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Today’s Plan

1 One-way functions and hardcore predicates

2 Pseudorandom generators

3 Pseudorandom functions and permutations

4 Symmetric encryption and MACs.
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Reminder: Repeated Sampling From Pseudorandom Distributions

Claim 1

Let G : {0,1}n 7→ {0,1}m(n) be a pseudorandom generator and let t ∈ poly,
then Gt : ({0,1}n)t(n) 7→ ({0,1})t(n), defined by

Gt (x1, . . . , xt(n)) = G(x1), . . . ,G(xt(n))

is a pseudorandom generator.

Proof: ? via hybrid
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Part I

Pseudorandom Functions
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Motivation Discussion

1 We’ve seen a small set of objects: {G(x)}x∈{0,1}n , that “looks like" a
larger set of objects: {x}x∈{0,1}2n .

2 We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.
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Random Functions

Definition 2 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

π
R← Πn is a “random access" source of randomness

Parties with access to a common π R← Πn can do a lot

How long does it take to describe π ∈ Πn? 2n · n bits

The truth table of π R← Πn is a uniform string of length 2n · n
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Ensembles of Function Families

F = {Fn}n∈N, where Fn = {f : {0,1}m(n) 7→ {0,1}`(n)}
(we simply write F = {Fn : {0, 1}m(n) 7→ {0, 1}`(n)})

We identify functions with their description

Definition 3 (efficient function family)

An ensemble of function families F = {Fn}n∈N is efficient, if:

Samplable. ∃ PPT that given 1n, outputs (the description of) a uniform
element in Fn.

Efficient. ∃ poly-time algorithm that given x ∈ {0,1}m(n) and (a
description of) f ∈ Fn, outputs f (x).
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Pseudorandom Functions
Definition 4 (pseudorandom functions (PRFs))

An efficient function family ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is
pseudorandom, if∣∣Pr[DFn (1n) = 1]− Pr[DΠm(n),`(n) (1n) = 1

∣∣ = neg(n),

for any oracle-aided PPT D.

≈C

Why “oracle-aided"?

Easy to construct (no assumption!) with logarithmic input length

PRFs of super logarithmic input length, which is the interesting case, imply PRGs

We will mainly focus on the case m(n) = `(n) = n

Main application: design a scheme assuming that you have random functions, and the
realize them using PRFs.
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Section 3

Pseudorandom Functions from One-Way
Functions
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Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

fs(0) = G(s)1,...,n

fs(1) = G(s)n1,...,2n.

Claim 5
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f R←Fn is G(Un), where the truth table of π R← Π1,n is
U2n

Naturally extends to input of length O(log n) :-)

Miserably fails for longer length (which is the only interesting case) :-(

Problem, we are constructing the whole truth table, even to compute a
single output
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The GGM Construction

Construction 6 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

G0(s) = G(s)1,...,n

G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 7 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 8

OWFs imply PRFs.
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Proof Idea

Assume ∃ PPT D, p ∈ poly and infinite set I ⊆ N with∣∣Pr[DFn (1n) = 1]− Pr[DΠn (1n) = 1]
∣∣ ≥ 1

p(n)
, (1)

for any n ∈ I.

Fix n ∈ N and let t = t(n) be a bound on the running time of D(1n). We use D
to construct a PPT D′ such that∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

,

where (U2n)t = U(1)
2n , . . . ,U

(t)
2n and G(Un)t = G(U(1)

n ), . . . ,G(U(t)
n ).

Hence, D′ violates the security of G
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The Hybrid
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1

sx = fs(x)

Let Ti be the set of all possible trees, in which the i + 1, . . . , n levels are obtained by
“applying GGM" to the i ’th level.

Given a tree t , let ht (x) return the x ’th leaf of t .

What family is H1 = {ht}t∈T1 ? Fn. What is Hn? Πn.

For some i ∈ {1, . . . , i − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈
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The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G,

but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1

∣∣ > 1
np(n)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 14 / 24



The Hybrid cont.
We assume wlg. that D distinguishes between Hn−1 and Hn (can we?)

