Session 4:
Efficient Zero Knowledge

Yehuda Lindell
Bar-llan University

“;\’A Secure Computation and Efficiency
3 Bar-llan University, Israel 2015



Proof Systems

* Completeness: can convince of a true
statement

* Soundness: cannot convince for a false
statement

e Classic proofs:
— Written by hand; non-interactive

* Interactive proofs:

— Prover and verifier interact
— Adds a lot of power (NP vs PSPACE)

“;\5 Secure Computation and Efficiency
3 Bar-llan University, Israel 2015



Graph Non-lsomorphism

* P claims that and are not isomorphic

* Verifier step
— Chooses a random bit
— Computes as a random permutation of
— Sends to prover P

* Prover step
— Find (inefficiently) the bit b such that
—Send toV

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s



Graph Non-lsomorphism

 Completeness: easy

e Soundness:

— If the graphs are isomorphic, then a random
permutation of Gy has the same distribution as a
random permutation of G,

— P cannot know which bit V started with, and so is
right with probability at most %

— Repeating n times reduces the cheating
probability to 27"

(‘}gz\\enc{,
o .
: 8
<
2



Zero Knowledge

* Prover P, verifier V, language L, statement x

* P proves that x<L without revealing anything
but that fact
— Completeness: as before

— Soundness: V accepts with negligible probability
when x¢L, for any P*
e Computational soundness: when P* is polynomial-time

* Zero-knowledge:

— For every V™ there exists a simulator § such that $(x)
outputs a view indistinguishable from V*’s view in a
real execution with P

(‘}gz\\ence
& ’ \
¥ 4
g
:



ZK Proof of Knowledge

* Prover P, verifier V, relation R

e P proves that it knows a witness w for which
(x, w) eR without revealing anything
— The proof is zero knowledge as before

— There exists an extractor K that obtains w from any
P* where (x, w) € R with the same probability that P~
convinces V

* Equivalently:

— The protocol securely computes the functionality
fa((x,w),x) = (4, R(x,w))

(‘}gz\\enc{,
S \
Y 4
<
H



Zero Knowledge

 An amazing concept; everything can be
proven in zero knowledge

* Central to fundamental feasibility results of
cryptography (e.g., GMW)
 But, can it be efficient?

— It seems that zero-knowledge protocols for

“interesting languages” are complicated and
expensive

(‘}gz\\enc{,
S \
Y 4
<
H



Sigma Protocols

* A way to obtain efficient zero knowledge
— Many general tools

— Many interesting languages can be proven with a
sigma protocol

(‘}gz\\enc{,
o .
: 8
<
2



An Example — Schnorr DLOG

* Let G be a group of order q, with generator g

Pand V have input h = g%, P hasw
* P proves that to V that it knows w

— P chooses arandom r « Z, and sendsa = g" toV

— Vsends Parandome € {0,1}}
— Psendsz=1r+ewmodqgtoV
— V checks that g = a - h®

Completeness

— Follows since g% = g" "% = g" - (g¥)¢ = a - h®

(‘}gz\\ence
S ’ \
Y 4
s
s



Schnorr’s Protocol

Proof of knowledge

— Assume P can answer two queries e; and e,

— Then, we have g”* = a - h®t and g%2 = a - h*2

— Since are all known from the transcripts, this

for the same first message a

Thus,a = g#1 - h™% = g2 - h™%2 and so
gzl—Zz — hel—ez

Therefore
DLOG,(h) = (z, — z,)(e; — e;)"'mod q

can be computed

Conclusion:

— If P can answer with probability greater than,

.. then it must know the dlog

A

P (h,w)

a=gr

Vv (h)

Z=1T+ew_

gz = ahe¢




Schnorr’s Protocol

 What about zero knowledge? Seems not...

* Honest-verifier zero knowledge

— Choose a random z and e, and compute
q = gz . h—e
— Observe that (a, e, z) chosen this way has the
same distribution as when V chooses e randomly
* In particular, g* = a - h°
* This is not very strong, but we will see that it
yields efficient general ZK

(‘}gz\\enc{,
S \
Y 4
<
H



Definitions

* Sigma protocol template
— Common input: P and V both have x
— Private input: P has w such that (x,w)eR
— Protocol:

* P sends a message a
* V sends a random t-bit string e

* Psendsareplyz
 V accepts based solely on (x,a,e,z)

(‘}gz\\ence
S \
Y 4
<
H



Definitions

* Completeness: as usual
* Special soundness:

— There exists an algorithm A that given any x and
pair of transcripts (a,e,z),(a,e’,z’) with exe’
outputs w s.t. (x,w)eR

e Special honest-verifier ZK

— There exists an M that given x and e outputs
(a,e,z) which is distributed exactly like a real
execution where V sends e

“;\5 Secure Computation and Efficiency
3 Bar-llan University, Israel 2015

13



Sigma Protocol DH Tuple

* Relation R of Diffie-Hellman tuples
— (g,h,u,v) eR iff exists w s.t. u=g%¥ and v =h"
— Useful in many protocols

* Protocol
— P chooses a random r and sends a=g", b=h"
—V sends a random e
— P sends z=r+ew mod q
— V checks that gz=au®, h*=bv®

(‘}gz\\enc{,
S \
Y 4
<
H



Sigma Protocol DH Tuple

* Completeness: as in DLOG

H P ;hr AN/ \'
* Special soundness: Plehuy) “:h -
a=g", b=h"
— Given (a,b,e,z),(a,b,e’,z'), we have .
gZ=au®, g’=au®, hz=bve, h?=bv® and e
so like in DLOG on both g
g’ = au®
* w=(z-2')(e-€’) h* = bye

e Special HVZK
— Given (g,h,u,v) and e, choose
random z and compute
* a=glu®
. *b=hwE
L Vi y



