Pseudorandom Functions & Permutations

Iftach Haitner, Tel Aviv University

Bar Ilan Winter School

January 27, 2014

Today's Plan

- One-way functions and hardcore predicates
- Pseudorandom generators
- Pseudorandom functions and permutations
- Symmetric encryption and MACs.

Reminder: Repeated Sampling From Pseudorandom Distributions

Claim 1

Let $G: \{0,1\}^n \mapsto \{0,1\}^{m(n)}$ be a pseudorandom generator and let $t \in \text{poly}$, then $G^t: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\})^{t(n)}$, defined by

$$G^{t}(x_{1},...,x_{t(n)}) = G(x_{1}),...,G(x_{t(n)})$$

is a pseudorandom generator.

Reminder: Repeated Sampling From Pseudorandom Distributions

Claim 1

Let $G: \{0,1\}^n \mapsto \{0,1\}^{m(n)}$ be a pseudorandom generator and let $t \in \text{poly}$, then $G^t: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\})^{t(n)}$, defined by

$$G^{t}(x_{1},...,x_{t(n)}) = G(x_{1}),...,G(x_{t(n)})$$

is a pseudorandom generator.

Proof: ? via hybrid

Part I

Pseudorandom Functions

• We've seen a small set of objects: $\{G(x)\}_{x\in\{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x\in\{0,1\}^{2n}}$.

- We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

- We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

But

- We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

Solution

Definition 2 (random functions)

Definition 2 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n,k}$ be the family of all functions from $\{0,1\}^n$ to $\{0,1\}^k$. Let $\Pi_n = \Pi_{n,n}$.

• $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness

Definition 2 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot

Definition 2 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$?

Definition 2 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$?

Definition 2 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$? $2^n \cdot n$ bits

Definition 2 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$? $2^n \cdot n$ bits
- The truth table of $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a uniform string of length $2^n \cdot n$

• $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ (we simply write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$)

- $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ (we simply write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$)
- We identify functions with their description

- $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ (we simply write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$)
- We identify functions with their description

- $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ (we simply write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$)
- We identify functions with their description

Definition 3 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if:

- $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ (we simply write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$)
- We identify functions with their description

Definition 3 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if: **Samplable.** \exists PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 7 / 24

- $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ (we simply write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$)
- We identify functions with their description

Definition 3 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if:

Samplable. \exists PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. \exists poly-time algorithm that given $x \in \{0,1\}^{m(n)}$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

Definition 4 (pseudorandom functions (PRFs))

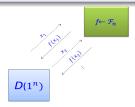
An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

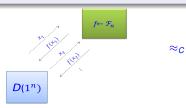
$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = neg(n),$$



Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = neg(n),$$



Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = neg(n),$$

for any oracle-aided PPT D.

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = neg(n),$$

for any oracle-aided PPT D.

Why "oracle-aided"?

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n) = \ell(n) = n$

Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \text{neg}(n),$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n) = \ell(n) = n$
- Main application: design a scheme assuming that you have random functions, and the realize them using PRFs.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014

Section 3

Pseudorandom Functions from One-Way Functions

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 5

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$

Claim 5

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof:

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 5

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{\mathbb{R}}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{\mathbb{R}}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 5

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{R}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{R}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

Naturally extends to input of length O(log n):-)

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 5

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{R}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{R}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

- Naturally extends to input of length $O(\log n)$:-)
- Miserably fails for longer length (which is the only interesting case) :-(

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 5

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{R}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{R}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

- Naturally extends to input of length $O(\log n)$:-)
- Miserably fails for longer length (which is the only interesting case) :-(
- Problem, we are constructing the whole truth table, even to compute a single output

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 10 / 24

Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

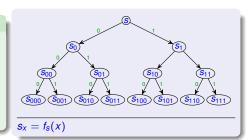
Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

•
$$G_0(s) = G(s)_{1,...,n}$$

•
$$G_1(s) = G(s)_{n+1,...,2n}$$

For
$$x \in \{0,1\}^k$$
 let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

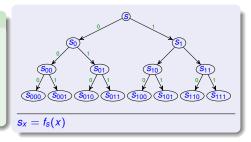


Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.



