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Today’s Plan

@ One-way functions and hardcore predicates
© Pseudorandom generators

© Pseudorandom functions and permutations
© Symmetric encryption and MACs.
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Reminder: Repeated Sampling From Pseudorandom Distributions

Claim 1

Let G: {0,1}" — {0,1}™(" be a pseudorandom generator and let t < poly,
then G': ({0, 1)) - ({0,1})1", defined by

Gt(X1 9ooao 7Xt(n)) = G(X1), acag G(Xt(n))

is a pseudorandom generator.

Iftach Haitner (TAU) PRFs & PRPs January 27, 2014

3/24




Reminder: Repeated Sampling From Pseudorandom Distributions

Claim 1

Let G: {0,1}" — {0,1}™(" be a pseudorandom generator and let t < poly,
then G': ({0, 1)) - ({0,1})1", defined by

Gt(X1 9ooao 7Xt(n)) = G(X1), acag G(Xt(n))

is a pseudorandom generator.

Proof: ? via hybrid
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Motivation Discussion

@ We've seen a small set of objects: { G(X)}e (0,1}, that “looks like" a
larger set of objects: {X},c (0,132
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Motivation Discussion

@ We've seen a small set of objects: { G(X)}e (0,1}, that “looks like" a
larger set of objects: {X},c (0,132

© We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.

Solution
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Random Functions

Definition 2 (random functions)

For n, k € N, let M, x be the family of all functions from {0,1}" to {0, 1}.
Let I_In = I_InVn.
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Random Functions

Definition 2 (random functions)

For n, k € N, let M, x be the family of all functions from {0,1}" to {0, 1}.
Let I_In = rln’n.

R . (13 "
@ 1« I, is a “random access" source of randomness
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Random Functions

Definition 2 (random functions)

For n, k € N, let M, x be the family of all functions from {0,1}" to {0, 1}.

Let I_In = rann.

R . (13 "
@ 1« I, is a “random access" source of randomness

@ Parties with access to a common 7 & 1, can do a lot

@ How long does it take to describe 7 € I1,? 2" - n bits

@ The truth table of = & M, is a uniform string of length 2" - n
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Ensembles of Function Families

@ F = {Fn}nen, Where F, = {f: {0,1}7() — {0, 1}4M}
(we simply write F = {Fp: {0,1}7(" s {0,1}(M})

Iftach Haitner (TAU) PRFs & PRPs



Ensembles of Function Families

@ F = {Fn}nen, where F, = {f: {0,1}7(" — {0,114}
(we simply write F = {Fpn: {0,1}™(" — {0,114}

@ We identify functions with their description
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Ensembles of Function Families

@ F = {Fn}nen, where F, = {f: {0,117 — {0,1}4"}
(we simply write F = {Fn: {0,1}7() s {0,1}4(M})

@ We identify functions with their description

Definition 3 (efficient function family)

An ensemble of function families 7 = {F,}nen is efficient, if:
Samplable. 3 PPT that given 17, outputs (the description of) a uniform
element in 7.
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Ensembles of Function Families

@ F = {Fn}nen, where F, = {f: {0,117 — {0,1}4"}
(we simply write F = {Fn: {0,1}7() s {0,1}4(M})

@ We identify functions with their description

Definition 3 (efficient function family)

An ensemble of function families 7 = {F,}nen is efficient, if:
Samplable. 3 PPT that given 17, outputs (the description of) a uniform
element in 7.

Efficient. 3 poly-time algorithm that given x € {0,1}™" and (a
description of) f € F,, outputs f(x).
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Pseudorandom Functions

Definition 4 (pseudorandom functions (PRFs))
An efficient function family ensemble F = {F,: {0,1}7( — {0,1}*(M} is
pseudorandom, if

|Pr[D7(17) = 1] — Pr[D"".4n (17) = 1| = neg(n),
for any oracle-aided PPT D.
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Pseudorandom Functions

Definition 4 (pseudorandom functions (PRFs))
An efficient function family ensemble F = {F,: {0,1}7( — {0,1}*(M} is
pseudorandom, if

|Pr[D7(17) = 1] — Pr[D"".4n (17) = 1| = neg(n),
for any oracle-aided PPT D.
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Pseudorandom Functions

Definition 4 (pseudorandom functions (PRFs))
An efficient function family ensemble F = {F,: {0,1}7( — {0,1}*(M} is
pseudorandom, if
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for any oracle-aided PPT D.
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@ Why “oracle-aided"?

