Session 3: The GMW and BMR
Multi-Party Protocols

Benny Pinkas
Bar-llan University

*(,QHEI]Q?
c"‘(b\l \ Secure Computation and Efficiency
%'\A) Bar-llan University, Israel 2015

Overview

* The GMW (Goldreich-Micali-Wigderson) protocol

— In this lecture we only cover security against semi-
honest adversaries

— # rounds depends on circuit depth
— 0. Goldreich, Foundations of Cryptography, Vol. Il, Chapter 7.

* Oblivious Transfer (OT) is extensively used in the
GMW protocol

— OT extension is a method that greatly reduces the
overhead of OT

(‘}gz\\ence
S ’ \
Y 4
s
s

The setting (for GMW protocol)

* Parties P,...,P

n

* Inputs Xq,..,X,, (bits, but can be easily generalized)

n

* Outputs vy,,...,Y,

* The functionality is described as a Boolean circuit.
— Wilog, uses only XOR (+) and AND gates
— These gates correspond to +, * modulo 2.

— Wires are ordered so that if wire k is a function of
wires i and j, then i<k and j<k.

(‘}gz\\enc{,
S \
Y 4
<
H

The setting

 The adversary controls a subset of the parties

— This subset is defined before the protocol begins
(is “non-adaptive”)

— We will not cover the adaptive case

* Communication
— Synchronous
— Private channels between any pair of parties
(can be easily implemented using encryption)

(‘}gz\\enc{,
o .
: 8
<
2

Adversarial models

e We will cover the semi-honest case

e |f adversaries can be malicious but do not abort

— GMW: A protocol secure against any number of
malicious parties

e |f adversaries can be malicious and can also abort

— GMW: A protocol secure against a minority of malicious
parties with abort (will not be discussed here)

(‘}gz\\ence
s ‘
: 8
<
2

Protocol for semi-honest setting

* The protocol in a nutshell:
— Each party shares its input bit

— Scan the circuit gate by gate
* Input values of gate are shared by the parties

* Run a protocol computing a sharing of the output
value of the gate

* Repeat
— Publish outputs

(‘}gz\\enc{,
S \
Y 4
<
H

Protocol for semi-honest setting

* The protocol:
— Each party shares its input bit
— The sharing procedure:
* P. has input bit x,
* It chooses random bits r; ; for all iz].
* Sends bitr;; to P;.
* Sets its own sharetobe r;; = x, + (2,1,) mod 2

* Therefore 2,_; r;=x mod 2.

— Now every P; has n shares, one for each input x; of
each P..

*cznen(-e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Evaluating the circuit

* Scan circuit by the order of wires

 Wire cis a function of wires a,b
» P. has shares a,, b.. Must get share c. of c.

a| |b
» Addition (xor) gate:
» P. computes c.=a,+b..
» Indeed, c = a+b (mod 2) = (a,+...+a,) + (b, +...+b) =
(a,+by)+..+(a ,+b,) = c;+..4C,

“(,QHEI]Q?
c"‘(b\l \ Secure Computation and Efficienc y
'E'\A) Bar-llan University, Israel 2015 8

Evaluating multiplication (AND) gates

c=ab=(a;+..+a,) - (by+..4b) =2

2...a

iZ]

b = . a.b. + 2

| 1I=1...n 2170

=1.nAib; +

1<i<j<n (aibj + ajbi) mod 2

P, will obtain a share of ab;+2,, (ajb, + a,b))

Computing a b, by P, is easy
What about ab, + ab;?

P, and P;run the following protocol for every (i,j)

&Q}(’QH;C e

& ! Se
{NY

t

cure Computation and Efficiency
Bar-llan University, Israel 2015

Evaluating multiplication gates

* Input: P; has a,,b;, P;hasa,b.

* P,outputs a,b+ab;+s; .. P, outputs s, .
o P.-

it
— Chooses a random Si

— Computes the four possible outcomes of
a,b+ab;+s; , depending on the four options for P;’s
Inputs.

— Sets these values to be its input to a 1-out-of-4 OT
* P, is the receiver, with input 2a+b..

i

*(,QHE"(‘e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015 10

Recovering the output bits

* The protocol computes shares of the output
wires

e Each party sends its share of an output wire to
the party P, that should learn that output

* P.can then sum the shares, obtain the value
and output it

(‘}gz\\enc{,
o .
: 8
<
2

Proof of Security

* Recall definition of security for semi-honest
setting:
— Simulation - Given input and output, can generate
the adversary’s view of a protocol execution.

