New Consistency Checks and Implementing
Online/Offline Yao

Joint work with: Asaf Cohen, Moriya Farbstein and Yehuda Lindell.

1/34



Part 1:
Background

2/34



Recap: The Cut-and-Choose Technique

OTs for X1,...,Xs

Input y
8¢C1,8C,...,8Cs

S C 9]

{PrfKey;}jes, {Yi}igs

Checks the "opened”
garbled circuits,

evaluates the rest.

27° security, while running an additional, lighter 2PC with 3s small
garbled circuits for cheating recovery [Lindell-13].

34



Recap: Protecting Against Selective OT Attacks

] Technique \ Complexity \ Assumptions ‘
Cut-and-choose OT O(ns) exponentia- DDH
tions
Randomized Encoding | O(n) OTs, O(ns?) Standard

encryptions

+ OT-Ext.,Free-XOR

O(s) OTs, O(ns)
encryptions

Free-XOR, etc

where n is Alice's input length, and s is a security parameter.

34



Recap: Protecting Against Selective OT Attacks

] Technique \ Complexity \ Assumptions ‘
Cut-and-choose OT O(ns) exponentia- DDH
tions
Randomized Encoding | O(n) OTs, O(ns?) Standard

encryptions

+ OT-Ext.,Free-XOR

O(s) OTs, O(ns)
encryptions

Free-XOR, etc

where n is Alice's input length, and s is a security parameter.

(Open: Can we get optimal complexity with standard

assumptions?)

5/34



Recap: Checking Bob's Input Consistency

| Technique | Complexity | Assumption | Drawback |
DDH zZK O(ns) exp. DDH Efficiency
[Mohassel-R-13] | O(s) OTs, O(ns) | ROM Complicated
encryptions
[shelat-Shen-13] | O(ns)  encryp- | Free-XOR* Offline/Online
tions setting

where n is Bob's input length, and s is a security parameter.

6/34



Recap: Checking Bob's Input Consistency

| Technique | Complexity | Assumption | Drawback |
DDH ZK O(ns) exp. DDH Efficiency
[Mohassel-R-13] | O(s) OTs, O(ns) | ROM Complicated

encryptions
[shelat-Shen-13] | O(ns)  encryp- | Free-XOR* Offline/Online
tions setting

where n is Bob's input length, and s is a security parameter.

The goal is to verify consistency ONLY
between good circuits!

7/34



Part 2:
A New Consistency Check

8/34



Start with Standard GCs

my
1,1 1,2
Wo l JWO
1,1 1,2
W. Wl

m3
3,1 3,2
Wo 0
3,1 3,2
Wy Wy
AND

34



For example

01
3,1 3,2
Wo Wy
3,1 3,2
1 0
AND

10/34



Commit on Input Labels and Masks

11 10 01
1,1 1,2 2,1 2,2 3,1 3,2
L] W L] Wo Wo L]
1,1 1,2 2,1 2,2 3,1 3,2
AND AND AND

» Orange rectangle = standard commitment.

> Blue rectangle = commitment that also allows decommiting
the XOR of two commitments:

» Given HCom(m), HCom(m') — can decommit m & m’.

11 /34



The Cut-and-Choose

AND

12 /34



Say that Bob's Input is y = 11

EVAL EVAL
01
11— 10
1,1 1,2 2,1 2,2
Wl Wl Wl WO
1,11 t 1,2 2,1J J 2.2
Wo Wo Wo Wy
AND AND

13 /34



Repeating the Steps

11— T—10
2,1 2,2
wy wq Wy Wo
1’]_ 1,2 251 2,2
"o l l 0 "o J J -
AND AND

14 /34



Implementing HCom(-) Efficiently [Rabin et al-12]
Committing on m € {0,1}"

» Pick mg € {0,1}" at random. Let my = mo & m.
» Send Com(mg) and Com(my).

15 /34



Implementing HCom(-) Efficiently [Rabin et al-12]

Committing on m € {0,1}"

» Pick mg € {0,1}" at random. Let m; = mg & m.
» Send Com(mg) and Com(my).

Decommitting XOR of two commitments

Let m(l), m% and mg, m% be the committed values.
» Sender sends My = m§ @ m3 and My = mi & m?.
> Receiver sends a random bit b.

» Sender decommits m,:g and m%.

» Receiver verifies that My = mll, @ mi and outputs My & M.

16 /34



Improving Security of XOR Decommitment

Use k pairs of commitments for soundness 27X.
For example, with k = 4,

1,1 1,1
My 1

1,2 1,2
my m

1,3 1,3
My my

1,4 1,4
mgy my

where M(’; @ I\/l{ should be the same for i =1,...,4.

17 /34



Improving Security of XOR Decommitment

Use k pairs of commitments for soundness 27X.
For example, with k = 4,

mt oMo (] e
m? o (2] e
mé‘a Mg Mf m§’3 mf’s
o om [m] e

where M(’; @ M{ should be the same for i =1,...,4.

