Session 3: The GMW and BMR Multi-Party Protocols

Benny Pinkas
Bar-Ilan University

Overview

- The GMW (Goldreich-Micali-Wigderson) protocol
 - In this lecture we only cover security against semihonest adversaries
 - # rounds depends on circuit depth
 - O. Goldreich, Foundations of Cryptography, Vol. II, Chapter 7.
- Oblivious Transfer (OT) is extensively used in the GMW protocol
 - OT extension is a method that greatly reduces the overhead of OT

The setting (for GMW protocol)

- Parties $P_1,...,P_n$
- Inputs $X_1,...,X_n$ (bits, but can be easily generalized)
- Outputs $y_1,...,y_n$
- The functionality is described as a Boolean circuit.
 - Wlog, uses only XOR (+) and AND gates
 - These gates correspond to +, * modulo 2.
 - Wires are ordered so that if wire k is a function of wires i and j, then i<k and j<k.

The setting

- The adversary controls a subset of the parties
 - This subset is defined before the protocol begins (is "non-adaptive")
 - We will not cover the adaptive case
- Communication
 - Synchronous
 - Private channels between any pair of parties (can be easily implemented using encryption)

Adversarial models

We will cover the semi-honest case

- If adversaries can be malicious but do not abort
 - GMW: A protocol secure against any number of malicious parties
- If adversaries can be malicious and can also abort
 - GMW: A protocol secure against a minority of malicious parties with abort (will not be discussed here)

Protocol for semi-honest setting

The protocol in a nutshell:

- Each party shares its input bit
- Scan the circuit gate by gate
 - Input values of gate are shared by the parties
 - Run a protocol computing a sharing of the output value of the gate
 - Repeat
- Publish outputs

Protocol for semi-honest setting

The protocol:

- Each party shares its input bit
- The sharing procedure:
 - P_i has input bit x_i
 - It chooses random bits r_{i,i} for all i≠j.
 - Sends bit $r_{i,j}$ to P_i .
 - Sets its own share to be $r_{i,i} = x_i + (\sum_{j \neq i} r_{i,j}) \mod 2$
 - Therefore $\Sigma_{j=1...n} r_{i,j} = x_i \mod 2$.
- Now every P_j has n shares, one for each input x_i of each P_i.

Evaluating the circuit

- Scan circuit by the order of wires
- Wire c is a function of wires a,b
 - ▶ P_i has shares a_i, b_i. Must get share c_i of c.

- Addition (xor) gate:
 - \triangleright P_i computes c_i=a_i+b_i.
- ► Indeed, $c = a+b \pmod{2} = (a_1+...+a_n) + (b_1+...+b_n) = (a_1+b_1)+...+(a_n+b_n) = c_1+...+c_n$

Evaluating multiplication (AND) gates

- $c = a \cdot b = (a_1 + ... + a_n) \cdot (b_1 + ... + b_n) = \sum_{i=1...n} a_i b_i + \sum_{i \neq j} a_i b_j = \sum_{i=1...n} a_i b_i + \sum_{1 \leq i < j \leq n} (a_i b_j + a_j b_i) \mod 2$
- P_i will obtain a share of $a_i b_i + \sum_{i \neq j} (a_i b_j + a_j b_i)$
- Computing a_ib_i by P_i is easy
- What about a_ib_i + a_ib_i?
- P_i and P_j run the following protocol for every (i,j)

Evaluating multiplication gates

- Input: P_i has a_i,b_i, P_j has a_j,b_j.
- P_i outputs a_ib_j+a_jb_i+s_{i,j}. P_j outputs s_{i,j}.
- P_j:
 - Chooses a random s_{i,i}
 - Computes the four possible outcomes of $a_ib_j+a_jb_i+s_{i,j}$, depending on the four options for P_i 's inputs.
 - Sets these values to be its input to a 1-out-of-4 OT
- P_i is the receiver, with input 2a_i+b_i.

Recovering the output bits

The protocol computes shares of the output wires

 Each party sends its share of an output wire to the party P_i that should learn that output

 P_i can then sum the shares, obtain the value and output it

Proof of Security

- Recall definition of security for semi-honest setting:
 - Simulation Given input and output, can generate the adversary's view of a protocol execution.

- Suppose that an adversary controls the set J of all parties but P_i.
- The simulator is given (x_j, y_j) for all $P_j \in J$.

The simulator

- Shares of input wires: ∀j∈J choose
 - a random share $r_{j,i}$ to be sent from P_j to P_i ,
 - and a random share $r_{i,j}$ to be sent from P_i to P_j .
- Shares of multiplication gate wires:
 - − ∀j<i, choose a random bit as the value learned in the 1out-of-4 OT.
 - − \forall j>i, choose a random s_{i,j}, and set the four inputs of the OT accordingly.
- Output wire y_j of $j \in J$: set the message received from P_i as the XOR of y_i and the shares of that wire held by $P_i \in J$.

