
1

Session 4:
Efficient Zero Knowledge

Yehuda Lindell

Bar-Ilan University

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Proof Systems

• Completeness: can convince of a true
statement

• Soundness: cannot convince for a false
statement

• Classic proofs:
– Written by hand; non-interactive

• Interactive proofs:
– Prover and verifier interact

– Adds a lot of power (NP vs PSPACE)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 2

Graph Non-Isomorphism

• P claims that and are not isomorphic

• Verifier step

– Chooses a random bit

– Computes as a random permutation of

– Sends to prover P

• Prover step

– Find (inefficiently) the bit b such that

– Send to V

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 3

Graph Non-Isomorphism

• Completeness: easy

• Soundness:

– If the graphs are isomorphic, then a random
permutation of 𝐺0 has the same distribution as a
random permutation of 𝐺1

– P cannot know which bit V started with, and so is
right with probability at most ½

– Repeating n times reduces the cheating
probability to 2−𝑛

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 4

• Prover 𝑷, verifier 𝑽, language 𝑳, statement 𝒙

• P proves that 𝒙𝑳 without revealing anything
but that fact
– Completeness: as before

– Soundness: V accepts with negligible probability
when 𝒙𝑳, for any 𝑷∗

• Computational soundness: when 𝑷∗ is polynomial-time

• Zero-knowledge:
– For every 𝑽∗ there exists a simulator 𝑺 such that 𝑺(𝒙)

outputs a view indistinguishable from 𝑉∗’s view in a
real execution with 𝑷

 5

Zero Knowledge

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Prover 𝑃, verifier 𝑉, relation 𝑅

• 𝑃 proves that it knows a witness 𝑤 for which
(𝑥, 𝑤)𝑅 without revealing anything
– The proof is zero knowledge as before

– There exists an extractor 𝑲 that obtains 𝒘 from any
𝑷∗ where (𝒙,𝒘)𝑹 with the same probability that 𝑷∗
convinces 𝑽

• Equivalently:
– The protocol securely computes the functionality
𝒇𝒛𝒌((𝒙,𝒘), 𝒙) = (𝝀, 𝑹(𝒙,𝒘))

6

ZK Proof of Knowledge

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• An amazing concept; everything can be
proven in zero knowledge

• Central to fundamental feasibility results of
cryptography (e.g., GMW)

• But, can it be efficient?

– It seems that zero-knowledge protocols for
“interesting languages” are complicated and
expensive

7

Zero Knowledge

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• A way to obtain efficient zero knowledge

– Many general tools

– Many interesting languages can be proven with a
sigma protocol

8

Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Let 𝔾 be a group of order 𝑞, with generator 𝑔

• P and V have input ℎ = 𝑔𝑤, P has 𝑤

• P proves that to V that it knows 𝑤

– P chooses a random 𝑟 ← ℤ𝑞 and sends 𝑎 = 𝑔𝑟 to V

– V sends P a random 𝑒 ∈ 0,1 𝑡

– P sends 𝑧 = 𝑟 + 𝑒𝑤 mod 𝑞 to V

– V checks that 𝑔𝑧 = 𝑎 ⋅ ℎ𝑒

• Completeness

– Follows since 𝑔𝑧 = 𝑔𝑟+𝑒𝑤 = 𝑔𝑟 ⋅ 𝑔𝑤 𝑒 = 𝑎 ⋅ ℎ𝑒

9

An Example – Schnorr DLOG

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Proof of knowledge

– Assume P can answer two queries 𝑒1 and 𝑒2
for the same first message 𝑎

– Then, we have 𝑔𝑧1 = 𝑎 ⋅ ℎ𝑒1 and 𝑔𝑧2 = 𝑎 ⋅ ℎ𝑒2

– Thus, 𝑎 = 𝑔𝑧1 ⋅ ℎ−𝑒1 = 𝑔𝑧2 ⋅ ℎ−𝑒2 and so
𝑔𝑧1−𝑧2 = ℎ𝑒1−𝑒2

– Therefore
𝐷𝐿𝑂𝐺𝑔 ℎ = 𝑧1 − 𝑧2 𝑒1 − 𝑒2

−1mod 𝑞

– Since are all known from the transcripts, this
can be computed

• Conclusion:

– If P can answer with probability greater than ,
then it must know the dlog

10

Schnorr’s Protocol

P (𝒉,𝒘) V (𝒉)

𝒂 = 𝒈𝒓

𝒆

𝒛 = 𝒓 + 𝒆𝒘

𝒈𝒛 = 𝒂𝒉𝒆
?