* Suppose that an adversary controls the set J of
all parties but P..

* The simulator is given (x,y;) for all P, € J.

(‘}gz\\ence
s ‘
: 8
<
2

The simulator

e Shares of input wires: VjeJ choose
— a random share r; ; to be sent from P, to P,
— and a random share r; ; to be sent from P, to P;.

* Shares of multiplication gate wires:

— Vj<i, choose a random bit as the value learned in the 1-
out-of-4 OT.

— Vj>i, choose a random s
OT accordingly.

* Output wirey; of j€J: set the message received from P,
as the XOR of y; and the shares of that wire held by P;eJ.

and set the four inputs of the

LJ’

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'\y Bar-llan University, Israel 2015

Security proof

* The output of the simulation is distributed
identically to the view in the real protocol

— Certainly true for the random sharesr; ;, r;; sent from and
to P..

— OT for j<i: output is random, as in the real protocol.
— OT for j<i: input to the OT defined as in the real protocol.

— Output wires: message from P, distributed as in the real
protocol.

* QED

(‘}gz\\ence
o .
: 8
<
2

Performance

 Must run an OT for every multiplication gate
— Namely, public key operations per multiplication gate

— Need a communication round between all parties per
every multiplication gate

— Can process together a set of multiplication gates if all
their input wires are already shared

— Therefore number of rounds is O(d), where d is the
depth of the circuit (counting only multiplication gates).

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Oblivious Transfer Extension

Oblivious Transfer

e Oblivious Transfer (OT)

— Sender (P,) has two inputs xg,X,
— Receiver (P,) has an input bit s
— Receiver learns x

e Variant: random OT
— Sender (P,) has two inputs xg,X,
— For a randomly chosen bit s, receiver learns (x,,s)

(‘}gz\\ence
& ’ \
=¥ 2
<
s

Efficiency of Oblivious Transfer

* OT is very efficient, but still requires
exponentiations per transfer

— When doing thousands (or millions) of OTs, this
will become very costly

* Protocols for secure computation typically use
OTs per gate or per input bit

* Impagliazzo and Rudich 1989: there is no
blackbox construction of OT from OWF ®

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'\y Bar-llan University, Israel 2015

Oblivious Transfer Extensions

* An OT extension is a protocol that:
— Uses a “small” number of base OTs (e.g., 128)

— Uses cheap symmetric crypto to achieve many OTs
(e.g., millions)

— This is like hybrid encryption

e Note that it’s not clear that this is even
possible!

(‘}gz\\ence
S ’ \
Y 4
s
s

Beaver’s OT Extension

A theoretical construction

— The number of OTs in Yao’s protocol depends only on evaluator’s input

— Computing the circuit requires only n OTs but provides m > n

effective OTs p,’s OAU tout

[)

(2)Choose a single rib for every i using
the result of the PRG. Output (1;°,b)

(1) Compute PRG(s)
stretch to m bits

\ A)
Y Y
P;’s input wires (2m) P,’s input wires (n)
For every i: (12,7} A random seed s

*cznenge
c‘*(b\l \ Secure Computation and Efficiency
i'\y Bar-llan University, Israel 2015

20

Random vs Regular OT

* Beaver’s protocol computes a random OT

— P, is the receiver. Its input bit s is randomly
chosen.

— P; is the sender. It has a pair of input bits (r,,r,).
— P, learns the bit r..

*cznen(-e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

21

Random vs Regular OT

* We can construct regular OT from random OT
(where both parties inputs are random)
— P;’s input: (x, x1) P,’s input: ¢
— Parties run random OT on bits (1, 77) and s
* P, receives 5,15

— P, sends t = s @ o to P; (essentially tells P, the
order in which P, should mask its inputs).

