
New Consistency Checks and Implementing
Online/Offline Yao

Joint work with: Asaf Cohen, Moriya Farbstein and Yehuda Lindell.

1 / 34

Part 1:

Background

2 / 34

Recap: The Cut-and-Choose Technique

Input x Input y

{PrfKeyj}j∈S , {Yj}j /∈S

S ⊂ [s]

gc1, gc2, . . . , gcs

OTs for X1, . . . ,Xs

Checks the ”opened”

garbled circuits,

evaluates the rest.

2−s security, while running an additional, lighter 2PC with 3s small
garbled circuits for cheating recovery [Lindell-13].

3 / 34

Recap: Protecting Against Selective OT Attacks

Technique Complexity Assumptions

Cut-and-choose OT O(ns) exponentia-
tions

DDH

Randomized Encoding O(n) OTs, O(ns2)
encryptions

Standard

+ OT-Ext.,Free-XOR O(s) OTs, O(ns)
encryptions

Free-XOR, etc

where n is Alice’s input length, and s is a security parameter.

(Open: Can we get optimal complexity with standard
assumptions?)

4 / 34

Recap: Protecting Against Selective OT Attacks

Technique Complexity Assumptions

Cut-and-choose OT O(ns) exponentia-
tions

DDH

Randomized Encoding O(n) OTs, O(ns2)
encryptions

Standard

+ OT-Ext.,Free-XOR O(s) OTs, O(ns)
encryptions

Free-XOR, etc

where n is Alice’s input length, and s is a security parameter.

(Open: Can we get optimal complexity with standard
assumptions?)

5 / 34

Recap: Checking Bob’s Input Consistency

Technique Complexity Assumption Drawback

DDH ZK O(ns) exp. DDH Efficiency

[Mohassel-R-13] O(s) OTs, O(ns)
encryptions

ROM Complicated

[shelat-Shen-13] O(ns) encryp-
tions

Free-XOR∗ Offline/Online
setting

where n is Bob’s input length, and s is a security parameter.

The goal is to verify consistency ONLY
between good circuits!

6 / 34

Recap: Checking Bob’s Input Consistency

Technique Complexity Assumption Drawback

DDH ZK O(ns) exp. DDH Efficiency

[Mohassel-R-13] O(s) OTs, O(ns)
encryptions

ROM Complicated

[shelat-Shen-13] O(ns) encryp-
tions

Free-XOR∗ Offline/Online
setting

where n is Bob’s input length, and s is a security parameter.

The goal is to verify consistency ONLY
between good circuits!

7 / 34

Part 2:

A New Consistency Check

8 / 34

Start with Standard GCs

AND

m1

w1,1
0

w1,1
1

w1,2
0

w1,2
1

AND

m2

w2,1
0

w2,1
1

w2,2
0

w2,2
1

AND

m3

w3,1
0

w3,1
1

w3,2
0

w3,2
1

9 / 34

For example ...

AND

11

w1,1
1

w1,1
0

w1,2
1

w1,2
0

AND

10

w2,1
1

w2,1
0

w2,2
0

w2,2
1

AND

01

w3,1
0

w3,1
1

w3,2
1

w3,2
0

10 / 34

Commit on Input Labels and Masks

AND

11
w1,1
1

w1,1
0

w1,2
1

w1,2
0

AND

10
w2,1
1

w2,1
0

w2,2
0

w2,2
1

AND

01
w3,1
0

w3,1
1

w3,2
1

w3,2
0

I Orange rectangle = standard commitment.
I Blue rectangle = commitment that also allows decommiting

the XOR of two commitments:
I Given HCom(m),HCom(m′)→ can decommit m ⊕m′.