Security proof

- The output of the simulation is distributed identically to the view in the real protocol
 - Certainly true for the random shares $r_{i,j}$, $r_{j,i}$ sent from and to P_i .
 - OT for j<i: output is random, as in the real protocol.
 - OT for j<i: input to the OT defined as in the real protocol.
 - Output wires: message from P_i distributed as in the real protocol.

QED

Performance

- Must run an OT for every multiplication gate
 - Namely, public key operations per multiplication gate
 - Need a communication round between all parties per every multiplication gate
 - Can process together a set of multiplication gates if all their input wires are already shared
 - Therefore number of rounds is O(d), where d is the depth of the circuit (counting only multiplication gates).

Oblivious Transfer Extension

Oblivious Transfer

- Oblivious Transfer (OT)
 - Sender (P_1) has two inputs x_0, x_1
 - Receiver (P₂) has an input bit s
 - Receiver learns x_s

- Variant: random OT
 - Sender (P_1) has two inputs x_0, x_1
 - For a randomly chosen bit s, receiver learns (x_s,s)

Efficiency of Oblivious Transfer

- OT is very efficient, but still requires exponentiations per transfer
 - When doing thousands (or millions) of OTs, this will become very costly
- Protocols for secure computation typically use
 OTs per gate or per input bit

• Impagliazzo and Rudich 1989: there is no blackbox construction of OT from OWF ⊗

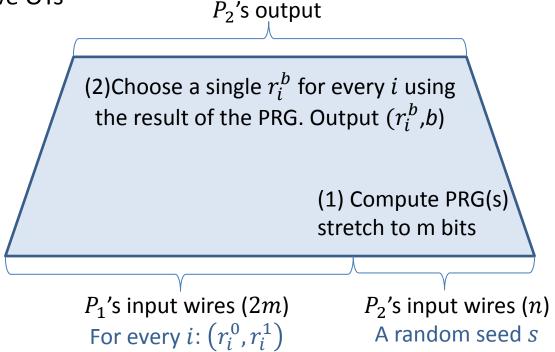
Oblivious Transfer Extensions

- An OT extension is a protocol that:
 - Uses a "small" number of base OTs (e.g., 128)
 - Uses cheap symmetric crypto to achieve many OTs (e.g., millions)
 - This is like hybrid encryption
- Note that it's not clear that this is even possible!

Beaver's OT Extension

A theoretical construction

- The number of OTs in Yao's protocol depends only on evaluator's input
- Computing the circuit requires only n OTs but provides $m \gg n$ effective OTs



Random vs Regular OT

- Beaver's protocol computes a random OT
 - $-P_2$ is the receiver. Its input bit s is randomly chosen.
 - $-P_1$ is the sender. It has a pair of input bits (r_0,r_1) .
 - $-P_2$ learns the bit r_s .

Random vs Regular OT

- We can construct regular OT from random OT (where both parties inputs are random)
 - $-P_1$'s input: (x_0, x_1) P_2 's input: σ
 - Parties run random OT on bits (r_0, r_1) and s
 - P_2 receives s, r_s
 - $-P_2$ sends $t = s \oplus \sigma$ to P_1 (essentially tells P_1 the order in which P_1 should mask its inputs).
 - $-P_1$ sends $y_0 = x_0 \oplus r_t$ and $y_1 = x_1 \oplus r_{1-t}$
 - $-P_2$ outputs $y_{\sigma} \oplus r_{s}$

Random vs Regular OT

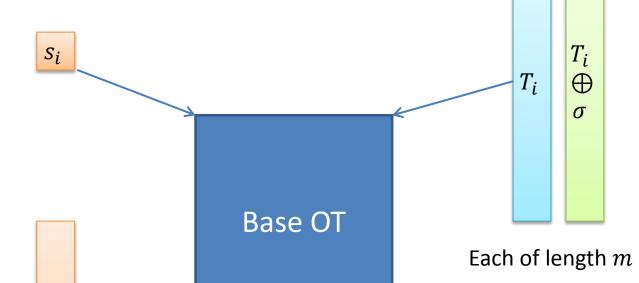
Correctness:

- If $s = \sigma$ then t = 0 and so $y_0 = x_0 \oplus r_0$ and $y_1 = x_1 \oplus r_1$
 - In this case $y_{\sigma} \oplus r_{s} = x_{\sigma}$
- If $s \neq \sigma$ then t=1 and so $y_0=x_0 \oplus r_1$ and $y_1=x_1 \oplus r_0$
 - In this case , too, $y_{\sigma} \oplus r_{s} = x_{\sigma}$

Privacy:

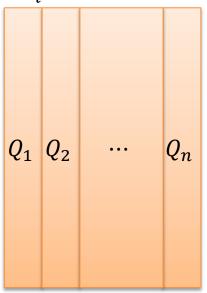
- $-P_1$ sees only a random bit t and so learns nothing about σ
- $-P_2$ can learn one of (r_0, r_1) and so only one of (x_0, x_1)

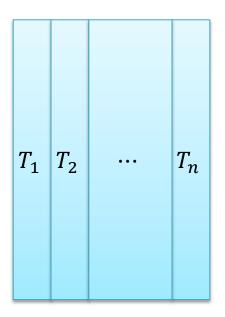
- A protocol for extending n OTs to m OTs
 - By Ishai, Kilian, Nissim and Petrank
- Sender's input: $(x_1^0, x_1^1), ..., (x_m^0, x_m^1)$
- Receiver's input: $\sigma = \sigma_1, ..., \sigma_m$
- First phase:
 - Receiver samples random strings T_1 , ..., T_n each of length m
 - Receiver prepares pairs $(T_i, T_i \oplus \sigma)$ and plays sender in OT
 - Sender chooses random $s = s_1, ..., s_n$
 - Sender plays receiver with input s_i Note: roles in these n OTs are reversed!



