a key k ∈ {0, 1}∗ and a plaintext
m ∈ {0, 1}∗ into a ciphertext Ek(m).

Decryption Algorithm: D maps a key k ∈ {0, 1}∗ and a
ciphertext c ∈ {0, 1}∗ into a plaintext Dk(c).

The scheme should be correct:

∀m ∈ {0, 1}∗, k ∈ {0, 1}∗ : Dk(Ek(m)) = m.

Note: Both algorithms are efficient and may be randomized.
So far, no requirement of secrecy.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 5 / 48



Encryption Syntax

Definition

A symmetric encryption scheme consists of:

Encryption Algorithm: E maps a key k ∈ {0, 1}∗ and a plaintext
m ∈ {0, 1}∗ into a ciphertext Ek(m).

Decryption Algorithm: D maps a key k ∈ {0, 1}∗ and a
ciphertext c ∈ {0, 1}∗ into a plaintext Dk(c).

The scheme should be correct:

∀m ∈ {0, 1}∗, k ∈ {0, 1}∗ : Dk(Ek(m)) = m.

Note: Both algorithms are efficient and may be randomized.
So far, no requirement of secrecy.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 5 / 48



Encryption Syntax

Definition

A symmetric encryption scheme consists of:

Encryption Algorithm: E maps a key k ∈ {0, 1}∗ and a plaintext
m ∈ {0, 1}∗ into a ciphertext Ek(m).

Decryption Algorithm: D maps a key k ∈ {0, 1}∗ and a
ciphertext c ∈ {0, 1}∗ into a plaintext Dk(c).

The scheme should be correct:

∀m ∈ {0, 1}∗, k ∈ {0, 1}∗ : Dk(Ek(m)) = m.

Note: Both algorithms are efficient and may be randomized.
So far, no requirement of secrecy.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 5 / 48



Encryption Syntax

Definition

A symmetric encryption scheme consists of:

Encryption Algorithm: E maps a key k ∈ {0, 1}∗ and a plaintext
m ∈ {0, 1}∗ into a ciphertext Ek(m).

Decryption Algorithm: D maps a key k ∈ {0, 1}∗ and a
ciphertext c ∈ {0, 1}∗ into a plaintext Dk(c).

The scheme should be correct:

∀m ∈ {0, 1}∗, k ∈ {0, 1}∗ : Dk(Ek(m)) = m.

Note: Both algorithms are efficient and may be randomized.

So far, no requirement of secrecy.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 5 / 48



Encryption Syntax

Definition

A symmetric encryption scheme consists of:

Encryption Algorithm: E maps a key k ∈ {0, 1}∗ and a plaintext
m ∈ {0, 1}∗ into a ciphertext Ek(m).

Decryption Algorithm: D maps a key k ∈ {0, 1}∗ and a
ciphertext c ∈ {0, 1}∗ into a plaintext Dk(c).

The scheme should be correct:

∀m ∈ {0, 1}∗, k ∈ {0, 1}∗ : Dk(Ek(m)) = m.

Note: Both algorithms are efficient and may be randomized.
So far, no requirement of secrecy.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 5 / 48



Security as Indistinguishability

An encryption of m0 and an encryption of m1 should
“look the same”.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 6 / 48



Perfect Secrecy (Shannon ’49)

For any pair of different messages m0 and m1 of equal length: The
ciphertexts c0 and c1 should be identically distributed.

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Very strong definition: can’t distinguish attack from retreat

Example: one-time pad (Ek(m) = k
⊕
m) is perfectly secret.

Unfortunately, perfect secrecy requires long key |m| = |k|
(Ex: prove it!)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 7 / 48



Perfect Secrecy (Shannon ’49)

For any pair of different messages m0 and m1 of equal length: The
ciphertexts c0 and c1 should be identically distributed.

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Very strong definition: can’t distinguish attack from retreat

Example: one-time pad (Ek(m) = k
⊕
m) is perfectly secret.

Unfortunately, perfect secrecy requires long key |m| = |k|
(Ex: prove it!)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 7 / 48



Perfect Secrecy (Shannon ’49)

For any pair of different messages m0 and m1 of equal length: The
ciphertexts c0 and c1 should be identically distributed.

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Very strong definition: can’t distinguish attack from retreat

Example: one-time pad (Ek(m) = k
⊕
m) is perfectly secret.

Unfortunately, perfect secrecy requires long key |m| = |k|
(Ex: prove it!)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 7 / 48



Computational Secrecy (Goldwasser & Micali ’82)

For any pair of different messages m0 and m1 of equal length:
The ciphertexts c0 and c1 should be indistinguishable for
computationally-bounded adversary.

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

c≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Pr[A(c0) = accept] − Pr[A(c1) = accept] < ε

For any PPT adversary A and some negligible ε.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 8 / 48



Computational Secrecy (Goldwasser & Micali ’82)

For any pair of different messages m0 and m1 of equal length:
The ciphertexts c0 and c1 should be indistinguishable for
computationally-bounded adversary.

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

c≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Pr[A(c0) = accept] − Pr[A(c1) = accept] < ε

For any PPT adversary A and some negligible ε.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 8 / 48



Computational Secrecy (Goldwasser & Micali ’82)

For any pair of different messages m0 and m1 of equal length:
The ciphertexts c0 and c1 should be indistinguishable for
computationally-bounded adversary.

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

c≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Pr[A(c0) = accept] − Pr[A(c1) = accept] < ε

For any PPT adversary A and some negligible ε.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 8 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational Secrecy vs. Semantic Security

Comp. Secrecy is also known as Message Indistinguishability

Semantic Security:

“Everything that can be computed efficiently given the
ciphertext can be also computed without the ciphertext”

Therefore the ciphertext does not “add” useful information (for
computationally bounded adversary)

Exercise: try to formally define semantic security

Thm. Semantic Security is equivalent to Computational Secrecy
(up to a polynomial loss in the parameters)

Great ! computational secrecy is a strong notion.
Is it feasible (with a short key)?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 9 / 48



Computational analog of “one-time pad”

Choose a secret random short key k (“seed”)

Expand the seed into a long keying stream G(k)

Encrypt m by c = G(k)
⊕
m

Decrypt c to m = c
⊕
G(k).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 10 / 48



Pseudorandom Generators (Reminder)

A pseudorandom generator is a polynomial time computable function
G : {0, 1}n 7→ {0, 1}`, `� n, which satisfies:

Pseudorandom

Choose k
R← {0, 1}n

Output y0 = G(k)

c≡

Random

Choose y1
R← {0, 1}`

Output y1

The output of G is computationally indistinguishable from truly
random strings of length `.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 11 / 48



From PRG to Encryption

Theorem

Assume that PRG : {0, 1}n → {0, 1}` is pseudorandom.
Then the “computational OTP” is secure.

