(EFFICIENT)
ZERO-KNOWLEDGHE,

(SPECIAL PURPOSE)
GARBLED CIRCUITS,

(THE SIMPLEST)
OBLIVIOUS TRANSFER,

In this talk: 3 simple ideas from

Jawurek, Kerschbaum, Orlandi
Zero-Knowledge from Garbled Circuits, CCS 2013

Frederiksen, Nielsen, Orlandi
Privacy-Free Garbled Circuits, EUROCRYPT 2015

Chuo, Orlandi
The Simplest OT Protocol, ePrint (next week?)

- ZLero-Knowledge from Garbled Circuits

Jawurek, Ferschbaum, Orlandi

CCS 2013

Lero-Knowledge Protocols

IP/ZK — GMR85
Revolutionary idea in cryptography and CS

Important in practice
Authentication

Essential component in complex protocols

What about efficiency?

Lero-Knowledge Protocols

Many examples of efficient ZK for algebraic languages
Discret Logarithm

RSA

Lattice

What about non-algebraic statements?
How do | prove "l know x s.t. y=SHA(x)"¢

This work tries to fill this gap!

Related Work

IKOS’07
ZK from (honest majority) MPC
First step towards the "MPC in the head” approach

Efficient NIZK /SNARK (GOS06,GGPPR13,...)

Non-interactive ©

Require public key operation per gate @

Zero-Knowledge vs Secure 2PC
—

f,x f,y

R(x,w) = true

Garbled Circuits

e Values in a box

are “garbled”

Z

De

Correct if z=f(x)

2PC from GC (Yao’s protocol)

Soundness:

If A is corrupted and

[2*] < A([FLIXI),

then
De([Z*],d) is either
f(x) or “L1”

_

/

Bob

(Fled) €

B could garble a
“malicious” function
g*f

e.g. g(x)= Isb(x)

2&De([Z],d)

2PC secure against active adversaries?

How can Bob prove that he garbled F
without revealing any extra information?
Plenty of (costly) solutions are known for 2PC
Lero-Knowledge
Cut-and-choose

Etc.

Can we do better for ZK?

/K based on GC

The main idea:
In ZK the verifier (Bob) has no secrets!
After the protocol, Bob can reveal all his randomness.

Alice can simply check that Bob behaved honestly

by redoing his entire computation.

Prover

[Z] <Ev([F],IW])

If [F]=Gb(f,r)

Verifier

Fled) <Gb(fr)

Verifier work

~

Passive Yao

(else abort)

z<De([Z],d)

CCS Implementations

Code not open-source, but easily reproducible
FastGC garbled circuits implementation
Smart-Tillich optimized circuits: AES, MD5, SHA...
GCParser to combine the two above

SCAPI for implementing OT (using elliptic curves)

- Privacy-Free Garbled Circuits

Frederiksen, Nielsen, Orlandi
EUROCRYPT 2015

Garbled Circuits

Correct if z=f(x)

Main idea

In 2PC GC ensure that evaluator does not learn
internal values

In Yao garbled circuits evaluation must be oblivious

But in ZK the prover knows all the input bits!

He also knows all internal wires values

Can we optimize?

Yesl!

Garbling Schemes without Privacy

Conceptual contribution:

Natural separation between privacy and authenticity

Concrete efficiency:

Better constants in garbled circuit

Can we construct garbling schemes tailored to specific
applications, which are more efficient than Yao’s original
construction®

Performances for m-ary gate

]
Garbler Eval Communication
H/gate H/gate bit/gate
GRR1 k(m-1)
XOR - - k(m-1)
Free-XOR AND m+1 1 km

XOR

Communication

(amortized # of ciphertexts per gate)

o # of Gates Private Privacy-free)
Circuit Saving
AND | XOR | GRR2 | free-XOR | leXOR | GRR1 | free-XOR | fleXOR
DES 18124 | 1340 2.0 2.79 1.89 1.0 1.86 0.96 49%
AES 6800 | 25124 | 2.0 0.64 0.72 1.0 0.43 0.51 33%
SHA-1 | 37300 | 24166 | 2.0 1.82 1.39 1.0 1.21 0.78 44%
SHA-256 | 90825 | 42029 | 2.0 2.05 1.56 1.0 1.37 0.87 44%
Computation
(amortized # of encryptions per gate for garbler/evaluator)

o # of Gates Private Privacy-free ,
Circuit Saving
AND | XOR | GRR2 | free-XOR | fleXOR | GRR1/free-XOR/fleXOR
DES | 18124 1340 | 4.0/1.0 | 3.72/0.93 | 3.78/0.96 2.79/0.93 25% /0%
AES 6800 | 25124 | 4.0/1.0 | 0.85/0.21 | 1.44/0.51 0.64/0.21 25% /0%
SHA-1 | 37300 | 24166 | 4.0/1.0 | 2.43/0.61 | 2.78/0.78 1.82/0.61 25% /0%
SHA-256 | 90825 | 42029 | 4.0/1.0 | 2.73/0.68 | 3.11/0.87 2.05/0.68 25% /0%

Notation

0 A (privacy-free) garbled gate is
dget that given two inputs
Lo, Ro.R, a gadget that giv inpu

keys gives you the right output
key (and nothing else)

0 (Z£g,Z4,99) < Gb(LOIL]IROIR])
T Ly p) < Ev(L_R,,g9)

ZOlzl

Garbling w/o free-XOR (GRR1)

Gb_AND(L,,L;,RoR;)
Output keys:
Z, = H(L,Ry)
Ly = H(lLy)
Send:
C=1Z, D H(Ry)

Ev_AND(L,, R,, C)

fix =y =1)

output Z; = H(L,, R))
If(x = O)

output Z, = HIL)

If(y = 0O)

output Z, = C D H(R))

Garbling w/o free-XOR (GRR1)

Gb_XOR(LyL;,RaR;) Ev_XOR(L_, R,, C)
Output keys: If(a = 0) output
Zo =L, @D Ry Zagr) = L O Ry
Z, =L, © R
Send: If(a = 1) output

C=L, DR, DL, DR, Z.pp) = COLDR,

Conclusions & Open Problems

Still a lot to be done with garbling schemes!

Other specific purpose garbling schemes?

Non-interactive ZK (w/o PKE/gate)?

- The Simplest Oblivious Transfer Protocol

Chou, Orlandi

coming soon on ePrint

Diffie Hellman
Key Exchange

K= H(Y~) K = H(X")

There is another key
K = H((X/Y)*) .
which Bob cannot

m = D(K,C)

computel

The Simplest OT protocol

b=0:Y =g
b=1:Y = X/g’
Y
Ko = H(Y?) * K, = H(X)
Ky = H{(X/Y)*)
Co = E(Kymp)
C, = E(K,,m,) *

E((a,B), m) =
m, = D(K,,C,)

(a+ m, (a+ m)PB)

The Simplest OT Protocol

Complexity:
Communication: 1ge/OT + 2 ctxt/OT + 1ge
Computation: 3 exp/OT + 3 H/OT + 2 exp
Security:
UC vs. active adversary with programmable RO

Performances: ~0.2ms/OT @ 64 OTs

Implementation based on Bernstein’s Curve25519