11/24

• Example:
$$f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$$

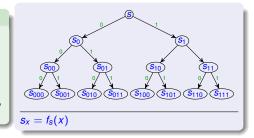
Iftach Haitner (TAU) PRFs & PRPs January 27, 2014

Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.



11/24

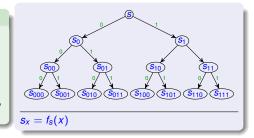
- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- G is poly-time $\implies \mathcal{F} := \{ \mathcal{F}_n = \{ f_s \colon s \in \{0,1\}^n \} \}$ is efficient

Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.



11/24

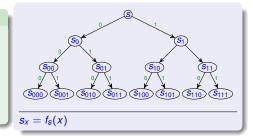
- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- G is poly-time $\implies \mathcal{F} := \{ \mathcal{F}_n = \{ f_s \colon s \in \{0,1\}^n \} \}$ is efficient

Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.



• Example:
$$f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$$

• G is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s \colon s \in \{0,1\}^n\}\}$ is efficient

Theorem 7 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then \mathcal{F} is a PRF.

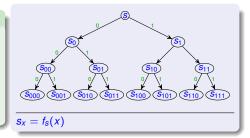
Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 11 / 24

Construction 6 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.



- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- G is poly-time $\implies \mathcal{F} := \{ \mathcal{F}_n = \{ f_s \colon s \in \{0,1\}^n \} \}$ is efficient

Theorem 7 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then \mathcal{F} is a PRF.

Corollary 8

OWFs imply PRFs.

Assume \exists PPT D, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Assume \exists PPT D, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$.

Assume \exists PPT D, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[D'((U_{2n})^t)=1]-\Pr[D'(G(U_n))^t)=1\right|>\frac{1}{np(n)},$$

where $(U_{2n})^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t)}$ and $G(U_n)^t = G(U_n^{(1)}), \dots, G(U_n^{(t)})$.

12 / 24

Assume \exists PPT D, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

12 / 24

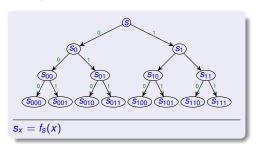
for any $n \in \mathcal{I}$.

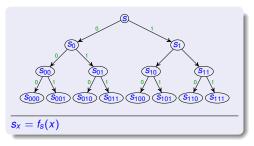
Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[D'((U_{2n})^t)=1]-\Pr[D'(G(U_n))^t)=1\right|>\frac{1}{np(n)},$$

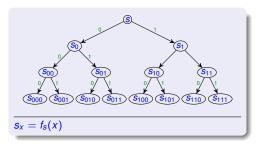
where $(U_{2n})^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t)}$ and $G(U_n)^t = G(U_n^{(1)}), \dots, G(U_n^{(t)})$.

Hence, D' violates the security of G

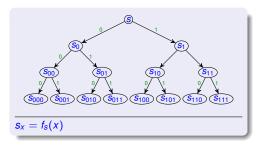




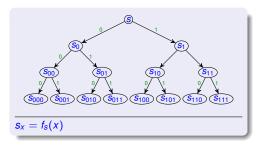
• Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.



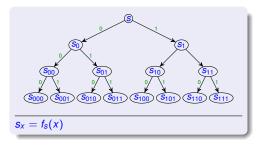
- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.



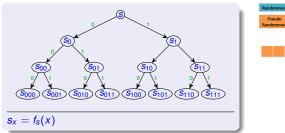
- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$?

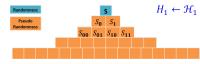


- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$?

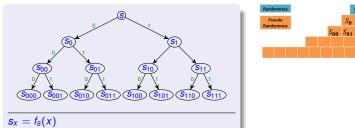


- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n .





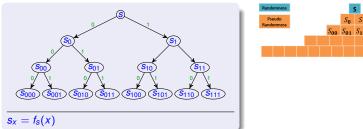
- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n .



 S_{00} S_{01} S_{10} S_{11}

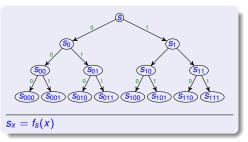
 $H_1 \leftarrow \mathcal{H}_1$

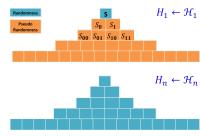
- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ?