Proof sketch.

Ek(m0) ≡ (PRG(Un)
⊕
m0)

c≡ (U`
⊕
m0) ≡ U`.

For similar reason, Ek(m1)
c≡ U`.

Hence, Ek(m0)
c≡ Ek(m1).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 12 / 48



From PRG to Encryption

Theorem

Assume that PRG : {0, 1}n → {0, 1}` is pseudorandom.
Then the “computational OTP” is secure.

Proof sketch.

Ek(m0) ≡ (PRG(Un)
⊕
m0)

c≡ (U`
⊕
m0) ≡ U`.

For similar reason, Ek(m1)
c≡ U`.

Hence, Ek(m0)
c≡ Ek(m1).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 12 / 48



From PRG to Encryption

Theorem

Assume that PRG : {0, 1}n → {0, 1}` is pseudorandom.
Then the “computational OTP” is secure.

Proof sketch.

Ek(m0) ≡ (PRG(Un)
⊕
m0)

c≡ (U`
⊕
m0) ≡ U`.

For similar reason, Ek(m1)
c≡ U`.

Hence, Ek(m0)
c≡ Ek(m1).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 12 / 48



From PRG to Encryption

Theorem

Assume that PRG : {0, 1}n → {0, 1}` is pseudorandom.
Then the “computational OTP” is secure.

Proof sketch.

Ek(m0) ≡ (PRG(Un)
⊕
m0)

c≡ (U`
⊕
m0) ≡ U`.

For similar reason, Ek(m1)
c≡ U`.

Hence, Ek(m0)
c≡ Ek(m1).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 12 / 48



From PRG to Encryption

Theorem

Assume that PRG : {0, 1}n → {0, 1}` is pseudorandom.
Then the “computational OTP” is secure.

Proof sketch.

Ek(m0) ≡ (PRG(Un)
⊕
m0)

c≡ (U`
⊕
m0) ≡ U`.

For similar reason, Ek(m1)
c≡ U`.

Hence, Ek(m0)
c≡ Ek(m1).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 12 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

We would like to use the same key to encrypt many messages

Recall that the PRG-based encryption is defined by
Ek(m) = PRG(k)

⊕
m

Is it ok to encrypt with the same key twice ?

Bad idea: Given Ek(m1) and Ek(m2) the adversary learns
whether m1 = m2 or more generally m1

⊕
m2

Old versions of MS Word used an (excellent) PRG twice!
As a result the encryption was completely broken and the
plaintext was fully recovered !

But we proved that the encryption is secure!

What went wrong?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 13 / 48



Multiple Messages

Our notion of security was defined for a single message

If we want to encrypt many messages we need a stronger
definition

In fact, we would like to grant the adversary the extra power of
Chosen Plaintext Attack

Before that, let us reconsider our original definition

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 14 / 48



Multiple Messages

Our notion of security was defined for a single message

If we want to encrypt many messages we need a stronger
definition

In fact, we would like to grant the adversary the extra power of
Chosen Plaintext Attack

Before that, let us reconsider our original definition

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 14 / 48



Multiple Messages

Our notion of security was defined for a single message

If we want to encrypt many messages we need a stronger
definition

In fact, we would like to grant the adversary the extra power of
Chosen Plaintext Attack

Before that, let us reconsider our original definition

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 14 / 48



Multiple Messages

Our notion of security was defined for a single message

If we want to encrypt many messages we need a stronger
definition

In fact, we would like to grant the adversary the extra power of
Chosen Plaintext Attack

Before that, let us reconsider our original definition

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 14 / 48



Reminder: Ciphertext Indistinguishability

For any pair of messages m0 and m1 of equal length:

Experiment 0

Let k
R← {0, 1}n

Output c0 = Ek(m0)

c≡

Experiment 1

Let k
R← {0, 1}n

Output c1 = Ek(m1)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 15 / 48



Ciphertext Indistinguishability: Alternative Formulation

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

It is always possible to guess b with probability 1
2

Security: For any PPT adversary A,

Pr[b′ = b] ≤ 1

2
+ neg(n)

Exercise: Prove equivalence to the original one.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 16 / 48



Ciphertext Indistinguishability: Alternative Formulation

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

It is always possible to guess b with probability 1
2

Security: For any PPT adversary A,

Pr[b′ = b] ≤ 1

2
+ neg(n)

Exercise: Prove equivalence to the original one.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 16 / 48



Ciphertext Indistinguishability: Alternative Formulation

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

It is always possible to guess b with probability 1
2

Security: For any PPT adversary A,

Pr[b′ = b] ≤ 1

2
+ neg(n)

Exercise: Prove equivalence to the original one.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 16 / 48



Ciphertext Indistinguishability: Alternative Formulation

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

It is always possible to guess b with probability 1
2

Security: For any PPT adversary A,

Pr[b′ = b] ≤ 1

2
+ neg(n)

Exercise: Prove equivalence to the original one.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 16 / 48



Ciphertext Indistinguishability: Alternative Formulation

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

It is always possible to guess b with probability 1
2

Security: For any PPT adversary A,

Pr[b′ = b] ≤ 1

2
+ neg(n)

Exercise: Prove equivalence to the original one.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 16 / 48



Indistinguishability under Chosen Plaintext Attack

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

The game has two phases:

1 A is allowed to adaptively choose many encryptions
2 A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 17 / 48



Indistinguishability under Chosen Plaintext Attack

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

The game has two phases:

1 A is allowed to adaptively choose many encryptions
2 A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 17 / 48



Indistinguishability under Chosen Plaintext Attack

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

The game has two phases:
1 A is allowed to adaptively choose many encryptions

2 A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 17 / 48



Indistinguishability under Chosen Plaintext Attack

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

The game has two phases:
1 A is allowed to adaptively choose many encryptions
2 A chooses a test m0,m1 and tries to distinguish Ek(m0) from
Ek(m1)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 17 / 48



Chosen Plaintext Security

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

It is always possible to guess b with probability 1
2

The adversary cannot do much better !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 18 / 48



Chosen Plaintext Security

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

It is always possible to guess b with probability 1
2

The adversary cannot do much better !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 18 / 48



Chosen Plaintext Security

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

It is always possible to guess b with probability 1
2

The adversary cannot do much better !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 18 / 48



Chosen Plaintext Security

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

Ek(mb)→

Adversary A(1n)

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

It is always possible to guess b with probability 1
2

The adversary cannot do much better !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 18 / 48



Why do we need such a strong definition?