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• What about zero knowledge? Seems not…

• Honest-verifier zero knowledge
– Choose a random 𝑧 and 𝑒, and compute
𝑎 = 𝑔𝑧 ⋅ ℎ−𝑒

– Observe that (𝑎, 𝑒, 𝑧) chosen this way has the
same distribution as when V chooses 𝑒 randomly

• In particular, 𝑔𝑧 = 𝑎 ⋅ ℎ𝑒

• This is not very strong, but we will see that it
yields efficient general ZK

11

Schnorr’s Protocol

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Sigma protocol template

– Common input: P and V both have x

– Private input: P has w such that (x,w)R

– Protocol:

• P sends a message a

• V sends a random t-bit string e

• P sends a reply z

• V accepts based solely on (x,a,e,z)

12

Definitions

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Completeness: as usual

• Special soundness:

– There exists an algorithm A that given any x and
pair of transcripts (a,e,z),(a,e,z) with ee
outputs w s.t. (x,w)R

• Special honest-verifier ZK

– There exists an M that given x and e outputs
(a,e,z) which is distributed exactly like a real
execution where V sends e

13

Definitions

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Relation R of Diffie-Hellman tuples

– (g,h,u,v) R iff exists w s.t. u=gw and v = hw

– Useful in many protocols

• Protocol

– P chooses a random r and sends a=gr, b=hr

– V sends a random e

– P sends z=r+ew mod q

– V checks that gz=aue, hz=bve

14

Sigma Protocol DH Tuple

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Completeness: as in DLOG

• Special soundness:

– Given (a,b,e,z),(a,b,e,z), we have
gz=aue, gz=aue, hz=bve, hz=bve and
so like in DLOG on both

• w = (z-z)(e-e)

• Special HVZK

– Given (g,h,u,v) and e, choose
random z and compute

• a = gzu-e

• b = hzv-e

15

Sigma Protocol DH Tuple

P ((g,h,u,v),w) V

a=gr, b=hr

e

z=r+ew

gz = aue
?

hz = bve

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Any sigma protocol is an interactive proof
with soundness error 2-t

• Properties of sigma protocols are invariant
under parallel composition

• Any sigma protocol is a proof of knowledge
with error 2-t

– The difference between the probability that P*
convinces V and the probability that K obtains a
witness is at most 2-t

16

Basic Properties

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Prove compound statements

– AND, OR, subset

– Can be done efficiently (won’t see here)

• ZK from sigma protocols

– Can first make a compound sigma protocol and
then compile it

• ZKPOK from sigma protocols

17

Tools for Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

ZK from Sigma: Preliminaries

• Commitment schemes:
– Binding: after the commitment phase, the

committer cannot change the value

– Hiding: the receiver does not know anything
about the commitment

• Variants
– Perfect and computational binding

– Perfect and computational hiding

– Cannot have both perfect binding and hiding

Secure Computation and Efficiency

Bar-Ilan University, Israel 2015 18

Perfectly-Binding Commitments

• The ElGamal usage in Blum’s coin tossing is a
perfectly-binding commitment

– Com 𝑚 = ℎ = 𝑔𝑟 , 𝑢 = 𝑔𝑠, 𝑣 = ℎ𝑠 ⋅ 𝑚 for
𝑚 ∈ 𝔾

– Perfect binding: the values (ℎ, 𝑢, 𝑣) fully define 𝑚

• There exists a single pair (𝑟, 𝑠) so that ℎ = 𝑔𝑟 , 𝑢 = 𝑔𝑠

and 𝑚 is fully defined by
𝑣

𝑢𝑟

– Computational hiding: for every 𝑚,𝑚′ ∈ 𝔾,
{Com(𝑚)} ≈ {Com(𝑚′)}

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 19

• The basic idea
– Have V first commit to its challenge e using a

perfectly-hiding commitment

• The protocol
– P sends the 1st message  of the commit protocol

– V sends a commitment c=Com(e;r)