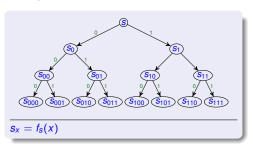
 $H_1 \leftarrow \mathcal{H}_1$ S_{00} S_{01} S_{10} S_{11}

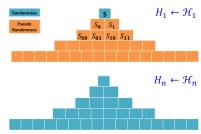
- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .



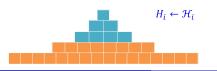


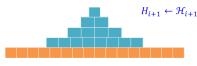
- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .

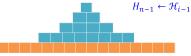




- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .
- For some $i \in \{1, \dots, i-1\}$, algorithm D distinguishes \mathcal{H}_i from \mathcal{H}_{i+1} by $\frac{1}{np(n)}$







- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G

- **≈**
- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G,

- *
 - D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
 - We would like to use D for breaking the security of G, but R and P seem too long :-(

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via *t* samples) between
 - R a uniform string of length 2ⁿ · n, and
 P a string generated by 2ⁿ⁻¹ independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(

 \approx

Solution: focus on the part (i.e., cells) that D sees

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ightharpoonup P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the *q_i*'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - \triangleright R a uniform string of length $2^n \cdot n$, and
 - ightharpoonup P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i 'th cell.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - R a uniform string of length $2^n \cdot n$, and
 - \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q'th cell.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

D distinguishes (via t samples) between

- ightharpoonup R a uniform string of length $2^n \cdot n$, and
- \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i 'th cell.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

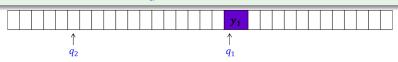


- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ightharpoonup P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.



We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

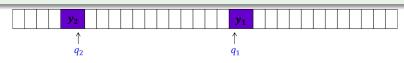
D distinguishes (via t samples) between

- ightharpoonup R a uniform string of length $2^n \cdot n$, and
- \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i 'th cell.



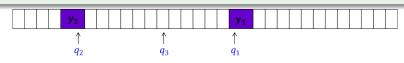
We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ightharpoonup P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i 'th cell.



Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- - D distinguishes (via *t* samples) between

 ► R a uniform string of length 2ⁿ · n, and
 - \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i 'th cell.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

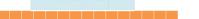
- D distinguishes (via *t* samples) between
 - R a uniform string of length 2ⁿ · n, and
 P a string generated by 2ⁿ⁻¹ independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)



- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i 'th cell.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - \triangleright R a uniform string of length $2^n \cdot n$, and
 - \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

• $D'(U_{2n})^t$ / $D'(G(U_n))^t$) emulates D with access to R/P

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (can we?)

- D distinguishes (via t samples) between
 - \triangleright R a uniform string of length $2^n \cdot n$, and
 - \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the *q*_i'th cell.

- $D'(U_{2n})^t)/D'(G(U_n))^t)$ emulates D with access to R/P
- \bullet Hence, $\left|\Pr[\mathsf{D}'((U_{2n})^t)=1]-\Pr[\mathsf{D}'(G(U_n))^t)=1\right|>\frac{1}{np(n)}$

Part II

Pseudorandom Permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\widetilde{\Pi}_n}(1^n) = 1] \right| = \mathsf{neg}(n),$$
 (2)

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

for any oracle-aided PPT D

• Eq 2 holds for any PRF (taking the role of \mathcal{F})

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

- Eq 2 holds for any PRF (taking the role of F)
- Hence, PRPs are indistinguishable from PRFs...

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

16/24

- Eq 2 holds for any PRF (taking the role of F)
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

16/24

- Eq 2 holds for any PRF (taking the role of F)
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
 - (partial) Perfect "security"

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
 - (partial) Perfect "security"
 - Inversion

Section 4

PRP from PRF

How does one turn a function into a permutation?