@ Easy to construct (no assumption!) with logarithmic input length
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Pseudorandom Functions
Definition 4 (pseudorandom functions (PRFs))
An efficient function family ensemble F = {F,: {0,1}™(" — {0,1}("} is
pseudorandom, if
|Pr[D7(17) = 1] — Pr[D"".4n (17) = 1| = neg(n),
for any oracle-aided PPT D.

D(1™) D™

Why “oracle-aided"?

Easy to construct (no assumption!) with logarithmic input length

PRFs of super logarithmic input length, which is the interesting case, imply PRGs
We will mainly focus on the case m(n) = ¢(n) = n

Main application: design a scheme assuming that you have random functions, and the
realize them using PRFs.
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Section 3

Pseudorandom Functions from One-Way
Functions
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Naive Construction

Let G: {0,1}" + {0,1}?", and for s € {0,1}" define fs: {0,1} — {0,1}" by
o fs(o) = G(3)1 ..... n
@ f;(1) = G(s)n,

..... 2n-
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Naive Construction

Let G: {0,1}" + {0,1}?", and for s € {0,1}" define fs: {0,1} — {0,1}" by
o fs(o) = G(S)1 ,,,,, n

@ (1) = G(8)n,,... 2n-
Claim 5
Assume G is a PRG, then {F, = {fs}sc{o0,1}7}nen is @ PRF. J
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Naive Construction

Let G: {0,1}" + {0,1}?", and for s € {0,1}" define fs: {0,1} — {0,1}" by
o fs(o) = G(S)1 ,,,,, n

@ (1) = G(8)n,,... 2n-
Claim 5
Assume G is a PRG, then {F, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof:
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Naive Construction

Let G: {0,1}" — {0,1}2", and for s € {0, 1}" define f;: {0,1} — {0,1}" by
@ £5(0) = G(S)1...n
o fs(1) = G(S)m ,,,,, 2n-

Claim 5
Assume G is a PRG, then {F, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f & Fnis G(Up), where the truth table of = & My,nis
UZnD
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Naive Construction

Let G: {0,1}" — {0,1}2", and for s € {0, 1}" define f;: {0,1} — {0,1}" by
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o fs(1) = G(S)m ..... 2n-

Claim 5
Assume G is a PRG, then {F, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f & Fnis G(Up), where the truth table of = & My,nis
UZnD

@ Naturally extends to input of length O(log n) :-)
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Naive Construction

Let G: {0,1}" — {0,1}2", and for s € {0, 1}" define f;: {0,1} — {0,1}" by
@ £5(0) = G(S)1...n
o f5(1) = G(S)m ..... 2n-

Claim 5
Assume G is a PRG, then {F, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f & Fnis G(Up), where the truth table of = & My pis
UZnD

@ Naturally extends to input of length O(log n) :-)

@ Miserably fails for longer length (which is the only interesting case) :-(
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Naive Construction

Let G: {0,1}" — {0,1}2", and for s € {0, 1}" define f;: {0,1} — {0,1}" by
@ £5(0) = G(S)1...n
o f5(1) = G(S)m ..... 2n-

Claim 5
Assume G is a PRG, then {F, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f & Fnis G(Up), where the truth table of = & My pis
Us, 00

@ Naturally extends to input of length O(log n) :-)
@ Miserably fails for longer length (which is the only interesting case) :-(

@ Problem, we are constructing the whole truth table, even to compute a
single output
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The GGM Construction

Construction 6 (GGM)

For G: {0,1}" ~ {0,1}?" and s € {0,1}",
@ Go(s) = G()1,....n
@ Gi(s) = G(S)n+1,...2n

For x € {0, 1}¥ let fs(x) = G (fs(X1,... k=1))
letting fs() = s.




The GGM Construction

Construction 6 (GGM)

For G: {0,1}" ~ {0,1}?" and s € {0,1}",
@ Go(s) = G()1,....n
@ Gi(s) = G(S)n41,...2n

For x € {0, 1} let fs(x) = Gx, (fs(x1... k1)),
letting fs() = s.
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The GGM Construction

Construction 6 (GGM)

For G: {0,1}" ~ {0,1}?" and s € {0,1}",
@ Go(s) = G()1,....n
@ Gi(s) = G(S)n+1,...2n

For x € {0, 1}¥ let fs(x) = G (fs(X1,... k=1))
letting fs() = s.

v

o Example: f5(001) = Spo1 = G1(S()0) = G1(Go(So)) = G1(Go(Go(S)))
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The GGM Construction