– P sends a message a

– V sends (e,r)

– P checks that c=Com(e;r) and if yes sends a reply z

– V accepts based on (x,a,e,z)

20

ZK from Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Soundness:
– The perfectly hiding commitment reveals nothing

about e and so soundness is preserved

• Zero knowledge
– In order to simulate:

• Send a generated by the simulator, for a random e

• Receiver V’s decommitment to e

• Run the simulator again with e, rewind V and send a
– Repeat until V decommits to e again

• Conclude by sending z

– Analysis…

21

ZK from Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Highly efficient perfectly-hiding commitments

– Parameters: generator 𝒈, order 𝒒

– Commit protocol (commit to 𝑥 ∈ ℤ𝑞):

• Receiver chooses random 𝑘 ← ℤ𝑞 and sends ℎ = 𝑔𝑘

• Sender sends 𝑐 = 𝑔𝑟 ⋅ ℎ𝑥, for a random 𝑟 ← ℤ𝑞

– Perfect hiding:

• For every 𝑥, 𝑦 ∈ ℤ𝑞 there exist 𝑟, 𝑠 ∈ ℤ𝑞 such that

𝑟 + 𝑘𝑥 = 𝑠 + 𝑘𝑦 mod 𝑞

– Computational binding:

• If can find 𝑥, 𝑟 , (𝑦, 𝑠) such that 𝑔𝑟 ⋅ ℎ𝑥 = 𝑔𝑠 ⋅ ℎ𝑦 then can
compute 𝑘 = 𝐷𝐿𝑂𝐺𝑔 ℎ = 𝑟−𝑠

𝑦−𝑥 mod 𝑞

22

Pedersen Commitments

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Using Pedersen commitments, this costs only
5 additional group exponentiations

– This is very efficient

23

Efficiency of ZK

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Is the previous protocol a proof of
knowledge?

– It seems not to be

– The extractor for the Sigma protocol needs to
obtain two transcripts with the same a and
different e

– The prover may choose its first message a
differently for every commitment string, so if the
extractor changes e, the prover changes a

24

ZKPOK from Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Solution: use a trapdoor (equivocal)
commitment scheme

– Given a trapdoor, it is possible to open the
commitment to any value

• Pedersen has this property, and the previous
protocol can be modified only slightly to get a
proof of knowledge

25

ZKPOK from Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• We typically want zero knowledge, so why
bother with sigma protocols?

– We have many useful general transformations

• E.g., parallel composition, compound statements

• The ZK and ZKPOK transformations can be applied on
top of the above, so obtain transformed ZK

– It is much harder to prove ZK than Sigma

• ZK – distributions and simulation

• Sigma: only HVZK and special oundness

26

ZK and Sigma Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Prove that the El Gamal encryption (u,v)
under public-key (g,h) is to the value m
– By encryption definition u=gr, v=hrm

– ThUS (g,h,u,v/m) is a DH tuple

– So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is
a DH tuple

• Database of ElGamal(Ki),EKi(Ti)
– Can release Ti without revealing

anything about Tj for j  I

27

Using Sigma Protocols and ZK

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• The Fiat-Shamir paradigm
– To prove a statement x

– Generate a, compute e=H(a,x), compute z

– Send (a,e,z)

• Properties:
– Soundness: follows from random oracle property

– Zero knowledge: same

– Can achieve simulation-soundness (non
malleability) by including unique sid in H

28

Non-Interactive ZK (ROM)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

• Efficient zero knowledge is very important in
secure computation protocols

– Using sigma protocols, we can get very efficient ZK

• Sigma protocols are very useful:

– Efficient ZK

– Efficient ZKPOK

– Efficient NIZK in the random oracle model

– Many other applications as well…

29

Summary

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