How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$LR_f(\ell, r) = (r, f(r) \oplus \ell).$$

How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

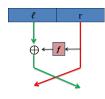
$$\mathsf{LR}_{\mathit{f}}(\ell, r) = (r, \mathit{f}(r) \oplus \ell).$$

How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$



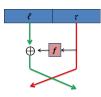
• LR_f is a permutation: LR_f⁻¹(z, w) = (f(z) \oplus w, z)

How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$



- LR_f is a permutation: LR_f⁻¹ $(z, w) = (f(z) \oplus w, z)$
- LR_f is efficiently computable and invertible given oracle access to f

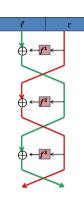
How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$LR_f(\ell, r) = (r, f(r) \oplus \ell).$$

- LR_f is a permutation: LR_f⁻¹ $(z, w) = (f(z) \oplus w, z)$
- LR_f is efficiently computable and invertible given oracle access to f



18 / 24

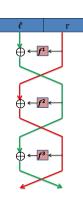
How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$

- LR_f is a permutation: LR_f⁻¹ $(z, w) = (f(z) \oplus w, z)$
- LR_f is efficiently computable and invertible given oracle access to f
 - For $i \in \mathbb{N}$ and f^1, \dots, f^i , define $\mathsf{LR}_{f^1, \dots, f^i} \colon \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ by

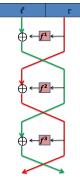


How does one turn a function into a permutation?

Definition 11 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$



18 / 24

- LR_f is efficiently computable and invertible given oracle access to f
- For $i \in \mathbb{N}$ and f^1, \dots, f^i , define $\mathsf{LR}_{f^1, \dots, f^i} \colon \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ by $\mathsf{LR}_{f^1, \dots, f^i}(\ell, r) = (r^{i-1}, f^i(r^{i-1}) \oplus \ell^{i-1})$, for $(\ell^{i-1}, r^{i-1}) = \mathsf{LR}_{f^1, \dots, f^{i-1}}(\ell, r)$. (letting LR_{γ} be the identity function)

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Recall LR_f(ℓ , r) = (r, f(r) $\oplus \ell$).

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\ldots,f^i} \colon f^1,\ldots,f^i \in \mathcal{F}_n\}\}$,

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

• $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^i_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- LR²_F?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- LR²_F?

Recall LR_f(
$$\ell$$
, r) = (r , f (r) $\oplus \ell$).

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- LR³_F?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- LR³_F?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 12

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_T pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n, f^1(0^n) \oplus 1^n) = (f^1(0^n) \oplus 1^n, \cdot)$
- \bullet LR $_{\tau}^{3}$?

Theorem 13 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR_{\mathcal{F}}^3$ is a PRP

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 12

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- $LR_{\mathcal{F}}^3$?

Theorem 13 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR^3_{\mathcal{F}}$ is a PRP

• $LR^4(\mathcal{F})$ is pseudorandom even if inversion queries are allowed

Proving Luby-Rackoff

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

How would you prove that?

It suffices to prove that $LR_{\Pi_0}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$?

It suffices to prove that $LR_{\Pi_0}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$?

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 14

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in O(q^2/2^n).$$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 14

For any q-query D,

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

 We assume for simplicity that D is deterministic, non-repeating and non-adaptive.

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 14

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_0, x_1, \ldots, x_q be D's queries.

It suffices to prove that $LR_{\Pi_a}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 14

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_0, x_1, \ldots, x_q be D's queries.
- We show $(f(x_0), \dots, f(x_q))_{\substack{f \in \mathbb{R}^3(\Pi_n) \\ \text{distance})}}$ is $O(q^2/2^n)$ close (i.e., in statistical distance) to $(f(x_0), \dots, f(x_q))_{\substack{f \in \Pi \\ \text{in}}}$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (why?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 14

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_0, x_1, \dots, x_q be D's queries.
- We show $(f(x_0), \dots, f(x_q))_{\substack{f \in LR^3(\Pi_n) \\ \text{distance})}}$ is $O(q^2/2^n)$ close (i.e., in statistical distance) to $(f(x_0), \dots, f(x_q))_{\substack{f \in \Pi \\ \text{in}}}$
- To do that, we show both distributions are $O(q^2/2^n)$ close to $Distinct := ((z_1, \dots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0, 1\}^{2n})^q \mid \forall i \neq j : (z_i)_0 \neq (z_j)_0).$

Definition 15

The statistical distance between distributions P and Q, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)|$$

Definition 15

The statistical distance between distributions P and Q, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)|$$

Fact 16

 $SD(P,Q) = \max_{A} \{ Pr_{u \stackrel{R}{\leftarrow} P}[A(u) = 1] - Pr_{u \stackrel{R}{\leftarrow} Q}[A(u) = 1] \}$, where max is over all possible algorithms.