Construction 6 (GGM)

For G: {0,1}" ~ {0,1}?" and s € {0,1}",
@ Go(s) = G()1,....n
@ Gi(s) = G(S)nt1,...2n

For x € {0, 1} let fs(x) = Gx, (fs(x1... k1)),
letting fs() = s.

v

o Example: f5(001) = Spo1 = G1(S()0) = G1(Go(So)) = G1(Go(Go(S)))

@ Gispoly-time — F :={F,={fs: s € {0,1}"}} is efficient

Theorem 7 (Goldreich-Goldwasser-Micali (GGM)) J

If G is a PRG then F is a PRF.
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The GGM Construction

Construction 6 (GGM)

For G: {0,1}" ~ {0,1}?" and s € {0,1}",
@ Go(s) = G()1,....n
@ Gi(s) = G(S)nt1,...2n

For x € {0, 1}¥ let fs(x) = Gy, (fs(x1
letting fs() = s.

..... k—1))s

v

(*] Example: f5(001) = Sp01 = G1(S()0) = G1(Go(So)) = G1(Go(Go(S)))
@ Gispoly-time — F :={F,={fs: s € {0,1}"}} is efficient

If G is a PRG then F is a PRF.

OWFs imply PRFs.

Theorem 7 (Goldreich-Goldwasser-Micali (GGM)) J Corollary 8 J
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Proof Idea

Assume 3 PPT D, p € poly and infinite set Z C N with
|Pr[DF"(1") = 1] = Pr[D™(17) = 1]| >

forany ne 7.
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Proof Idea

Assume 3 PPT D, p € poly and infinite set Z C N with
1
PrDf(17) = 1] = PrD™(17) = 1]| > ——,
[PAD(17) = 1] = PrD™(17) = 1]| = -
forany ne 7.

Fix n € Nand let t = t(n) be a bound on the running time of D(17).
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Proof Idea

Assume 3 PPT D, p € poly and infinite set Z C N with
1
PrDf(17) = 1] = PrD™(17) = 1]| > ——, 1
[PrD™(17) = 1] = PrD™(17) = 1] = o (1)

forany ne 7.

Fix n € N and let t = t(n) be a bound on the running time of D(1"). We use D
to construct a PPT D’ such that

/ N / ty 1
|Pr[D'((Uzn)") = 1] = Pr[D'(G(Un))") = 1] > np(n)’
where (Ug,)! = U, U and G(U,)' = G(UY), ..., GLUT).
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Proof Idea

Assume 3 PPT D, p € poly and infinite set Z C N with
1
PrDf(17) = 1] = PrD™(17) = 1]| > ——, 1
[PrD™(17) = 1] = PrD™(17) = 1] = o (1)

forany ne 7.

Fix n € N and let t = t(n) be a bound on the running time of D(1"). We use D
to construct a PPT D’ such that

/ ty / ty 1
|Pr{D’((Uzn)) = 1] = Pr[D'(G(Un))") = 1] > np(n)’
where (Ug,)! = U, U and G(U,)' = G(UY), ..., GLUT).

Hence, D’ violates the security of G
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The Hybrid
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The Hybrid

@ Let 7; be the set of all possible trees, in which the i + 1,. .., n levels are obtained by
“applying GGM" to the /’th level.
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The Hybrid

@ Let 7; be the set of all possible trees, in which the j 4 1,. .., nlevels are obtained by
“applying GGM" to the /’th level.

@ Given atree t, let hy(x) return the x’th leaf of t.

@ What family is Hy = {ht}te7; ? Fn. Whatis Hn? Mp.

@ Forsomeic€ {1,...,i— 1}, algorithm D distinguishes #; from H; 1 by

1
np(n)

[ |
#
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The Hybrid cont.

We assume wilg. that D distinguishes between H,_4 and H, (can we?)
Hn—l < }[i—l
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The Hybrid cont.

We assume wilg. that D distinguishes between H,_4 and H, (can we?)

@ D distinguishes (via t samples) between

» R —auniform string of length 2" - n, and
» P - astring generated by 2"~ independent calls to G

@ We would like to use D for breaking the security of G, but R and ~ seem too long :-(
@ Solution: focus on the part (i.e., cells) that D sees

Algorithm 9 (D’ on y4, ...,y € ({0,1}2M)1)

Emulate D. On the i'th query g; made by D:

@ If the cell queries by g;’th is empty, fill it with the next y
@ Answer with the content of the g;’th cell.