Is it reasonable to assume that the adversary has an access to an
Encryption Oracle ?

History: Yes!

Example: Servers may communicate via encryption but
(dishonest) users can control the actual requests that are being
transferred

Remark: One can define an intermediate notion (Ciphertext
Indistinguishability for Multiple Messages) which is weaker than
CPA security but stronger than Ciphertext Indistinguishability for
a single Message.

Ex: Try to formalize it and prove that it’s indeed strictly weaker
than CPA and strictly stronger than CI for a single message.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 19 / 48



Why do we need such a strong definition?

Is it reasonable to assume that the adversary has an access to an
Encryption Oracle ?

History: Yes!

Example: Servers may communicate via encryption but
(dishonest) users can control the actual requests that are being
transferred

Remark: One can define an intermediate notion (Ciphertext
Indistinguishability for Multiple Messages) which is weaker than
CPA security but stronger than Ciphertext Indistinguishability for
a single Message.

Ex: Try to formalize it and prove that it’s indeed strictly weaker
than CPA and strictly stronger than CI for a single message.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 19 / 48



Why do we need such a strong definition?

Is it reasonable to assume that the adversary has an access to an
Encryption Oracle ?

History: Yes!

Example: Servers may communicate via encryption but
(dishonest) users can control the actual requests that are being
transferred

Remark: One can define an intermediate notion (Ciphertext
Indistinguishability for Multiple Messages) which is weaker than
CPA security but stronger than Ciphertext Indistinguishability for
a single Message.

Ex: Try to formalize it and prove that it’s indeed strictly weaker
than CPA and strictly stronger than CI for a single message.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 19 / 48



Why do we need such a strong definition?

Is it reasonable to assume that the adversary has an access to an
Encryption Oracle ?

History: Yes!

Example: Servers may communicate via encryption but
(dishonest) users can control the actual requests that are being
transferred

Remark: One can define an intermediate notion (Ciphertext
Indistinguishability for Multiple Messages) which is weaker than
CPA security but stronger than Ciphertext Indistinguishability for
a single Message.

Ex: Try to formalize it and prove that it’s indeed strictly weaker
than CPA and strictly stronger than CI for a single message.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 19 / 48



Why do we need such a strong definition?

Is it reasonable to assume that the adversary has an access to an
Encryption Oracle ?

History: Yes!

Example: Servers may communicate via encryption but
(dishonest) users can control the actual requests that are being
transferred

Remark: One can define an intermediate notion (Ciphertext
Indistinguishability for Multiple Messages) which is weaker than
CPA security but stronger than Ciphertext Indistinguishability for
a single Message.

Ex: Try to formalize it and prove that it’s indeed strictly weaker
than CPA and strictly stronger than CI for a single message.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 19 / 48



Is CPA security realizable?

Theorem

If the encryption algorithm is a deterministic function Ek(m) then it
is insecure under chosen plaintext attacks (even if the adversary
makes only one CPA query).

How can you prove it?

Does it mean that security under multiple messages cannot be
achieved?
Q: How to bypass the limitation?
Sol1: Randomized encryption
Sol2: Stateful encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 20 / 48



Is CPA security realizable?

Theorem

If the encryption algorithm is a deterministic function Ek(m) then it
is insecure under chosen plaintext attacks (even if the adversary
makes only one CPA query).

How can you prove it?

Does it mean that security under multiple messages cannot be
achieved?
Q: How to bypass the limitation?
Sol1: Randomized encryption
Sol2: Stateful encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 20 / 48



Is CPA security realizable?

Theorem

If the encryption algorithm is a deterministic function Ek(m) then it
is insecure under chosen plaintext attacks (even if the adversary
makes only one CPA query).

How can you prove it?

Does it mean that security under multiple messages cannot be
achieved?
Q: How to bypass the limitation?
Sol1: Randomized encryption
Sol2: Stateful encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 20 / 48



Is CPA security realizable?

Theorem

If the encryption algorithm is a deterministic function Ek(m) then it
is insecure under chosen plaintext attacks (even if the adversary
makes only one CPA query).

How can you prove it?

Does it mean that security under multiple messages cannot be
achieved?

Q: How to bypass the limitation?
Sol1: Randomized encryption
Sol2: Stateful encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 20 / 48



Is CPA security realizable?

Theorem

If the encryption algorithm is a deterministic function Ek(m) then it
is insecure under chosen plaintext attacks (even if the adversary
makes only one CPA query).

How can you prove it?

Does it mean that security under multiple messages cannot be
achieved?
Q: How to bypass the limitation?

Sol1: Randomized encryption
Sol2: Stateful encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 20 / 48



Is CPA security realizable?

Theorem

If the encryption algorithm is a deterministic function Ek(m) then it
is insecure under chosen plaintext attacks (even if the adversary
makes only one CPA query).

How can you prove it?

Does it mean that security under multiple messages cannot be
achieved?
Q: How to bypass the limitation?
Sol1: Randomized encryption
Sol2: Stateful encryption

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 20 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt?

Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security?

Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



Encrypting via Ideal Cipher

• Suppose that Alice and Bob share a truly random function

R : {0, 1}n → {0, 1}n.

I For each input x ∈ {0, 1}n choose R(x)
R← {0, 1}n.

• How can we encrypt? Encrypt a message m by R(m).

• Decryption?