Basic Properties

* Any sigma protocol is an interactive proof
with soundness error 2t

* Properties of sigma protocols are invariant
under parallel composition

* Any sigma protocol is a proof of knowledge
with error 2t

— The difference between the probability that P*
convinces V and the probability that K obtains a
witness is at most 2t

(‘}gz\\enc{,
o .
: 8
<
2



Tools for Sigma Protocols

* Prove compound statements
— AND, OR, subset
— Can be done efficiently (won’t see here)

e ZK from sigma protocols

— Can first make a compound sigma protocol and
then compile it

 ZKPOK from sigma protocols

(‘}gz\\enc{,
o .
: 8
<
2



ZK from Sigma: Preliminaries

e Commitment schemes:

— Binding: after the commitment phase, the
committer cannot change the value

— Hiding: the receiver does not know anything
about the commitment

* Variants
— Perfect and computational binding
— Perfect and computational hiding
— Cannot have both perfect binding and hiding

(‘}gz\\ence
& ’ .
=¥ 2
g
1



Perfectly-Binding Commitments

* The ElIGamal usage in Blum’s coin tossing is a
perfectly-binding commitment

—Com(m) =(h=g",u=g° v=~h®-m)for
m € @

— Perfect binding: the values (h, u, v) fully define m

* There exists a single pair (r,s) sothath = g",u = g°

and m is fully defined by %

— Computational hiding: for every m,m’ € G,
{Com(m)} = {Com(m")}

(‘}gz\\enc{,
S \
Y 4
<
H



ZK from Sigma Protocols

* The basic idea

— Have V first commit to its challenge e using a
perfectly-hiding commitment

* The protocol
— P sends the 15t message a of the commit protocol
— V sends a commitment c=Com _(e;r)
— P sends a message a
— V sends (e,r)
— P checks that c=Com_(e;r) and if yes sends a reply z
— V accepts based on (x,a,e,z)

(‘}gz\\ence
S \
¥ 4
<
3



ZK from Sigma Protocols

e Soundness:

— The perfectly hiding commitment reveals nothing
about e and so soundness is preserved

* Zero knowledge

— In order to simulate:
* Send a’ generated by the simulator, for a random e’
e Receiver V's decommitment to e

* Run the simulator again with e, rewind V and send a
— Repeat until V decommits to e again

* Conclude by sending z
— Analysis...

(‘}gz\\ence
& ’ \
=¥ 2
<
s



Pedersen Commitments

* Highly efficient perfectly-hiding commitments
— Parameters: generator g, order q
— Commit protocol (committo x € Z;):

* Receiver chooses random k < Z, and sends h = g~

* Sender sends ¢ = g" - h*, forarandomr « Z,,

— Perfect hiding:

* Foreveryx,y € Z, there existr, s € Ly such that
r+kx =s+ kymodq

— Computational binding:

e If can find (x, 1), (y,s) such that g" - h* = g% - hY then can
compute k = DLOG4(h) ="75/y—xmod q

(‘}gz\\ence
S ’ \
Y 4
g
s



Efficiency of ZK

* Using Pedersen commitments, this costs only
5 additional group exponentiations

— This is very efficient

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s



ZKPOK from Sigma Protocols

* |s the previous protocol a proof of
knowledge?
— It seems not to be

— The extractor for the Sigma protocol needs to
obtain two transcripts with the same a and
different e

— The prover may choose its first message a
differently for every commitment string, so if the
extractor changes e, the prover changes a

(‘}gz\\enc{,
o .
: 8
<
2



ZKPOK from Sigma Protocols

* Solution: use a trapdoor (equivocal)
commitment scheme

— Given a trapdoor, it is possible to open the
commitment to any value

* Pedersen has this property, and the previous
protocol can be modified only slightly to get a
proof of knowledge

ccccccccccc



ZK and Sigma Protocols

* We typically want zero knowledge, so why
bother with sigma protocols?
— We have many useful general transformations

* E.g., parallel composition, compound statements

* The ZK and ZKPOK transformations can be applied on
top of the above, so obtain transformed ZK

— It is much harder to prove ZK than Sigma
* ZK —distributions and simulation
e Sigma: only HVZK and special oundness

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s



Using Sigma Protocols and ZK

* Prove that the El Gamal encryption (u,v)
under public-key (g,h) is to the value m

— By encryption definition u=g", v=h"m
— ThUsS (g,h,u,v/m) is a DH tuple

— So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is
a DH tuple

* Database of EIGamal(K.),E,.(T:)

— Can release T, without revealing
anything about T; for j # I

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s



Non-Interactive ZK (ROM)

* The Fiat-Shamir paradigm
— To prove a statement x
— Generate a, compute e=H(a,x), compute z
— Send (a,e,z)
* Properties:
— Soundness: follows from random oracle property
— Zero knowledge: same

— Can achieve simulation-soundness (non
malleability) by including unique sid in H

(‘}gz\\enc{,
S ’ \
Y 4
s
s



Summary

* Efficient zero knowledge is very important in
secure computation protocols

— Using sigma protocols, we can get very efficient ZK

e Sigma protocols are very useful:
— Efficient ZK
— Efficient ZKPOK
— Efficient NIZK in the random oracle model
— Many other applications as well...

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s