SEEE HNNEEE NEEE [BEENEEEE BB

[ 1 ! )

94 92 a3 0 qs
@ D/(Uy,)! /D’(G Up))") emulates D with access to H/P

@ Hence, |Pr[D’((Uzq)") = 1] — Pr[D’(G(Un))") = 1| > ~
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Part Il

Pseudorandom Permutations
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Formal Definition
Let I, be the set of all permutations over {0, 1}".
Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {F, : {0,1}" — {0,1}"} is a pseudorandom
permutation, if

PrD™"(17) = 1] — PrD™(17) = 1| = neg(n), 2)

for any oracle-aided PPT D
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Formal Definition
Let I, be the set of all permutations over {0, 1}".
Definition 10 (pseudorandom permutations (PRPs))

A permutation ensemble F = {F, : {0,1}" — {0,1}"} is a pseudorandom
permutation, if

PrD™"(17) = 1] — PrD™(17) = 1| = neg(n), 2)

for any oracle-aided PPT D

@ Eq 2 holds for any PRF (taking the role of F)
@ Hence, PRPs are indistinguishable from PRFs...

@ If no one can distinguish between PRFs and PRPs, let's use PRFs

» (partial) Perfect “security"
» Inversion
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Section 4

PRP from PRF
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Feistel Permutation

How does one turn a function into a permutation?
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Definition 11 (LR)
For f: {0,1}" +— {0,1}", let LR;: {0,1}2" > {0,1}2"
be defined by

LR¢(¢,r) = (r,f(r) @ ¢).
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How does one turn a function into a permutation?

Definition 11 (LR)
For f: {0,1}" +— {0,1}", let LR;: {0,1}2" > {0,1}2"
be defined by

LR(¢, r) = (r, f(r) @ 0).

@ LR is a permutation: LR, '(z,w) = (f(z) & w, 2)
@ LRy is efficiently computable and invertible given
oracle access to f
@ ForieNand ', ... f, define LRy _n:{0,1}2" — {0,1}2" by
LRf‘ ..... fi(zv r) = (ri_17fi(ri_1)@£i_1)! for (ei_1ari_1) = LRI“ ..... ff*1(€7 I’)-
(letting LR, be the identity function)

X3 W?l
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Luby-Rackoff Thm.
Recall LR¢(¢,r) = (r,f(r) @ £).
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Luby-Rackoff Thm.
Recall LR¢(¢,r) = (r,f(r) @ £).

Definition 12

Given a function family 7 = {F,: {0,1}" — {0, 1}"}, let
LR(F) = {LR: ={LRn__n: f',... f € Fn}},

-----
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Given a function family 7 = {F,: {0,1}" — {0, 1}"}, let
LR(F) = {LR: ={LRn__n: f',... f € Fn}},

11111

o LR} is always a permutation family, and is efficient if F is.
@ Is LR'- pseudorandom?
@ LR%? LRy 2(0",0") = LR (0, f1(0")) = (f'(0"), ")

and LRy o = LR (0", f1(0") & 1) = (f'(0") & 1", )

@ LR3?

Theorem 13 (Luby-Rackoff)
Assuming that F is a PRF, then LR is a PRP

@ LR*(F) is pseudorandom even if inversion queries are allowed
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Proving Luby-Rackoff
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Proving Luby-Rackoff
It suffices to prove that LR%H is pseudorandom (why ?)
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Proving Luby-Rackoff
It suffices to prove that LR%n is pseudorandom (why ?)

@ How would you prove that?
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Proving Luby-Rackoff
It suffices to prove that LR%H is pseudorandom (why ?)

@ How would you prove that?
@ Maybe LR3(I,,) = M,,? description length of element in LRS( M,) is
2. n, where that of element in M, is log(22"1) > log (( )22n) >22".n
Claim 14
For any g-query D,

| PrDHR(M)(17) = 1] — PrD™(17)| = 1] € O(¢?/2").

@ We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

@ Let xo, Xy, ..., Xq be D’s queries.
@ We show (f(xp), - f(xq))f R RS (m,

) is O(g?/2") close (i.e., in statistical
distance) to (f(xo) (xq))
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Proving Luby-Rackoff
It suffices to prove that LR%H is pseudorandom (why ?)

@ How would you prove that?

@ Maybe LR3(I,,) = M,,? description length of element in LRS( M,) is
2. n, where that of element in M, is log(22"1) > log (( )22”) >22".n

Claim 14
For any g-query D,
| Pr[D-F* M) (17) = 1] — PrD™r(17)| = 1] € O(q?/2").