• Let’s further assume that R is invertible, or even a permutation,
hence R−1 : {0, 1}n → {0, 1}n is used for decryption.

• Security?

• OK for (single-message) “Ciphertext Indistinguishability”

• How to achieve CPA security? Randomize the message !

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 21 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Theorem

If F is random the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 22 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Theorem

If F is random the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 22 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



CPA Security from Random Permutation

(Inefficient) Construction

Encrypt m: choose r
R← {0, 1}n and output (r, F (r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1(c).

Proof.

The adversary makes at most t = poly(n) queries.
The i-th query xi is encrypted by (ri, ci = F (xi

⊕
ri)).

The challenge mb is encrypted by (r∗, c∗ = F (mb
⊕
r∗)).

Good event G: (m0
⊕
r∗) and (m1

⊕
r∗) not in {xi

⊕
ri}

Prr∗ [G] ≥ 1− 2t/2n = 1− neg(n).

If G happens, then conditioned on all seen ciphertexts,
(r∗, F (m0

⊕
r∗)) ≡ (r∗, F (m1

⊕
r∗)).

Overall, the winning probability is upper-bounded by
Pr[win|G] Pr[G] + Pr[Ḡ] ≤ 1

2 + neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 23 / 48



Pseudorandom Functions (Reminder)

Given a black-box access to the function, it’s infeasible to distinguish
random function from pseudorandom function.

PRF

Let k
R← {0, 1}n

Given x output y = Fk(x)

c≡

Random Function

Choose random function

R : {0, 1}n → {0, 1}n

Given x output y = R(x)

PPT Adversary can’t distinguish with more than negligible probability.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 24 / 48



Pseudorandom Functions (Reminder)

Given a black-box access to the function, it’s infeasible to distinguish
random function from pseudorandom function.

PRF

Let k
R← {0, 1}n

Given x output y = Fk(x)

c≡

Random Function

Choose random function

R : {0, 1}n → {0, 1}n

Given x output y = R(x)

PPT Adversary can’t distinguish with more than negligible probability.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 24 / 48



Pseudorandom Functions (Reminder)

Given a black-box access to the function, it’s infeasible to distinguish
random function from pseudorandom function.

PRF

Let k
R← {0, 1}n

Given x output y = Fk(x)

c≡

Random Function

Choose random function

R : {0, 1}n → {0, 1}n

Given x output y = R(x)

PPT Adversary can’t distinguish with more than negligible probability.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 24 / 48



CPA Security from Pseudorandom Permutation

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Theorem

If F is pseudorandom permutation the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 25 / 48



CPA Security from Pseudorandom Permutation

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Theorem

If F is pseudorandom permutation the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 25 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A
Answer a query xi with (ri

R← {0, 1}n, G(ri
⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A

Answer a query xi with (ri
R← {0, 1}n, G(ri

⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A
Answer a query xi with (ri

R← {0, 1}n, G(ri
⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A
Answer a query xi with (ri

R← {0, 1}n, G(ri
⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A
Answer a query xi with (ri

R← {0, 1}n, G(ri
⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A
Answer a query xi with (ri

R← {0, 1}n, G(ri
⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from PRP (Proof)

Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r

⊕
m))

Decrypt (r, c) compute r
⊕
F−1k (c).

Proof by reduction: Convert a CPA attacker A with success
probability 1

2 + ε into an ε′-distinguisher B for the PRP.

Adversary BG (G is either Fk or Random))

Invoke A
Answer a query xi with (ri

R← {0, 1}n, G(ri
⊕
xi)).

Given (m0,m1), send (r∗
R← {0, 1}n, G(r∗

⊕
mb)) where

b
R← {0, 1} .

Output 1 if A’s guess b′ equals to b.

Prk[BFk = 1]−Pr[BRand = 1] ≥ (12 + ε)− (12 +neg(n)) ≥ ε−neg(n).
Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 26 / 48



CPA Security from Pseudorandom Function

Alternative Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r)

⊕
m)

Decrypt (r, c) compute Fk(r)
⊕
c. (No need to invert F )

Exercise prove:

Theorem

If F is pseudorandom function the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 27 / 48



CPA Security from Pseudorandom Function

Alternative Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r)

⊕
m)

Decrypt (r, c) compute Fk(r)
⊕
c. (No need to invert F )

Exercise prove:

Theorem

If F is pseudorandom function the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 27 / 48



CPA Security from Pseudorandom Function

Alternative Construction

Encrypt m: choose r
R← {0, 1}n and output (r, Fk(r)

⊕
m)

Decrypt (r, c) compute Fk(r)
⊕
c. (No need to invert F )

Exercise prove:

Theorem

If F is pseudorandom function the scheme is CPA secure.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 27 / 48



How to encrypt long messages?

• Pseudorandom functions/permutations operate on blocks of
fixed length (e.g., 128 bits).

• How to encrypt long messages ?

• We can apply the previous constructions to each block
separately but we’ll get poor rate (ciphertext is twice as large as
the message)

• Is there a better solution?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 28 / 48



How to encrypt long messages?

• Pseudorandom functions/permutations operate on blocks of
fixed length (e.g., 128 bits).

• How to encrypt long messages ?

• We can apply the previous constructions to each block
separately but we’ll get poor rate (ciphertext is twice as large as
the message)

• Is there a better solution?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 28 / 48



How to encrypt long messages?

• Pseudorandom functions/permutations operate on blocks of
fixed length (e.g., 128 bits).

• How to encrypt long messages ?

• We can apply the previous constructions to each block
separately but we’ll get poor rate (ciphertext is twice as large as
the message)

• Is there a better solution?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 28 / 48



How to encrypt long messages?

• Pseudorandom functions/permutations operate on blocks of
fixed length (e.g., 128 bits).

• How to encrypt long messages ?

• We can apply the previous constructions to each block
separately but we’ll get poor rate (ciphertext is twice as large as
the message)

• Is there a better solution?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 28 / 48



CBC Mode Encryption

Ek is a Pseudorandom permutation, Pi is the i-th block of the
message, and S0 is a random seed (aka initialization vector (IV)).

The ciphertext is (S0, C1, . . . , Cn), the rate tends to 1 for long
messages.

For a single block, we get the standard PRP-based Construction.