11 / 34

The Cut-and-Choose

AND

11
w1,1
1

w1,1
0

w1,2
1

w1,2
0

AND

10
w2,1
1

w2,1
0

w2,2
0

w2,2
1

AND

01

w3,1
0

w3,1
1

w3,2
1

w3,2
0

EVAL EVAL OPEN
01

12 / 34

Say that Bob’s Input is y = 11

AND

11
w1,1
1

w1,1
0

w1,2
1

w1,2
0

AND

10
w2,1
1

w2,1
0

w2,2
0

w2,2
1

AND

01

w3,1
0

w3,1
1

w3,2
1

w3,2
0

EVAL EVAL OPEN
0101

13 / 34

Repeating the Steps

AND

11
w1,1
1

w1,1
0

w1,2
1

w1,2
0

AND

10
w2,1
1

w2,1
0

w2,2
0

w2,2
1

AND

01

w3,1
0

w3,1
1

w3,2
1

w3,2
0

EVAL EVAL OPEN
0101

14 / 34

Implementing HCom(·) Efficiently [Rabin et al-12]

Committing on m ∈ {0, 1}n

I Pick m0 ∈ {0, 1}n at random. Let m1 = m0 ⊕m.

I Send Com(m0) and Com(m1).

Decommitting XOR of two commitments

Let m1
0,m1

1 and m2
0,m2

1 be the committed values.

I Sender sends M0 = m1
0 ⊕m2

0 and M1 = m1
1 ⊕m2

1.

I Receiver sends a random bit b.

I Sender decommits m1
b and m2

b.

I Receiver verifies that Mb = m1
b ⊕m2

b and outputs M0 ⊕M1.

15 / 34

Implementing HCom(·) Efficiently [Rabin et al-12]

Committing on m ∈ {0, 1}n

I Pick m0 ∈ {0, 1}n at random. Let m1 = m0 ⊕m.

I Send Com(m0) and Com(m1).

Decommitting XOR of two commitments

Let m1
0,m1

1 and m2
0,m2

1 be the committed values.

I Sender sends M0 = m1
0 ⊕m2

0 and M1 = m1
1 ⊕m2

1.

I Receiver sends a random bit b.

I Sender decommits m1
b and m2

b.

I Receiver verifies that Mb = m1
b ⊕m2

b and outputs M0 ⊕M1.

16 / 34

Improving Security of XOR Decommitment

Use k pairs of commitments for soundness 2−k .
For example, with k = 4,

m1,1
0 m1,1

1 M1
0 M1

1 m2,1
0 m2,1

1

m1,2
0 m1,2

1 M2
0 M2

1 m2,2
0 m2,2

1

m1,3
0 m1,3

1 M3
0 M3

1 m2,3
0 m2,3

1

m1,4
0 m1,4

1 M4
0 M4

1 m2,4
0 m2,4

1

where M i
0 ⊕M i

1 should be the same for i = 1, . . . , 4.

17 / 34

Improving Security of XOR Decommitment

Use k pairs of commitments for soundness 2−k .
For example, with k = 4,

m1,1
0 m1,1

1 M1
0 M1

1 m2,1
0 m2,1

1

m1,2
0 m1,2

1 M2
0 M2

1 m2,2
0 m2,2

1

m1,3
0 m1,3

1 M3
0 M3

1 m2,3
0 m2,3

1

m1,4
0 m1,4

1 M4
0 M4

1 m2,4
0 m2,4

1

where M i
0 ⊕M i

1 should be the same for i = 1, . . . , 4.

18 / 34

Performance and Assumptions

Performance.
When the commitment’s message domain is large, the number of
commitments is amortized.

For example, for security parameter k = 40, 80 commitments are
needed. If the message domain is 80-bit long, then the amortized
number of commitments per input bit is 1!

Assumptions.

Option 1: DDH and any Com (but requires additional two
exponentiations per circuit).

Option 2: ROM (without exponentiations).

19 / 34

Performance and Assumptions

Performance.
When the commitment’s message domain is large, the number of
commitments is amortized.

For example, for security parameter k = 40, 80 commitments are
needed. If the message domain is 80-bit long, then the amortized
number of commitments per input bit is 1!

Assumptions.

Option 1: DDH and any Com (but requires additional two
exponentiations per circuit).

Option 2: ROM (without exponentiations).

20 / 34

Other Advantages

I Much easier to implement than the method of
[Mohassel-R-13].

I Can be used in the Offline/Online 2PC protocols we have (as
opposed to the method of [shelat-Shen-13]).

21 / 34

Other Advantages

I Much easier to implement than the method of
[Mohassel-R-13].