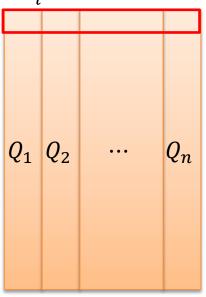
$$Q_i = \begin{cases} T_i & \text{if } s_i = 0 \\ T_i \oplus \sigma & \text{if } s_i = 1 \end{cases}$$

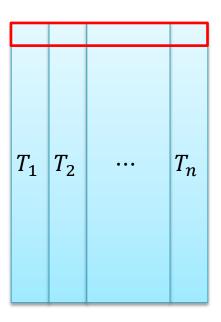
$$Q_i = \begin{cases} T_i & \text{if } s_i = 0 \\ T_i \bigoplus \sigma & \text{if } s_i = 1 \end{cases}$$





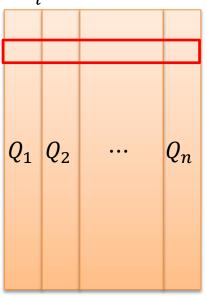
$$Q_i = \begin{cases} T_i & \text{if } s_i = 0 \\ T_i \bigoplus \sigma & \text{if } s_i = 1 \end{cases}$$

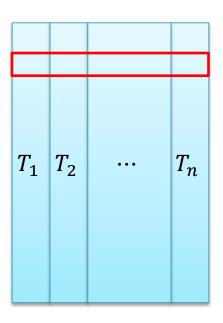




- If $\sigma_1 = 0$ then the first row of Q equals the first row of T (whatever s equals)
- If $\sigma_1 = 1$ then the first row of Q equals the first row of T XORed with s:
 - If $s_i = 0$, then equals the first entry in T_i
 - If $s_i = 1$, then equals the first entry in $T_i \oplus 1$ (since XORed with σ_1)
 - In both cases, obtain XOR with s

$$Q_i = \begin{cases} T_i & \text{if } s_i = 0 \\ T_i \bigoplus \sigma & \text{if } s_i = 1 \end{cases}$$





- If $\sigma_2 = 0$ then the **second** row of Q equals the **second** row of T (whatever S equals)
- If $\sigma_2 = 1$ then the **second** row of Q equals the **second** row of T XORed with s:
 - If $s_i = 0$, then equals the first entry in T_i
 - If $s_i = 1$, then equals the first entry in $T_i \oplus 1$ (since XORed with σ_1)
- In both cases, obtain XOR with s

- Using n base OTs, the matrix is transferred
- Look at each row separately (there are m rows)
 - For the *i*th row; denote Q(i) and T(i)
 - If $\sigma_i = 0$ then T(i) = Q(i)
 - If $\sigma_i = 1$ then $T(i) = Q(i) \oplus s$
- To carry out the ith transfer (phase 2 of the protocol)
 - Sender sends $y_i^0 = H(i, Q(i)) \oplus x_i^0$ and $y_i^1 = H(i, Q(i) \oplus s) \oplus x_i^1$
 - Receiver computes $x_i^{\sigma_i} = H(i, T(i)) \oplus y_i^{\sigma}$
- Correctness
 - If $\sigma_i = 0$ then T(i) = Q(i) and so result is correct
 - If $\sigma_i = 1$ then $T(i) = Q(i) \oplus s$ and so result is correct

Efficient OT Extension – Security

Corrupted sender

- The sender receives either T_i or $T_i \oplus \sigma$
- Since T_i is random, this reveals nothing about σ

Efficient OT Extension – Security

Corrupted receiver

- The sender's values are masked by H(i,Q(i)) and $H(i,Q(i) \oplus s)$
- The receiver has H(i,T(i)) which equals one of them but does not know anything about s (sender's queries in base Ots)
 - In the ROM, without knowing s cannot query the value
 - Can also prove assuming that $r_1, ..., r_m, H(s \oplus r_1), ..., H(s \oplus r_m)$ is pseudorandom
 - Note that the receiver knows $r_1, ..., r_m$ but not s, and $H(s \oplus r_i)$ masks the ith value that the receiver should **not** receive

Complexity of OT extension

- Run n oblivious transfers (costing a few exponentiations each)
- Each actual OT costs a few hash operations
- This is very efficient and can be used to carry out millions of OTs per second
 - [Asharov,Lindell,Schneider,Zohner ACM CCS 2013]
- Malicious adversaries: more later in the winter school