New message requires a freshly chosen random seed (why?)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 29 / 48



CBC Mode Encryption

Ek is a Pseudorandom permutation, Pi is the i-th block of the
message, and S0 is a random seed (aka initialization vector (IV)).

The ciphertext is (S0, C1, . . . , Cn), the rate tends to 1 for long
messages.

For a single block, we get the standard PRP-based Construction.

New message requires a freshly chosen random seed (why?)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 29 / 48



CBC Mode Encryption

Ek is a Pseudorandom permutation, Pi is the i-th block of the
message, and S0 is a random seed (aka initialization vector (IV)).

The ciphertext is (S0, C1, . . . , Cn), the rate tends to 1 for long
messages.

For a single block, we get the standard PRP-based Construction.

New message requires a freshly chosen random seed (why?)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 29 / 48



CBC Mode Encryption

Ek is a Pseudorandom permutation, Pi is the i-th block of the
message, and S0 is a random seed (aka initialization vector (IV)).

The ciphertext is (S0, C1, . . . , Cn), the rate tends to 1 for long
messages.

For a single block, we get the standard PRP-based Construction.

New message requires a freshly chosen random seed (why?)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 29 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Properties of CBC

• Encryption seems inherently sequential – no parallel
implementation known.

• Decryption is parallel – can decrypt the i-th block directly

• Standard in most systems: SSL, IPSec, etc.

Security: It can be proved that if E is a pseudorandom permutation,
then CBC is resistant to chosen plaintext attacks (CPA-secure).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 30 / 48



Message Authentication Codes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 31 / 48



Message Authentication Codes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 31 / 48



Authentication – Goal
Ensure integrity of messages against an active adversary

• Adversary hears previous genuine messages

• (May even influence the content of genuine messages)

• Then sends own forged message(s).

• Bob (receiver) should be able to tell genuine messages from
forged ones.

Important Remark: Authentication is orthogonal to secrecy. Secrecy
alone usually does not guarantee integrity.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 32 / 48



Authentication – Goal
Ensure integrity of messages against an active adversary

• Adversary hears previous genuine messages

• (May even influence the content of genuine messages)

• Then sends own forged message(s).

• Bob (receiver) should be able to tell genuine messages from
forged ones.

Important Remark: Authentication is orthogonal to secrecy. Secrecy
alone usually does not guarantee integrity.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 32 / 48



Authentication – Goal
Ensure integrity of messages against an active adversary

• Adversary hears previous genuine messages

• (May even influence the content of genuine messages)

• Then sends own forged message(s).

• Bob (receiver) should be able to tell genuine messages from
forged ones.

Important Remark: Authentication is orthogonal to secrecy. Secrecy
alone usually does not guarantee integrity.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 32 / 48



Authentication – Goal
Ensure integrity of messages against an active adversary

• Adversary hears previous genuine messages

• (May even influence the content of genuine messages)

• Then sends own forged message(s).

• Bob (receiver) should be able to tell genuine messages from
forged ones.

Important Remark: Authentication is orthogonal to secrecy. Secrecy
alone usually does not guarantee integrity.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 32 / 48



Authentication – Goal
Ensure integrity of messages against an active adversary

• Adversary hears previous genuine messages

• (May even influence the content of genuine messages)

• Then sends own forged message(s).

• Bob (receiver) should be able to tell genuine messages from
forged ones.

Important Remark: Authentication is orthogonal to secrecy. Secrecy
alone usually does not guarantee integrity.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 32 / 48



Authentication – Goal
Ensure integrity of messages against an active adversary

• Adversary hears previous genuine messages

• (May even influence the content of genuine messages)

• Then sends own forged message(s).

• Bob (receiver) should be able to tell genuine messages from
forged ones.

Important Remark: Authentication is orthogonal to secrecy. Secrecy
alone usually does not guarantee integrity.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 32 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)

• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)

Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Sol: Message Authentication Code (MAC)

Idea: Alice and Bob share a secret key. Alice append to each message
m an authentication tag MACk(m) = tag. Bob verifies authenticity
by comparing MACk(m) to tag.

Definition (Message Authentication Code)

• Message space M (usually long binary strings, e.g., {0, 1}∗)
• Secret authentication key – k ∈ {0, 1}n

• Authentication algorithm – MACk(m) 7→ tag

• Typically, tag ∈ {0, 1}` where ` is relatively short

Remark: the MAC function is not 1-to-1 (why?)
Security: Intuitively, should be hard to forge a valid tag even after
seeing many legal tags

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 33 / 48



Security

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• The probability is taken over the choice of a random key

• Adversary can choose the messages

• The adversary succeeds even if the message being forged is
“meaningless”. The reason is that it is hard to predict what has
and what does not have a meaning in an unknown context, and
how will Bob, the receiver, react to such successful forgery.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 34 / 48



Security

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• The probability is taken over the choice of a random key

• Adversary can choose the messages

• The adversary succeeds even if the message being forged is
“meaningless”. The reason is that it is hard to predict what has
and what does not have a meaning in an unknown context, and
how will Bob, the receiver, react to such successful forgery.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 34 / 48



Security

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• The probability is taken over the choice of a random key

• Adversary can choose the messages

• The adversary succeeds even if the message being forged is
“meaningless”. The reason is that it is hard to predict what has
and what does not have a meaning in an unknown context, and
how will Bob, the receiver, react to such successful forgery.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 34 / 48



Security

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• The probability is taken over the choice of a random key

• Adversary can choose the messages

• The adversary succeeds even if the message being forged is
“meaningless”. The reason is that it is hard to predict what has
and what does not have a meaning in an unknown context, and
how will Bob, the receiver, react to such successful forgery.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 34 / 48



Security

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• The probability is taken over the choice of a random key

• Adversary can choose the messages

• The adversary succeeds even if the message being forged is
“meaningless”. The reason is that it is hard to predict what has
and what does not have a meaning in an unknown context, and
how will Bob, the receiver, react to such successful forgery.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 34 / 48



Security

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• The probability is taken over the choice of a random key

• Adversary can choose the messages

• The adversary succeeds even if the message being forged is
“meaningless”. The reason is that it is hard to predict what has
and what does not have a meaning in an unknown context, and
how will Bob, the receiver, react to such successful forgery.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 34 / 48



Trivial Attacks

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• Guess the `-bit tag of a message m – success probability 2−`.