I Can be used in the Offline/Online 2PC protocols we have (as
opposed to the method of [shelat-Shen-13]).

22 / 34

Part 3:

Implementing Online/Offline Yao

23 / 34

The Offline/Online Setting

Offline stage: Inputs are unknown, but we are willing to work a bit
harder. (The circuit in use is known.)

Online stage(s): Inputs are known, and we wish to compute the
function with minimal latency once an input arrives.

Obviously, the running time of the online stage must depend on
|C |.

24 / 34

Amortized Cut-and-Choose [Lindell-R-14, Huang et al-14]

Instead of a single 2PC execution, consider N executions. This
allows us to amortize the cost of the checked-circuits over many
executions.

I Amortized complexity of O(s
logN) garbled circuits per invoked

2PC.

I In the ROM, the communication of the online stage is
independent of |C |. (Very significant in practice!)

25 / 34

The New Cut-and-Choose: Bob Sends Many GCs

gc1 gc2 gc3 gc4 gc5 gc6 gc7 gc8 gc9

26 / 34

The New Cut-and-Choose: Checking and Bucketing

gc1 gc2 gc3 gc4 gc5 gc6 gc7 gc8 gc9

CHECK

BUCKET 1

First 2PC

BUCKET 2

Second 2PC

BUCKET 3

Third 2PC

27 / 34

The New Cut-and-Choose: Checking and Bucketing

gc1 gc2 gc3 gc4 gc5 gc6 gc7 gc8 gc9

CHECK

BUCKET 1

First 2PC

BUCKET 2

Second 2PC

BUCKET 3

Third 2PC

28 / 34

How Many Circuits Are Needed?

N total #circuits #eval circuit #circuits
per 2PC per 2PC

10 200 11 20
32 351 8 10.96

437 6 13.65
128 998 6 7.79

1143 5 8.92
1024 5627 5 5.49

5689 4 5.55
4096 18005 4 4.39

25600 3 6.25

29 / 34

We can use the same technique also for checking the cheating
recovery circuits.

I For 32 computations, only 30 garbled circuits are needed on
average per execution.

I For 1024 computations, only 11.76 are needed.

(Recall that [Lindell-13] requires about 125 circuits.)

30 / 34

Prototype Implementation

I Designed a new protocol based on the protocol of
[Lindell-R-14] and the new input-consistency check protocol.
Heavily optimized in the ROM.

I Most steps are implemented using SCAPI. A number of
CPU-intensive steps are implemented in C.

I Works with the recent OT-extension library of [Asharov et
al-15] and a new library for fixed-key garbling.

31 / 34

Performance

Circuit #executions
Offline Online

total per 2PC 1 4 8

ADD
32 8325 260 17 15 14

128 19787 155 10 9 11
1024 103170 101 7 7 -

AES
32 12244 383 32 27 25

128 30766 240 21 19 18
1024 159144 155 16 16 14

SHA-1
32 21157 661 71 62 42

128 55762 436 48 - 40
1024 331192 323 37 - 27

All times are in ms. Offline is with 8 threads (and is roughly
20%− 40% slower than with a single thread).

32 / 34

Four Orders of Magnitude in Six Years

How much has performance of
cut-and-choose 2PC improved over the
years?

2009: 1114 seconds.

2011: 264 seconds.

2012: 1.4 seconds (cluster with 512
nodes, s = 80).

2013: 40 seconds (cluster with 8
nodes, s = 80).

2014: 0.46 seconds (using GPUs).

2015: < 0.2 seconds (and ≤ 32 ms
for online time).

23!

(How much lower can Online/Offline 2PC with GPUs get us?)

33 / 34

Four Orders of Magnitude in Six Years

How much has performance of
cut-and-choose 2PC improved over the
years?

2009: 1114 seconds.

2011: 264 seconds.

2012: 1.4 seconds (cluster with 512
nodes, s = 80).

2013: 40 seconds (cluster with 8
nodes, s = 80).

2014: 0.46 seconds (using GPUs).

2015: < 0.2 seconds (and ≤ 32 ms
for online time).

23!

(How much lower can Online/Offline 2PC with GPUs get us?)

34 / 34

