
(EFFICIENT)

 ZERO-KNOWLEDGE,

(SPECIAL PURPOSE)

 GARBLED CIRCUITS,

(THE SIMPLEST)

 OBLIVIOUS TRANSFER,

Claudio Orlandi – Aarhus University

In this talk: 3 simple ideas from

 Jawurek, Kerschbaum, Orlandi

 Zero-Knowledge from Garbled Circuits, CCS 2013

 Frederiksen, Nielsen, Orlandi

 Privacy-Free Garbled Circuits, EUROCRYPT 2015

 Chuo, Orlandi

 The Simplest OT Protocol, ePrint (next week?)

Jawurek, Ferschbaum, Orlandi

CCS 2013

Zero-Knowledge from Garbled Circuits

Zero-Knowledge Protocols

 IP/ZK – GMR85

 Revolutionary idea in cryptography and CS

 Important in practice

 Authentication

 Essential component in complex protocols

 What about efficiency?

Zero-Knowledge Protocols

 Many examples of efficient ZK for algebraic languages

 Discret Logarithm

 RSA

 Lattice

 ...

 What about non-algebraic statements?

 How do I prove ”I know x s.t. y=SHA(x)”?

 This work tries to fill this gap!

Related Work

 IKOS’07

 ZK from (honest majority) MPC

 First step towards the ”MPC in the head” approach

 Efficient NIZK/SNARK (GOS06,GGPPR13,…)

 Non-interactive 

 Require public key operation per gate 

Zero-Knowledge vs Secure 2PC

A B

f,x f,y

f(x,y)

P V

x,w

R(x,w) = true

x

Garbled Circuits

Ev

De Gb

En

f

x

[F]

e

d

[X] [Z]

z

Correct if z=f(x)

Values in a box

are “garbled”

OT

[Fy]

x
e

[X]

[Z]

([Fy],e,d) 

 Gb(f(·,y))

zDe([Z],d)

[Z]Ev([Fy],[X])

2PC from GC (Yao’s protocol)

Alice Bob

Soundness:

If A is corrupted and

[Z*]  A([F],[X]),

then

De([Z*],d) is either

f(x) or “”

B could garble a

“malicious” function

g≠f

e.g. g(x)= lsb(x)

2PC secure against active adversaries?

How can Bob prove that he garbled F

without revealing any extra information?

 Plenty of (costly) solutions are known for 2PC

 Zero-Knowledge

 Cut-and-choose

 Etc.

 Can we do better for ZK?

ZK based on GC

 The main idea:

 In ZK the verifier (Bob) has no secrets!

 After the protocol, Bob can reveal all his randomness.

 Alice can simply check that Bob behaved honestly

by redoing his entire computation.

OT

[F]

w e

[W]

Com([Z])

([F],e,d) Gb(f,r)

zDe([Z],d)

[Z]Ev([F],[W])

Prover Verifier

If [F]=Gb(f,r)

r, e

[Z]

Prover work

~

2x passive Yao

(else abort)

Communication

~

Passive Yao

Verifier work

 ~

Passive Yao

CCS Implementations

 Code not open-source, but easily reproducible

 FastGC garbled circuits implementation

 Smart-Tillich optimized circuits: AES, MD5, SHA…

 GCParser to combine the two above

 SCAPI for implementing OT (using elliptic curves)

Frederiksen, Nielsen, Orlandi

EUROCRYPT 2015

Privacy-Free Garbled Circuits

Garbled Circuits

Ev

De Gb

En

f

x

[F]

e

d

[X] [Z]

z

Correct if z=f(x)

Main idea

 In 2PC GC ensure that evaluator does not learn

internal values

 In Yao garbled circuits evaluation must be oblivious

 But in ZK the prover knows all the input bits!

 He also knows all internal wires values

 Can we optimize?

 Yes!

Garbling Schemes without Privacy

 Conceptual contribution:

 Natural separation between privacy and authenticity

 Concrete efficiency:

 Better constants in garbled circuit

Can we construct garbling schemes tailored to specific
applications, which are more efficient than Yao’s original

construction?

Performances for m-ary gate

Garbler

H/gate

Eval

H/gate

Communication

bit/gate

GRR1 AND m+1

1 k(m-1)

XOR - - k(m-1)

Free-XOR AND m+1 1 km

XOR - - -

Notation

AND/XOR

L0,L1 R0,R1

Z0,Z1

 A (privacy-free) garbled gate is

a gadget that given two inputs

keys gives you the right output

key (and nothing else)

 (Z0,Z1,gg)  Gb(L0,L1,R0,R1)

 Zg(a,b)  Ev(La,Rb,gg)

Garbling w/o free-XOR (GRR1)

Gb_AND(L0,L1,R0,R1)

 Output keys:

 Z1 = H(L1,R1)

 Z0 = H(L0)

 Send:

 C = Z0 ⊕ H(R0)

Ev_AND(Lx, Ry, C)

 If(x = y = 1)

output Z1 = H(Lx, Ry)

 If(x = 0)

output Z0 = H(Lx)

 If(y = 0)

output Z0 = C ⊕ H(Ry)

Garbling w/o free-XOR (GRR1)

Gb_XOR(L0,L1,R0,R1)

 Output keys:

 Z0 = L0 ⊕ R0

 Z1 = L1 ⊕ R0

 Send:

 C=L0⊕R0⊕L1⊕R1

Ev_XOR(La, Rb, C)

 If(a = 0) output

Z(a⊕b) = La ⊕ Rb

 If(a = 1) output

Z(a⊕b) = C⊕La⊕Rb

Conclusions & Open Problems

 Still a lot to be done with garbling schemes!

 Other specific purpose garbling schemes?

 Non-interactive ZK (w/o PKE/gate)?

Chou, Orlandi

coming soon on ePrint

The Simplest Oblivious Transfer Protocol

Diffie Hellman

Key Exchange

X = gx

K = H(Yx)

m

Y = gy

C = E(K,m)

K = H(Xy)

m = D(K,C)

There is another key

K’ = H((X/Y)x)

which Bob cannot

compute!

X = gx

The Simplest OT protocol

K0 = H(Yx)

K1 = H((X/Y)x)

m0,m1

C0 = E(K0,m0)

C1 = E(K1,m1)

b=0 : Y = gy

b=1 : Y = X/gy

b

Y

Kb = H(Xy)

mb = D(Kb,Cb)

E((α,β), m) =

(α+ m, (α+ m)β)

The Simplest OT Protocol

 Complexity:

 Communication: 1ge/OT + 2 ctxt/OT + 1ge

 Computation: 3 exp/OT + 3 H/OT + 2 exp

 Security:

 UC vs. active adversary with programmable RO

 Performances: ~0.2ms/OT @ 64 OTs

 Implementation based on Bernstein’s Curve25519