6≈

D distinguishes (via t samples) between
I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

We would like to use D for breaking the security of G, but R and P seem too long :-(

Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t )

Emulate D. On the i ’th query qi made by D:
If the cell queries by qi ’th is empty, fill it with the next y
Answer with the content of the qi ’th cell.

D′(U2n)t ) / D′(G(Un))t ) emulates D with access to R / P

Hence,
∣∣Pr[D′((U2n)t ) = 1]− Pr[D′(G(Un))t ) = 1
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Part II

Pseudorandom Permutations
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Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Hence, PRPs are indistinguishable from PRFs...

If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 16 / 24



Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Hence, PRPs are indistinguishable from PRFs...

If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 16 / 24



Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Hence, PRPs are indistinguishable from PRFs...

If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 16 / 24



Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Hence, PRPs are indistinguishable from PRFs...

If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 16 / 24



Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Hence, PRPs are indistinguishable from PRFs...

If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"

I Inversion

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 16 / 24



Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Hence, PRPs are indistinguishable from PRFs...

If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 16 / 24



Section 4

PRP from PRF
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Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Feistel Permutation

How does one turn a function into a permutation?

Definition 11 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

LRf is efficiently computable and invertible given
oracle access to f

For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting LRγ be the identity function)

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 18 / 24



Luby-Rackoff Thm.
Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 12
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

LRi
F is always a permutation family, and is efficient if F is.

Is LR1
F pseudorandom?

LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)

LR3
F?

Theorem 13 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

LR4(F) is pseudorandom even if inversion queries are allowed
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Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (why ?)

How would you prove that?

Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · n, where that of element in Π̃2n is log(22n!) > log

(
( 22n

e )22n
)
> 22n · n

Claim 14
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

Let x0, x1, . . . , xq be D’s queries.

We show (f (x0), . . . , f (xq))
f R←LR3(Πn)

is O(q2/2n) close (i.e., in statistical

distance) to (f (x0), . . . , f (xq))
f R←Π̃

To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)

R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.
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Reminder: Statistical Distance

Definition 15
The statistical distance between distributions P and Q, is defined by

SD(P,Q) =
1
2
·
∑
u∈U
|P(u)−Q(u)|

Fact 16
SD(P,Q) = maxA{Pr

u R←P
[A(u) = 1]− Pr

u R←Q
[A(u) = 1]}, where max is over

all possible algorithms.

Namely, statistical distance is the analogue of computational distance, when
we remove the efficiency restriction from the distinguisher.

In case SD(P,Q) ≤ ε, we say that P and Q are ε close.

Fact 17

Assume SD(P|¬E ,Q) ≤ δ1 and PrP [E ] ≤ δ2, then SD(P,Q) ≤ δ1 + δ2
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Fact 17

Assume SD(P|¬E ,Q) ≤ δ1 and PrP [E ] ≤ δ2, then SD(P,Q) ≤ δ1 + δ2

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 21 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←Π̃

is close to Distinct

Recall Distinct :=
(

(z1, . . . zq)
R← ({0,1}2n)q | ∀i 6= j : (zi )0 6= (zj )0

)
.

For f ∈ Π̃, let Bad(f ) := ∃i 6= j : f (xi )0 = f (xj )0.

Claim 18

Pr
f R←Π̃

[Bad(f )] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 19(
(f (x0), . . . , f (xq)); f R← Π̃ | ¬Bad(f )

)
≡ Distinct

Proof: ?

By Fact 17, (f (x0), . . . , f (xq))
f R←Π̃

is q2

2n close to Distinct

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014 22 / 24



(f (x0), . . . , f (xq))
f R←LR3(Πn)

is close to Distinct

Let (`0
1, r

0
1 ), . . . , (`0

q , r0
q ) = (x1, . . . , xk ).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)
R← Π3

n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b )⊕ `
j−1
b .

Claim 20

Pr
f 1 R←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 21

Pr
(f 1,f 2)

R←Π2
n

[
Bad2 := ∃i 6= j : r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O( q2

2n )

Proof: similar to the above

Claim 22(
`3

1, r
3
1 ), . . . , (`3

q , r3
q ) | ¬Bad2

)
≡ Distinct

Proof: ?
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Conclusion

We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)

Main question: find a simpler, more efficient construction

or at least, a less adaptive one
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