@ We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

@ Let xo, Xy, ..., Xq be D’s queries.
@ We show (f(xp), - f(xq))f R RS () is O(g?/2") close (i.e., in statistical
distance) to (f(xo) (xq)) Ra

@ To do that, we show both distributions are O(g?/2") close to
Distinct := ((21, . Zg) & ({0, 112M9 | Vi £ 1 (2))0 # (z,-)o)
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Reminder: Statistical Distance
Definition 15

The statistical distance between distributions P and Q, is defined by

SD(P, Q) = Z|P ) —

ueu
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Reminder: Statistical Distance

Definition 15

The statistical distance between distributions P and Q, is defined by

SD(P,@) = 3 - 3 IP(t) — Q(u)|

ueu

Fact 16

SD(P,Q) = maxA{PrmEP [A(u) =1] - Pruﬂo [A(u) = 1]}, where max is over
all possible algorithms.
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Reminder: Statistical Distance

Definition 15
The statistical distance between distributions P and Q, is defined by

SD(P,@) = 3 - 3 IP(t) — Q(u)|

ueu

Fact 16
SD(P, Q) = maxA{Pruﬁp [Au) =1] - Pruﬂo [A(u) = 1]}, where max is over
all possible algorithms.

Namely, statistical distance is the analogue of computational distance, when
we remove the efficiency restriction from the distinguisher.

In case SD(P, Q) < ¢, we say that P and Q are ¢ close.
Fact 17
Assume SD(P|-E, Q) < 6§ and Prp [E] < 02, then SD(P, Q) < §1 + 02 J
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(f(x0),---, f(xq))ﬂEﬁ is close to Distinct
Recall Distinct := ((21, . Zg) & ({0,112M9 | Vi £ 1 (2))0 # (z,)o).

For f € M, let Bad(f) := Ji # j: f(x;)o = f(X)o.
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(f(x0), - - f(xq)) RA is close to Distinct

Recall Distinct := ((21, . Zg) < ({0,112M9 | Vi £ f: ()0 # (zj)O)-

For f € M, let Bad(f) := Ji # j: f(x;)o = f(X)o.
Claim 18
Prp - [Bad(n] < &) < &
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Claim 18

Proof: ?
Claim 19
((f(xo), ) FET - Bad(f)) = Distinct
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(f(x0),---, f(xq))ﬂEﬁ is close to Distinct
Recall Distinct := ((21, . Zg) & ({0,112M9 | Vi £ 1 (2))0 # (z,-)o).

For f € M, let Bad(f) := Ji # j: f(x;)o = f(X)o.
Claim 18

Proof: ?
Claim 19
((f(xo), ) FET - Bad(f)) = Distinct

Proof: ?

By Fact 17, (f(xo), .-, 7(xq)),a - is & close to Distinct
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(f(x0),---, f(Xq))ﬂﬁLRs (M) is close to Distinct

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-
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(f(x0),---, f(Xq))ﬂELR3 (M) is close to Distinct

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

é? r? Zg rg Zg rg
1 1 1 1 1 1
Glnteln fe | 1
G1nteln ‘e | g
£1 Iy 62 5 Eq Iy

i1 P i1 1
where ¢, =] andr) = fi(rl " Y@ ¢, "
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(f(x0),---, f(Xq))ﬂELRs is close to Distinct

(Mn)

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

Z? r1O Zg rg Zg rg
1 1 1 1 1 1
Glnteln fe | 1
G1nteln ‘e | g
£1 Iy €2 s éq Iy

it i i 1
where ¢, =] andr) = fi(rl " Y@ ¢, "

Claim 20
Pr [Bad1 =3i£jrl = r1] <0
n&n, o FhI=h]sw
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(f(x0),---, f(Xq))ﬂELRs (M) is close to Distinct

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

CERIEER R ol
aglrlealn ly | rg
glreleln e
glelaln R
where EL = r£_1 and r{) = f/(r£_1) e 82_1.
Claim 20 Proof:
1 RIS (3)
Prﬂﬁnn [Bad =3i#jr; :rj] < %
.
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Claim 20
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(f(x0),---, f(Xq))ﬂELRs (M) is close to Distinct