• Guess the n-bit key and compute the tag a message m – success
probability 2−n.

• Conclusion: key and tag should not be too short

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 35 / 48



Trivial Attacks

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• Guess the `-bit tag of a message m – success probability 2−`.

• Guess the n-bit key and compute the tag a message m – success
probability 2−n.

• Conclusion: key and tag should not be too short

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 35 / 48



Trivial Attacks

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• Guess the `-bit tag of a message m – success probability 2−`.

• Guess the n-bit key and compute the tag a message m – success
probability 2−n.

• Conclusion: key and tag should not be too short

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 35 / 48



Trivial Attacks

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• Guess the `-bit tag of a message m – success probability 2−`.

• Guess the n-bit key and compute the tag a message m – success
probability 2−n.

• Conclusion: key and tag should not be too short

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 35 / 48



Trivial Attacks

Definition (Existential Forgery under Chosen Plaintext Attack)

A MAC is secure if every PPT adversary A which is allowed to ask
for polynomially-many legal pairs (mi,MACk(mi)) (i = 1, 2, . . . , t),
outputs a new valid pair (m,MACk(m)) with no more than negligible
probability.

• Guess the `-bit tag of a message m – success probability 2−`.

• Guess the n-bit key and compute the tag a message m – success
probability 2−n.

• Conclusion: key and tag should not be too short

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 35 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded).

Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded).

Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



MACs for Short Messages

• What would Shannon do?

• Claim: If MAC : {0, 1}n → {0, 1}` is a random function then it
cannot be broken with probability better than 2−` (even if the
adversary is computationally unbounded). Can you see why?

• In a computational setting can use pseudorandom function

• Theorem: A PRF is a secure MAC.

• Proof idea: If the PRF was truly random function then hard to
forge, hence an adversary that breaks the MAC allows to
distinguish the PRF from truly random function.

• Problem: PRFs are defined for a fixed length (“block”), but we
would like to support long messages!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 36 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.

Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.

Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



How to authenticate Long Messages?

Let Fk : {0, 1}n → {0, 1}n be a pseudorandom function.
Suggestions: Define MACk(M1, . . . ,M`) as:

• (Fk(M1), . . . , Fk(M`))

• (Fk(1,M1), . . . , Fk(`,M`)).

• (r, Fk(r, 1,M1), . . . , Fk(r, `,M`)), where r
R← {0, 1}n/3.

• (r, Fk(r, 1,M1, `), . . . , Fk(r, `,M`), `), where r
R← {0, 1}n/4.

Thm: (only) the last construction is secure !
Ex: Prove it.
Problem: Impractical due to large communication overhead!

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 37 / 48



MACs for Long Messages

We will describe an efficient approach based on CBC Mode,
there is an alternative solution (HMAC) based on cryptographic hash
functions.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 38 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



CBC Mode MACs

• Start with the all zero seed.

• Given a message consisting of n blocks, M1,M2, . . . ,Mn, apply
CBC mode encryption (using the secret key k).

• Produce n “cipertext” blocks, C1, C2, . . . , Cn.

• Discard first n− 1 blocks.

• Send M1,M2, . . . ,Mn and the tag MACk(M) = Cn.

Q: Can we replace the all-zero seed with a random public string?
Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 39 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Security of Fixed Length CBC MAC [BKR, 2000]

• Theorem: If Ek is a pseudorandom function, then the fixed
length CBC MAC is resilient to forgery when authenticating
messages of the same length, n.

• Proof via reduction: Assume CBC MAC can be forged efficiently.
Transform the forging algorithm into an algorithm distinguishing
Ek from a random function efficiently.

• Warning: Construction is not secure if messages are of varying
lengths, namely number of blocks varies among messages.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 40 / 48



Insecurity of Variable Length CBC MAC

Here is a simple, chosen plaintext example of forgery:

• Get C1 = CBC −MACk(M1) = Ek(~0
⊕
M1)

• Ask for MAC of C1, i.e.,
C2 = CBC −MACk(C1) = Ek(~0

⊕
C1)

• Observe that Ek(C1
⊕
~0) = Ek(Ek(~0

⊕
M1)

⊕
~0) =

CBC −MACk(M1 ◦~0) (where ◦ denotes concatenation)

• One can efficiently design, for every n, two messages, one with 1
block, the other with n+ 1 blocks, that have the same MACk(·).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 41 / 48



Insecurity of Variable Length CBC MAC

Here is a simple, chosen plaintext example of forgery:

• Get C1 = CBC −MACk(M1) = Ek(~0
⊕
M1)

• Ask for MAC of C1, i.e.,
C2 = CBC −MACk(C1) = Ek(~0

⊕
C1)

• Observe that Ek(C1
⊕
~0) = Ek(Ek(~0

⊕
M1)

⊕
~0) =

CBC −MACk(M1 ◦~0) (where ◦ denotes concatenation)

• One can efficiently design, for every n, two messages, one with 1
block, the other with n+ 1 blocks, that have the same MACk(·).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 41 / 48



Insecurity of Variable Length CBC MAC

Here is a simple, chosen plaintext example of forgery:

• Get C1 = CBC −MACk(M1) = Ek(~0
⊕
M1)

• Ask for MAC of C1, i.e.,
C2 = CBC −MACk(C1) = Ek(~0

⊕
C1)

• Observe that Ek(C1
⊕
~0) = Ek(Ek(~0

⊕
M1)

⊕
~0) =

CBC −MACk(M1 ◦~0) (where ◦ denotes concatenation)

• One can efficiently design, for every n, two messages, one with 1
block, the other with n+ 1 blocks, that have the same MACk(·).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 41 / 48



Insecurity of Variable Length CBC MAC

Here is a simple, chosen plaintext example of forgery:

• Get C1 = CBC −MACk(M1) = Ek(~0
⊕
M1)

• Ask for MAC of C1, i.e.,
C2 = CBC −MACk(C1) = Ek(~0

⊕
C1)

• Observe that Ek(C1
⊕
~0) = Ek(Ek(~0

⊕
M1)