Definition 15

The statistical distance between distributions P and Q, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)|$$

Fact 16

 $SD(P,Q) = \max_{A} \{ Pr_{u \stackrel{R}{\leftarrow} P}[A(u) = 1] - Pr_{u \stackrel{R}{\leftarrow} Q}[A(u) = 1] \}$, where max is over all possible algorithms.

Namely, statistical distance is the analogue of computational distance, when we remove the efficiency restriction from the distinguisher.

Definition 15

The statistical distance between distributions P and Q, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)|$$

Fact 16

 $SD(P,Q) = \max_{A} \{ Pr_{u \stackrel{R}{\leftarrow} P}[A(u) = 1] - Pr_{u \stackrel{R}{\leftarrow} Q}[A(u) = 1] \}$, where max is over all possible algorithms.

Namely, statistical distance is the analogue of computational distance, when we remove the efficiency restriction from the distinguisher.

In case $SD(P, Q) \le \varepsilon$, we say that P and Q are ε close.

Definition 15

The statistical distance between distributions P and Q, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)|$$

Fact 16

 $SD(P,Q) = \max_{A} \{ Pr_{u \stackrel{R}{\leftarrow} P}[A(u) = 1] - Pr_{u \stackrel{R}{\leftarrow} Q}[A(u) = 1] \}$, where max is over all possible algorithms.

Namely, statistical distance is the analogue of computational distance, when we remove the efficiency restriction from the distinguisher.

In case $SD(P, Q) \le \varepsilon$, we say that P and Q are ε close.

Fact 17

Assume $SD(P|\neg E, Q) \le \delta_1$ and $Pr_P[E] \le \delta_2$, then $SD(P, Q) \le \delta_1 + \delta_2$

21 / 24

 $(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\widetilde{\Pi}}$ is close to Distinct

22 / 24

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{R}{\stackrel{\sim}{\Pi}}}$$
 is close to Distinct

$$\text{Recall } \textit{Distinct} := \Big((z_1, \dots z_q) \overset{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0 \Big).$$

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{R}{\stackrel{\sim}{\Pi}}}$$
 is close to Distinct

$$\text{Recall } \textit{Distinct} := \Big((z_1, \dots z_q) \overset{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0 \Big).$$

For
$$f \in \widetilde{\Pi}$$
, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{R}{\stackrel{\sim}{\Pi}}}$$
 is close to Distinct

Recall Distinct :=
$$(z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0$$
.

For
$$f \in \widetilde{\Pi}$$
, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

Claim 18

$$\Pr_{\substack{f \in \widetilde{\Pi} \\ t \leftarrow \widetilde{\Pi}}} [Bad(f)] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\widetilde{\Pi}}$$
 is close to Distinct

Recall Distinct :=
$$((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

Claim 18

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} \left[Bad(f) \right] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

22 / 24

$$(f(x_0),\ldots,f(x_q))_{f_{\underline{R}}\widetilde{\Pi}}$$
 is close to Distinct

Recall Distinct :=
$$((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

Claim 18

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} [Bad(f)] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

Claim 19

$$((f(x_0), \dots, f(x_q)); f \stackrel{\mathsf{R}}{\leftarrow} \widetilde{\Pi} \mid \neg \operatorname{\mathsf{Bad}}(f)) \equiv \operatorname{\textit{Distinct}}$$

 $(f(x_0),\ldots,f(x_q))_{f_{\widetilde{R}\widetilde{\Omega}}}$ is close to Distinct

Recall Distinct := $((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

Claim 18

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} [Bad(f)] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

Claim 19

$$((f(x_0), \dots, f(x_q)); f \stackrel{\mathsf{R}}{\leftarrow} \widetilde{\Pi} \mid \neg \operatorname{\mathsf{Bad}}(f)) \equiv \operatorname{\textit{Distinct}}$$

Proof: ?