—Pysendsyg =xo D rrandy;, =x; @ ry_;
— P, outputs y, @D 75

*UZHE"CE
;’\l \ Secure Computation and Efficienc y
%'\y Bar-llan University, Israel 2015

Random vs Regular OT

* Correctness:
—Ifs =0thent = 0andsoy, =x7 @ 1y and
Vi=x1Dn
* Inthiscasey, @ 1y, = x,
—Ifs #othent =1andsoyy, =x, @ ry; and
Vi =x1 D1y
* In this case, too, y, @ 1y = X,
* Privacy:
— P; sees only a random bit ¢ and so learns nothing
about o

— P, can learn one of (1, ;) and so only one of (xg, x1)

*UZHE"CE
;’\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

Efficient OT Extension

AP XN
* A protocol for extending n OTs to m OTs

— By Ishai, Kilian, Nissim and Petrank
: . o .1 0 1
* Sender’s input: (xl, xl), (xm, xm)
* Receiver’sinput: o =04, ...,0,,
* First phase:
— Receiver samples random strings T3, ..., T, each of length m

— Receiver prepares pairs (T;, T; @ o) and plays sender in OT

— Sender chooses random s = sy, ..., Sy,
Note: roles in these

— Sender plays receiver with input s;
n OTs are reversed!

(‘}gz\\ence
s ‘
Y 4
<
H

Efficient OT Extension

ENXOII

Each of length m

__{Ti ifSi=0
Ql_ Ti@O' ifSi=1

*ceuence
5‘"&\' Secure Computation and Efficiency
%'\A) Bar-llan University, Israel 2015 25

oe|

el
&
@

\le,

Efficient OT Extension

Ti ifSl' =0
Ti @ o) ifSl' =1

Q1 Q2 - CUn I T,

Nee.

Efficient OT Extension

._{Ti ifSi:O
Ql_ Ti@O' ifSi:].

Ql QZ Qn Tl TZ Tn

* If 04 = 0 then the first row of Q equals the first row of T (whatever s equals)
* If o; = 1 then the first row of Q equals the first row of T XORed with s:

* Ifs; = 0, then equals the first entry in T;

* Ifs; = 1, then equals the first entry in T; @ 1 (since XORed with g;)

* In both cases, obtain XOR with s

Efficient OT Extension

._{Ti ifSi:O
Ql_ Ti@a ifSi:].

Ql QZ Qn Tl TZ Tn

* If 0, = 0 then the second row of Q equals the second row of T (whatever s equals)
* If o, = 1 then the second row of Q equals the second row of T XORed with s:

* Ifs; = 0, then equals the first entry in T;

* Ifs; = 1, then equals the first entry in T; @ 1 (since XORed with g;)
* In both cases, obtain XOR with s

Secure Computation and Efficiency
Bar-llan University, Israel 2015

Efficient OT Extension

Using n base OTs, the matrix is transferred
Look at each row separately (there are m rows)

— For the ith row; denote Q (i) and T (i)
e Ifo; = 0thenT(i) = Q(i)
e Ifo;, =1thenT(i) =0Q(i) D s
To carry out the ith transfer (phase 2 of the protocol)
— Sendersends v = H(i,Q(i)) @ x{ and y; = H(i,Q(i) B s) ® x}
— Receiver computes xigi = H(i, T(i)) Dy’
Correctness

— If o; = 0then T (i) = Q(i) and so result is correct
— Ifo; = 1thenT(i) = Q(i) @ s and so result is correct

*(,QHE"(‘e
f\l \ Secure Computation and Efficiency
%'_A) Bar-llan University, Israel 2015

29

Efficient OT Extension — Security

* Corrupted sender

— The sender receives either T; or T; @ o
— Since T; is random, this reveals nothing about o

(‘}gz\\ence
S ’ \
Y 4
s
s

Efficient OT Extension — Security

* Corrupted receiver

— The sender’s values are masked by H(i, Q(i)) and
H(, Q) D s)
— The receiver has H(i, T (i)) which equals one of them but
does not know anything about s (sender’s queries in base Ots)
* In the ROM, without knowing s cannot query the value

 Can also prove assuming that ry, ..., 15, H(s @ 1), ..., H(s
@ r,,) is pseudorandom

* Note that the receiver knows 1, ..., 13, but not s, and H(s @ ;)
masks the ith value that the receiver should not receive

(‘}gz\\ence
S ’ \
Y 4
s
s

Complexity of OT extension

* Run n oblivious transfers (costing a few
exponentiations each)

* Each actual OT costs a few hash operations

* This is very efficient and can be used to carry
out millions of OTs per second

— [Asharov,Lindell,Schneider,Zohner ACM CCS 2013]

e Malicious adversaries: more later in the
winter school

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