⊕
~0) =

CBC −MACk(M1 ◦~0) (where ◦ denotes concatenation)

• One can efficiently design, for every n, two messages, one with 1
block, the other with n+ 1 blocks, that have the same MACk(·).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 41 / 48



Insecurity of Variable Length CBC MAC

Here is a simple, chosen plaintext example of forgery:

• Get C1 = CBC −MACk(M1) = Ek(~0
⊕
M1)

• Ask for MAC of C1, i.e.,
C2 = CBC −MACk(C1) = Ek(~0

⊕
C1)

• Observe that Ek(C1
⊕
~0) = Ek(Ek(~0

⊕
M1)

⊕
~0) =

CBC −MACk(M1 ◦~0) (where ◦ denotes concatenation)

• One can efficiently design, for every n, two messages, one with 1
block, the other with n+ 1 blocks, that have the same MACk(·).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 41 / 48



CBC-MAC for Variable Length Messages

• Solution 1: The first block of the message is set to be its length.
Apply CBC-MAC to (n,M1, . . . ,Mn).
Works since now message space is prefix-free.
Drawback: The message length, n, must be known in advance.

• “Solution 2”: Apply CBC-MAC to (M1, . . . ,Mn, n).
Message length does not have to be known is advance.
Looks good, but this scheme was broken.

• Solution 3: Encrypted CBC (ECBC MAC):
Compute Ek2(CBC −MACk1(M1, . . . ,Mn)),
where E is a block-cipher and k2 is another secret key.
Essentially the same overhead as CBC-MAC (widely used).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 42 / 48



CBC-MAC for Variable Length Messages

• Solution 1: The first block of the message is set to be its length.
Apply CBC-MAC to (n,M1, . . . ,Mn).
Works since now message space is prefix-free.
Drawback: The message length, n, must be known in advance.

• “Solution 2”: Apply CBC-MAC to (M1, . . . ,Mn, n).
Message length does not have to be known is advance.
Looks good, but this scheme was broken.

• Solution 3: Encrypted CBC (ECBC MAC):
Compute Ek2(CBC −MACk1(M1, . . . ,Mn)),
where E is a block-cipher and k2 is another secret key.
Essentially the same overhead as CBC-MAC (widely used).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 42 / 48



CBC-MAC for Variable Length Messages

• Solution 1: The first block of the message is set to be its length.
Apply CBC-MAC to (n,M1, . . . ,Mn).
Works since now message space is prefix-free.
Drawback: The message length, n, must be known in advance.

• “Solution 2”: Apply CBC-MAC to (M1, . . . ,Mn, n).
Message length does not have to be known is advance.
Looks good, but this scheme was broken.

• Solution 3: Encrypted CBC (ECBC MAC):
Compute Ek2(CBC −MACk1(M1, . . . ,Mn)),
where E is a block-cipher and k2 is another secret key.
Essentially the same overhead as CBC-MAC (widely used).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 42 / 48



CBC-MAC for Variable Length Messages

• Solution 1: The first block of the message is set to be its length.
Apply CBC-MAC to (n,M1, . . . ,Mn).
Works since now message space is prefix-free.
Drawback: The message length, n, must be known in advance.

• “Solution 2”: Apply CBC-MAC to (M1, . . . ,Mn, n).
Message length does not have to be known is advance.
Looks good, but this scheme was broken.

• Solution 3: Encrypted CBC (ECBC MAC):
Compute Ek2(CBC −MACk1(M1, . . . ,Mn)),
where E is a block-cipher and k2 is another secret key.
Essentially the same overhead as CBC-MAC (widely used).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 42 / 48



CBC-MAC for Variable Length Messages

• Solution 1: The first block of the message is set to be its length.
Apply CBC-MAC to (n,M1, . . . ,Mn).
Works since now message space is prefix-free.
Drawback: The message length, n, must be known in advance.

• “Solution 2”: Apply CBC-MAC to (M1, . . . ,Mn, n).
Message length does not have to be known is advance.
Looks good, but this scheme was broken.

• Solution 3: Encrypted CBC (ECBC MAC):
Compute Ek2(CBC −MACk1(M1, . . . ,Mn)),
where E is a block-cipher and k2 is another secret key.
Essentially the same overhead as CBC-MAC (widely used).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 42 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?

Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?

No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?

No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?

Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?

Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?

Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?

Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Combining Authentication and Secrecy

It is a good idea to use two different keys: one for authentication and
one for encryption. But How?
Suggestions:

• Encrypt-and-Authenticate: Ek1(M),MACk2(M) secure?
No (some MACs may leak information on M)

• Authenticate-then-Encrypt: Ek1(M,MACk2(M)) secure?
Not in general

• Encrypt-then-Authenticate: Ek1(M),MACk2(Ek1(M)) secure?
Yes

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 43 / 48



Authenticated Encryption

Authentication is important even if one is interested only in secrecy !

Alice wants to send an n-bit message M to Bob over a noisy channel.
They share a secret-key of a CPA secure encryption Ek.

Alice sends a bit-by-bit encryption Ek(M1), . . . , Ek(Mn)
together with an encryption of the parity-check
Ek(M1

⊕
. . .

⊕
Mn) so that Bob can detect errors.

Bob decrypts. If the parity check does not match, he sends an
error message.

How can an active adversary recover the message M?
CPA security is not always enough!
(Some real world attacks follow a similar scenario)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 44 / 48



Authenticated Encryption

Authentication is important even if one is interested only in secrecy !

Alice wants to send an n-bit message M to Bob over a noisy channel.
They share a secret-key of a CPA secure encryption Ek.

Alice sends a bit-by-bit encryption Ek(M1), . . . , Ek(Mn)
together with an encryption of the parity-check
Ek(M1

⊕
. . .

⊕
Mn) so that Bob can detect errors.

Bob decrypts. If the parity check does not match, he sends an
error message.

How can an active adversary recover the message M?
CPA security is not always enough!
(Some real world attacks follow a similar scenario)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 44 / 48



Authenticated Encryption

Authentication is important even if one is interested only in secrecy !

Alice wants to send an n-bit message M to Bob over a noisy channel.
They share a secret-key of a CPA secure encryption Ek.

