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Part 1:

Background
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Recap: The Cut-and-Choose Technique

Input x Input y

{PrfKeyj}j∈S , {Yj}j /∈S

S ⊂ [s]

gc1, gc2, . . . , gcs

OTs for X1, . . . ,Xs

Checks the ”opened”

garbled circuits,

evaluates the rest.

2−s security, while running an additional, lighter 2PC with 3s small
garbled circuits for cheating recovery [Lindell-13].
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Recap: Protecting Against Selective OT Attacks

Technique Complexity Assumptions

Cut-and-choose OT O(ns) exponentia-
tions

DDH

Randomized Encoding O(n) OTs, O(ns2)
encryptions

Standard

+ OT-Ext.,Free-XOR O(s) OTs, O(ns)
encryptions

Free-XOR, etc

where n is Alice’s input length, and s is a security parameter.

(Open: Can we get optimal complexity with standard
assumptions?)
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Recap: Checking Bob’s Input Consistency

Technique Complexity Assumption Drawback

DDH ZK O(ns) exp. DDH Efficiency

[Mohassel-R-13] O(s) OTs, O(ns)
encryptions

ROM Complicated

[shelat-Shen-13] O(ns) encryp-
tions

Free-XOR∗ Offline/Online
setting

where n is Bob’s input length, and s is a security parameter.

The goal is to verify consistency ONLY
between good circuits!
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Part 2:

A New Consistency Check
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Start with Standard GCs

AND
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For example ...
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Commit on Input Labels and Masks

AND
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I Orange rectangle = standard commitment.
I Blue rectangle = commitment that also allows decommiting

the XOR of two commitments:
I Given HCom(m),HCom(m′)→ can decommit m ⊕m′.
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The Cut-and-Choose
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Say that Bob’s Input is y = 11
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Repeating the Steps
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Implementing HCom(·) Efficiently [Rabin et al-12]

Committing on m ∈ {0, 1}n

I Pick m0 ∈ {0, 1}n at random. Let m1 = m0 ⊕m.

I Send Com(m0) and Com(m1).

Decommitting XOR of two commitments

Let m1
0,m1

1 and m2
0,m2

1 be the committed values.

I Sender sends M0 = m1
0 ⊕m2

0 and M1 = m1
1 ⊕m2

1.

I Receiver sends a random bit b.

I Sender decommits m1
b and m2

b.

I Receiver verifies that Mb = m1
b ⊕m2

b and outputs M0 ⊕M1.
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Improving Security of XOR Decommitment

Use k pairs of commitments for soundness 2−k .
For example, with k = 4,

m1,1
0 m1,1

1 M1
0 M1

1 m2,1
0 m2,1

1
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0 m1,2

1 M2
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1

m1,3
0 m1,3

1 M3
0 M3

1 m2,3
0 m2,3

1

m1,4
0 m1,4

1 M4
0 M4

1 m2,4
0 m2,4

1

where M i
0 ⊕M i

1 should be the same for i = 1, . . . , 4.
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Performance and Assumptions

Performance.
When the commitment’s message domain is large, the number of
commitments is amortized.

For example, for security parameter k = 40, 80 commitments are
needed. If the message domain is 80-bit long, then the amortized
number of commitments per input bit is 1!

Assumptions.

Option 1: DDH and any Com (but requires additional two
exponentiations per circuit).

Option 2: ROM (without exponentiations).
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Other Advantages

I Much easier to implement than the method of
[Mohassel-R-13].

I Can be used in the Offline/Online 2PC protocols we have (as
opposed to the method of [shelat-Shen-13]).

21 / 34



Other Advantages

I Much easier to implement than the method of
[Mohassel-R-13].

I Can be used in the Offline/Online 2PC protocols we have (as
opposed to the method of [shelat-Shen-13]).

22 / 34



Part 3:

Implementing Online/Offline Yao
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The Offline/Online Setting

Offline stage: Inputs are unknown, but we are willing to work a bit
harder. (The circuit in use is known.)

Online stage(s): Inputs are known, and we wish to compute the
function with minimal latency once an input arrives.

Obviously, the running time of the online stage must depend on
|C |.
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Amortized Cut-and-Choose [Lindell-R-14, Huang et al-14]

Instead of a single 2PC execution, consider N executions. This
allows us to amortize the cost of the checked-circuits over many
executions.

I Amortized complexity of O( s
logN ) garbled circuits per invoked

2PC.

I In the ROM, the communication of the online stage is
independent of |C |. (Very significant in practice!)
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The New Cut-and-Choose: Bob Sends Many GCs

gc1 gc2 gc3 gc4 gc5 gc6 gc7 gc8 gc9
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The New Cut-and-Choose: Checking and Bucketing

gc1 gc2 gc3 gc4 gc5 gc6 gc7 gc8 gc9

CHECK

BUCKET 1

First 2PC

BUCKET 2

Second 2PC

BUCKET 3

Third 2PC
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How Many Circuits Are Needed?

N total #circuits #eval circuit #circuits
per 2PC per 2PC

10 200 11 20
32 351 8 10.96

437 6 13.65
128 998 6 7.79

1143 5 8.92
1024 5627 5 5.49

5689 4 5.55
4096 18005 4 4.39

25600 3 6.25
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We can use the same technique also for checking the cheating
recovery circuits.

I For 32 computations, only 30 garbled circuits are needed on
average per execution.

I For 1024 computations, only 11.76 are needed.

(Recall that [Lindell-13] requires about 125 circuits.)
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Prototype Implementation

I Designed a new protocol based on the protocol of
[Lindell-R-14] and the new input-consistency check protocol.
Heavily optimized in the ROM.

I Most steps are implemented using SCAPI. A number of
CPU-intensive steps are implemented in C.

I Works with the recent OT-extension library of [Asharov et
al-15] and a new library for fixed-key garbling.
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Performance

Circuit #executions
Offline Online

total per 2PC 1 4 8

ADD
32 8325 260 17 15 14

128 19787 155 10 9 11
1024 103170 101 7 7 -

AES
32 12244 383 32 27 25

128 30766 240 21 19 18
1024 159144 155 16 16 14

SHA-1
32 21157 661 71 62 42

128 55762 436 48 - 40
1024 331192 323 37 - 27

All times are in ms. Offline is with 8 threads (and is roughly
20%− 40% slower than with a single thread).
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Four Orders of Magnitude in Six Years

How much has performance of
cut-and-choose 2PC improved over the
years?

2009: 1114 seconds.

2011: 264 seconds.

2012: 1.4 seconds (cluster with 512
nodes, s = 80).

2013: 40 seconds (cluster with 8
nodes, s = 80).

2014: 0.46 seconds (using GPUs).

2015: < 0.2 seconds (and ≤ 32 ms
for online time).

23!

(How much lower can Online/Offline 2PC with GPUs get us?)
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