 $(f(x_0),\ldots,f(x_q))_{f_{\widetilde{R}\widetilde{\Omega}}}$ is close to Distinct

Recall Distinct :=
$$((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

Claim 18

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} [Bad(f)] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

Claim 19

$$\left((f(x_0),\ldots,f(x_q));f\stackrel{\mathsf{R}}{\leftarrow}\widetilde{\Pi}\mid\neg\operatorname{\mathsf{Bad}}(f)\right)\equiv \mathit{Distinct}$$

Proof: ?

By Fact 17, $(f(x_0), \dots, f(x_q))_{f: \stackrel{n}{\leftarrow} \widetilde{\Pi}}$ is $\frac{q^2}{2^n}$ close to *Distinct*

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

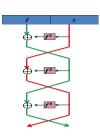
$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = t^j (r_b^{j-1}) \oplus \ell_b^{j-1}$.



Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

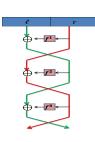
The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ſ	ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
I	ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ſ	ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ſ	ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Claim 20

$$\Pr_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$



Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

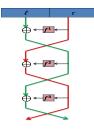
The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Claim 20

$$\Pr_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$



Proof:

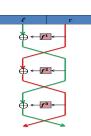
Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	r ⁰	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$



Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$

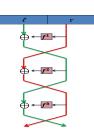
Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{\substack{t^1 \in \Pi_n \\ t = 1}} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$



Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \Pr_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \square$

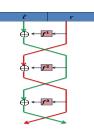
Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \leq \frac{\binom{q}{2}}{2^n}$$



Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box$

Claim 21

$$\mathsf{Pr}_{(f^1,f^2) \overset{\mathsf{R}}{\leftarrow} \Pi_n^2} \Big[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \Big] \leq 2 \cdot \tfrac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

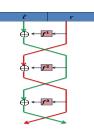
Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	ر م	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = t^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{t^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$



Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box$

Claim 21

$$\mathsf{Pr}_{(f^1,f^2)\overset{\mathsf{R}}{\leftarrow} \mathsf{\Pi}^2_n} \Big[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \Big] \leq 2 \cdot \frac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

Proof:

 $(f(x_0), \dots, f(x_q))_{f \leftarrow LR^3(\Pi_q)}$ is close to Distinct

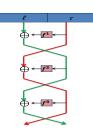
Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ı	ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_a^0
	ℓ .	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
	ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
	ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^{1} \overset{\mathsf{R}}{\leftarrow} \Pi_{0}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$$



Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box$

Claim 21

$$\mathsf{Pr}_{(f^1,f^2)\overset{\mathsf{R}}{\leftarrow}\Pi^2_n}\Big[\mathsf{Bad}^2:=\exists i\neq j\colon r_i^2=r_j^2\Big]\leq 2\cdot\frac{\binom{q}{2}}{2^n}\in O(\tfrac{q^2}{2^n})$$

Proof: similar to the above

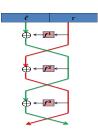
Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{H}{\leftarrow} \Pi_n^3$.

١	ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
-	ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
	ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
	ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$



Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \Pr_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \square$

Claim 21

$$\mathsf{Pr}_{(f^1,f^2) \overset{\mathsf{R}}{\leftarrow} \Pi_n^2} \left[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \right] \leq 2 \cdot \frac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

Proof: similar to the above

Claim 22

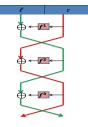
$$\left(\ell_1^3, r_1^3\right), \ldots, \left(\ell_q^3, r_q^3\right) \mid \neg \operatorname{\mathsf{Bad}}^2\right) \equiv \operatorname{\textit{Distinct}}$$

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ℓ_1^0	<i>r</i> ₁ ⁰	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_{2}^{1}	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	ر م	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = t^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.



Claim 20

$$\Pr_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \Pr_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \square$

Claim 21

$$\mathsf{Pr}_{(r^1,f^2)\overset{\mathsf{R}}{\leftarrow} \mathsf{\Pi}^2_n} \left[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \right] \leq 2 \cdot \frac{\binom{q}{2}}{2^n} \in O(\frac{q^2}{2^n})$$

Proof: similar to the above

Claim 22

$$\left(\ell_1^3, r_1^3\right), \dots, \left(\ell_q^3, r_q^3\right) \mid \neg \operatorname{\mathsf{Bad}}^2\right) \equiv \operatorname{\textit{Distinct}}$$

Proof: ?

Conclusion

 We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction or at least, a less adaptive one