Alice sends a bit-by-bit encryption Ek(M1), . . . , Ek(Mn)
together with an encryption of the parity-check
Ek(M1

⊕
. . .

⊕
Mn) so that Bob can detect errors.

Bob decrypts. If the parity check does not match, he sends an
error message.

How can an active adversary recover the message M?
CPA security is not always enough!
(Some real world attacks follow a similar scenario)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 44 / 48



Authenticated Encryption

Authentication is important even if one is interested only in secrecy !

Alice wants to send an n-bit message M to Bob over a noisy channel.
They share a secret-key of a CPA secure encryption Ek.

Alice sends a bit-by-bit encryption Ek(M1), . . . , Ek(Mn)
together with an encryption of the parity-check
Ek(M1

⊕
. . .

⊕
Mn) so that Bob can detect errors.

Bob decrypts. If the parity check does not match, he sends an
error message.

How can an active adversary recover the message M?
CPA security is not always enough!
(Some real world attacks follow a similar scenario)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 44 / 48



Authenticated Encryption

Authentication is important even if one is interested only in secrecy !

Alice wants to send an n-bit message M to Bob over a noisy channel.
They share a secret-key of a CPA secure encryption Ek.

Alice sends a bit-by-bit encryption Ek(M1), . . . , Ek(Mn)
together with an encryption of the parity-check
Ek(M1

⊕
. . .

⊕
Mn) so that Bob can detect errors.

Bob decrypts. If the parity check does not match, he sends an
error message.

How can an active adversary recover the message M?

CPA security is not always enough!
(Some real world attacks follow a similar scenario)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 44 / 48



Authenticated Encryption

Authentication is important even if one is interested only in secrecy !

Alice wants to send an n-bit message M to Bob over a noisy channel.
They share a secret-key of a CPA secure encryption Ek.

Alice sends a bit-by-bit encryption Ek(M1), . . . , Ek(Mn)
together with an encryption of the parity-check
Ek(M1

⊕
. . .

⊕
Mn) so that Bob can detect errors.

Bob decrypts. If the parity check does not match, he sends an
error message.

How can an active adversary recover the message M?
CPA security is not always enough!
(Some real world attacks follow a similar scenario)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 44 / 48



Reminder: Security under Chosen Plaintext Attack (CPA)

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

c∗ = Ek(mb)→

Adversary A

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 45 / 48



Reminder: Security under Chosen Plaintext Attack (CPA)

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1

Ek(x1)→

← x2

Ek(x2)→

. . .

← (m0,m1)

c∗ = Ek(mb)→

Adversary A

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 45 / 48



Security under Chosen Ciphertext Attack (CCA)

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1,y1

Ek(x1),Dk(y1)→

← x2,y2

. . .

← (m0,m1)

c∗ = Ek(mb)→

Adversary A

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

Decryption queries can be also asked after the challenge as long
as y 6= c∗.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 46 / 48



Security under Chosen Ciphertext Attack (CCA)

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1,y1

Ek(x1),Dk(y1)→

← x2,y2

. . .

← (m0,m1)

c∗ = Ek(mb)→

Adversary A

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

Decryption queries can be also asked after the challenge as long
as y 6= c∗.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 46 / 48



Security under Chosen Ciphertext Attack (CCA)

Challenger

k
R← {0, 1}n

b
R← {0, 1}

← x1,y1

Ek(x1),Dk(y1)→

← x2,y2

. . .

← (m0,m1)

c∗ = Ek(mb)→

Adversary A

Output b′

Security: For every PPT adversary Pr[b = b′] ≤ 1
2 + neg(n)

Decryption queries can be also asked after the challenge as long
as y 6= c∗.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 46 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



CPA+MAC = CCA
Given CPA-secure encryption (E,D) and a MAC MACk define
(E′, D′) as follows:

Construction of CCA Encryption

E′k1,k2(M) = (C, T ) where C = Ek1(M), T = MACk2(C).

D′k1,k2(C, T ) if T = MACk2(C) return Dk1(C), otherwise ⊥.

Thm. The scheme (E′, D′) is CCA secure.

Proof idea: Assume a Chosen Ciphertext Attacker.

Decryption query yi is useful if it does not equal to an outcome
of a previous encryption query.

Useful queries are (almost always) answered with ⊥, otherwise
the MAC is broken

With no useful queries, the decryption oracle isn’t really being
used

We can break E via CPA.

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 47 / 48



Summary

Different levels of security for encryption.

Authentication is orthogonal to secrecy – combination is tricky.

MACs and Encryption schemes can be based on PRFs/PRPs via
highly efficient (practical) transformations.

Good design methodology: Reduce a complicated task to a
simpler task. Solve the simple task and extend the solution.
(E.g., design encryption for a single-block messages and then
show how to extend it to longer messages).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 48 / 48



Summary

Different levels of security for encryption.

Authentication is orthogonal to secrecy – combination is tricky.

MACs and Encryption schemes can be based on PRFs/PRPs via
highly efficient (practical) transformations.

Good design methodology: Reduce a complicated task to a
simpler task. Solve the simple task and extend the solution.
(E.g., design encryption for a single-block messages and then
show how to extend it to longer messages).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 48 / 48



Summary

Different levels of security for encryption.

Authentication is orthogonal to secrecy – combination is tricky.

MACs and Encryption schemes can be based on PRFs/PRPs via
highly efficient (practical) transformations.

Good design methodology: Reduce a complicated task to a
simpler task. Solve the simple task and extend the solution.
(E.g., design encryption for a single-block messages and then
show how to extend it to longer messages).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 48 / 48



Summary

Different levels of security for encryption.

Authentication is orthogonal to secrecy – combination is tricky.

MACs and Encryption schemes can be based on PRFs/PRPs via
highly efficient (practical) transformations.

Good design methodology: Reduce a complicated task to a
simpler task. Solve the simple task and extend the solution.
(E.g., design encryption for a single-block messages and then
show how to extend it to longer messages).

Benny Applebaum (Tel-Aviv University) Encryption and Message Authentication January, 2014 48 / 48


	Background
	Message Indistinguishability
	Construction
	Security for Multiple Messages

	CPA Security
	Constructions
	Encrypting long messages

	MACs
	Setting
	Constructions

	CCA Security