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

O R T 0
Zl r11 €12 r21 Z? rq
ane - B
BB R X o
gl 16 n Ly | rg
o 1 J— i1 =1
where ¢, =r,~ andry =fl(r, )DL, .
Claim 20 Proof: rl.O = rj.o — r’.1 £ r].1 and
q 0 0 P 1 1 —2-n[
1.3 -.1_1<(2) n#En = rf‘[ri—rj]—
Prﬂﬁnn [Bad =3JiFEjr _rj] < %
.
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(f(x0),---, f(Xq))ﬂELRs (M) is close to Distinct

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

Z? r1O Zg rg Zg rg
1 1 1 1 1 1
Glnteln fe | 1
G1nteln ‘e | g
£1 Iy €2 s éq Iy

‘ —1 i g1 —1
where ¢, =] andr) = fi(rl " Y@ ¢, "
i 0,0 1
Claim 20 Proof: ) =) = r! #r! and
P #r) = Pra [r,.1 = rﬂ] =2""0

J

1. _gitj.prl—p
Prﬂﬁnn [Bad =3i#jr; _r.] <

Claim 21

Pr [Bad? = 3i #j: 17 = 7] <2.@eo(‘ﬁ)
.2 Bnz o =)= i 2
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(f(x0),-- -, f(Xq))ﬂELRS(nn)

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

Z? r1O Zg rg Zg rg
1 1 1 1 1 1
Glnteln fe | 1
G1nteln ‘e | g
£1 Iy €2 s éq Iy

i1 P i1 1
where ¢, =] andr) = fi(rl " Y@ ¢, "
Claim 20

1 mi gl —
Prﬂﬁnn [Bad =3i#jr; _rj]g

Claim 21

Pr RZ[Badz::ﬂi;éj:rl?:r?]32.@60(%27)

(f,2)8n2 j

is close to Distinct

.0 _ 0 1 1
Proof: r; =r = 75,—], and

0 £ 0 Tl =0
rp#r = Pra [r,._rj]_z o

Proof:
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(f(x0),-- -, f(Xq))ﬂELRS(nn)

Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

Z? r1O Zg rg Zg rg
1 1 1 1 1 1
Glnteln fe | 1
G1nteln ‘e | g
£1 Iy €2 s éq Iy

i1 P i1 1
where ¢, =] andr) = fi(rl " Y@ ¢, "
Claim 20

1. _gitj.prl—p
Prﬂﬁnn [Bad =3JiFEjr _rj]g

Claim 21

Pr RZ[Badz::ﬂi;éj:rl?:r?]32.@60(%27)

(f1,2)&n2 J

is close to Distinct

.0 _ 40 1 1
Proof: r; = =1 ;érj and

0 £ 0 Tl = o—
rp#r = Pra [r,._rj]_z o

Proof: similar to the above
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(f(X0)7 crcy f(Xq))ﬂELRS(I‘In)
Let (€9, r0), ..., (€9, 10) = (X1, ., Xk)-

The following rv’s are defined w.rt. (1, 2, ) & 3.

is close to Distinct

0 0 0 0 0 0

61 r11 Z12 r21 Z? r(17

=RREE A - BN

RREE AN LR

£ Iy oo Ly | rg

o 1 J_ g1 j—1
where ¢, =r,~ andry =fl(r, )DL, .
Claim 20 Proof: rl.O = r].o — r’.1 £ r].1 and
q 0 0 1 1 —n

I PR (2) ’/#G:>Prf1[ri:rj]:2 o

Prﬂﬁnn [Bad =3JiFEjr _rj] < %
.
Claim 21
( ) Proof: similar to the above
2 .S g2 g2 C\2) q°
Pl o ) B [Bad =i A 1 _rj] <2. ¥ c (%)
v
Claim 22
(E?,rf ey (B3,13) | —\Badz) = Distinct
v
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61 r11 Z12 r21 Z? r(17

=RREE A - BN

RREE AN LR

£ Iy oo Ly | rg

o 1 J_ g1 j—1
where ¢, =r,~ andry =fl(r, )DL, .
Claim 20 Proof: rl.O = r].o — r’.1 £ r].1 and
q 0 0 1 1 —n

I PR (2) ’/#G:>Prf1[ri:rj]:2 o

Prﬂﬁnn [Bad =3JiFEjr _rj] < %
.
Claim 21
( ) Proof: similar to the above
2 .S 2 g2 C\2) q°
Pl o ) B [Bac? = 3i #j: i = r?] <2- % € O(%)
v
Claim 22
Proof: ?
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Conclusion

@ We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)
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Conclusion

@ We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)

@ Main question: find a simpler, more efficient construction

or at least, a less adaptive one
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