18 /34



Performance and Assumptions

Performance.
When the commitment’'s message domain is large, the number of
commitments is amortized.

For example, for security parameter k = 40, 80 commitments are
needed. If the message domain is 80-bit long, then the amortized
number of commitments per input bit is 1!

19/34



Performance and Assumptions

Performance.
When the commitment’'s message domain is large, the number of
commitments is amortized.

For example, for security parameter k = 40, 80 commitments are
needed. If the message domain is 80-bit long, then the amortized
number of commitments per input bit is 1!

Assumptions.

Option 1: DDH and any Com (but requires additional two
exponentiations per circuit).

Option 2: ROM (without exponentiations).

20 /34



Other Advantages

» Much easier to implement than the method of
[Mohassel-R-13].

21/34



Other Advantages

» Much easier to implement than the method of
[Mohassel-R-13].

» Can be used in the Offline/Online 2PC protocols we have (as
opposed to the method of [shelat-Shen-13]).



Part 3:
Implementing Online/Offline Yao

23/34



The Offline/Online Setting

Offline stage: Inputs are unknown, but we are willing to work a bit
harder. (The circuit in use is known.)

Online stage(s): Inputs are known, and we wish to compute the
function with minimal latency once an input arrives.

Obviously, the running time of the online stage must depend on
.

24 /34



Amortized Cut-and-Choose [Lindell-R-14, Huang et al-14]

Instead of a single 2PC execution, consider N executions. This

allows us to amortize the cost of the checked-circuits over many
executions.

» Amortized complexity of (’)(@) garbled circuits per invoked
2PC.

» In the ROM, the communication of the online stage is
independent of |C|. (Very significant in practice!)

25 /34



The New Cut-and-Choose: Bob Sends Many GCs

[ i ][ o ][ s ][ - ][ & ][ o ][ e ][ s ][ & ]

26 /34



The New Cut-and-Choose: Checking and Bucketing

CHECK

7
[ - ][ - ][ - ][ - ][ - ][ - ][ - ][ - ][ - ]

27 /34



The New Cut-and-Choose: Checking and Bucketing

CHECK

%\
[ g1 ][ o ][ s ][ e ][ e0s ][ o5 ][ o ][ s ][ o ]
N > =

BUCKET 1  BUCKET 2 BUCKET 3

N

First 2PC Second 2PC Third 2PC




How Many Circuits Are Needed?

N total #circuits || #eval circuit | #circuits
per 2PC per 2PC
10 200 11 20
32 351 8 10.96
437 6 13.65
128 998 6 7.79
1143 5 8.92
1024 5627 5 5.49
5689 4 5.55
4096 18005 4 4.39
25600 3 6.25

29 /34



We can use the same technique also for checking the cheating
recovery circuits.

» For 32 computations, only 30 garbled circuits are needed on
average per execution.

» For 1024 computations, only 11.76 are needed.

(Recall that [Lindell-13] requires about 125 circuits.)

30/34



Prototype Implementation

» Designed a new protocol based on the protocol of

[Lindell-R-14] and the new input-consistency check protocol.

Heavily optimized in the ROM.

> Most steps are implemented using SCAPI. A number of
CPU-intensive steps are implemented in C.

» Works with the recent OT-extension library of [Asharov et
al-15] and a new library for fixed-key garbling.

31/34



Performance

Circuit || #executions totaIOf\ﬂ::r opC | 1 (‘)ntllm‘e 8
32 8325 260 17 | 15 | 14

ADD 128 19787 155 1009 |11

1024 103170 101 7T 7| -

32 12244 383 32|27 |25

AES 128 30766 240 21 | 19 | 18

1024 159144 155 16 | 16 | 14

32 21157 661 71| 62 | 42

SHA-1 128 55762 436 48 | - | 40
1024 331192 323 37| - |27

All times are in ms. Offline is with 8 threads (and is roughly
20% — 40% slower than with a single thread).

32/34



Four Orders of Magnitude in Six Years

How much has performance of
cut-and-choose 2PC improved over the

years?

20009:
2011:
2012:

2013:

2014:
2015:

1114 seconds.
264 seconds.

1.4 seconds (cluster with 512
nodes, s = 80).

40 seconds (cluster with 8
nodes, s = 80).

0.46 seconds (using GPUs).

< 0.2 seconds (and < 32 ms
for online time).

33/34



Four Orders of Magnitude in Six Years

How much has performance of
cut-and-choose 2PC improved over the
years?

2009: 1114 seconds.
2011: 264 seconds.
2012: 1.4 seconds (cluster with 512

nodes, s = 80).
2013: 40 seconds (cluster with 8
nodes, s = 80).

2014: 0.46 seconds (using GPUs).

2015: < 0.2 seconds (and < 32 ms
for online time).

(How much lower can Online/Offline 2PC with GPUs get us?)

34 /34



