How to Implement Anything in MPC

Marcel Keller Peter Scholl Nigel Smart

University of Bristol

19 February 2015

How to Implement Anything in MPC

University of Brissol

19 February 2015

- 1. Compiler for MPC circuits
- 2. Implement ORAM as MPC circuit
 - ⇒ Oblivious array / memory
- Execute a set of instructions (small circuits) at every step
 ⇒ Oblivious execution

Oblivious machine

- ▶ 40 Hz with 1000-entry memory
- ▶ 2 Hz with 10⁶-entry memory

Problem:

How to Implement Anything in MPC

University of Bristol

19 February 2015

- 1. Compiler for MPC circuits
- 2. Implement ORAM as MPC circuit
 - ⇒ Oblivious array / memory
- Execute a set of instructions (small circuits) at every step
 ⇒ Oblivious execution

Oblivious machine

- ▶ 40 Hz with 1000-entry memory
- ▶ 2 Hz with 10⁶-entry memory

Problem: "The idea of implementing ORAM within the MPC is not new, and figuring out the details while cumbersome, doesn't seem to require any new ideas or techniques. I was not able to pin down any such ideas or any surprises when implementing ORAM in MPC."

- 1. Compiler for MPC circuits 2 Implement ORAM as MPC circuit
 - → Oblivious array / memory
- 3. Execute a set of instructions (small circuits) at every step → Oblivious execution
- ► 40 Hz with 1000-entry memory ▶ 2 Hz with 10⁶-entry memory
- Problem: "The idea of implementing ORAM within the MPC is not new, and figuring out the details while cumbersome, doesn't seem to require any new ideas or techniques. I was not able to pir down any such ideas or any surprises when implementing ORAM in

How/to/maplement/Anything/in/MPC Malicious-for-free OT Extension and Beyond All You Can OT

Tore Frederiksen¹

Peter Scholl²

Marcel Keller² Emmanuela Orsini²

- ¹Aarhus University
- ²University of Bristol

19 February 2015

Overview

- 1. New correlation check for OT extension
- 2. \mathbb{F}_{2^n} SPDZ triples from OT

OT Extension

Overview Similar Control Contr

2. F2+ SPDZ triples from OT

- 1. κ base OTs
- 2. Extend length with pseudorandom functions
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

OT Extension

Overview Similar Control Contr

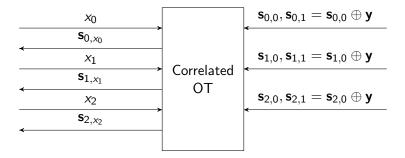
2. F2+ SPDZ triples from OT

- 1. κ base OTs
- 2. Extend length with pseudorandom functions
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation



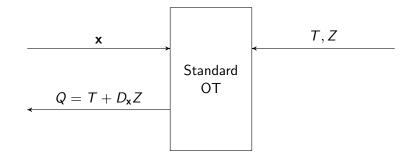
 x_i : selection bit

 $\mathbf{s}_{i,0}, \mathbf{s}_{i,1}$: strings



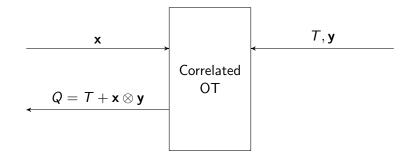
 x_i : selection bit

 $\mathbf{y}, \mathbf{s}_{i,0}, \mathbf{s}_{i,1}$: strings



x: string / vector in $(\mathbb{F}_2)^{\kappa}$ Q, T: matrices in $(\mathbb{F}_2)^{\kappa \times \ell}$

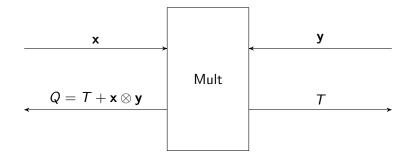
 $D_{\mathbf{x}}$: matrix with diagonal \mathbf{x}



 \mathbf{x}, \mathbf{y} : strings / vectors in $(\mathbb{F}_2)^{\kappa}$ Q, T: matrices in $(\mathbb{F}_2)^{\kappa \times \ell}$

 $D_{\mathbf{x}}$: matrix with diagonal \mathbf{x}

 $\mathbf{x} \otimes \mathbf{y}$: tensor product, matrix of all possible products

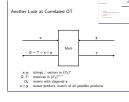


 \mathbf{x}, \mathbf{y} : strings / vectors in $(\mathbb{F}_2)^{\kappa}$ Q, T: matrices in $(\mathbb{F}_2)^{\kappa \times \ell}$

 $D_{\mathbf{x}}$: matrix with diagonal \mathbf{x}

 $\mathbf{x} \otimes \mathbf{y}$: tensor product, matrix of all possible products

Errors in Correlation

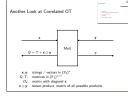


Honest receiver:

$$Q + T = D_{\mathbf{x}}Z = \mathbf{x} \otimes \mathbf{y} = 0$$

$$\begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_1y_4 & x_1y_5 & x_1y_6 & x_1y_7 \\ x_2y_1 & x_2y_2 & x_2y_3 & x_2y_4 & x_2y_5 & x_2y_6 & x_2y_7 \\ x_3y_1 & x_3y_2 & x_3y_3 & x_3y_4 & x_3y_5 & x_3y_6 & x_3y_7 \\ x_4y_1 & x_4y_2 & x_4y_3 & x_4y_4 & x_4y_5 & x_4y_6 & x_4y_7 \\ x_5y_1 & x_5y_2 & x_5y_3 & x_5y_4 & x_5y_5 & x_5y_6 & x_5y_7 \\ x_6y_1 & x_6y_2 & x_6y_3 & x_6y_4 & x_6y_5 & x_6y_6 & x_6y_7 \\ x_7y_1 & x_7y_2 & x_7y_3 & x_7y_4 & x_7y_5 & x_7y_6 & x_7y_7 \end{pmatrix}$$

Errors in Correlation



Dishonest receiver:

$$Q + T = D_{\mathbf{x}}Z = \mathbf{x} \otimes \mathbf{y} + D_{\mathbf{x}}E =$$

$$(x_1y_1 \quad x_1y_2 \quad x_1y_3 \quad x_1y_4 \quad x_1y_5 \quad x_1y_6 \quad x_1y_7 \\ x_2y_1 \quad x_2y_2 \quad x_2y_3 \quad x_2y_4 \quad x_2y_5 \quad x_2y_6 \quad x_2y_7 \\ x_3y_1 \quad x_3y_2 \quad x_3y_3 \quad x_3y_4 \quad x_3 & x_3y_6 \quad x_3y_7 \\ x_4y_1 \quad x_4y_2 \quad x_4y_3 \quad x_4y_4 \quad x_4y_5 \quad x_4y_6 \quad x_4y_7 \\ x_5y_1 \quad x_5 & x_5y_3 \quad x_5y_4 \quad x_5y_5 \quad x_5y_6 \quad x_5y_7 \\ x_6 & x_6y_2 \quad x_6 & x_6 & x_6y_5 \quad x_6y_6 \quad x_6y_7 \\ x_7y_1 \quad x_7y_2 \quad x_7y_3 \quad x_7y_4 \quad x_7y_5 \quad x_7y_6 \quad x_7y_7$$

At least one error in *i*-th row \Rightarrow selective failure attack on x_i

Correlation Check

Honest receiver: $Q + T = \mathbf{x} \otimes \mathbf{y}$ $\Leftrightarrow \mathbf{q}_i + \mathbf{t}_i = y_i \cdot \mathbf{x}$ for all columns of Q, T

Tricks

- ▶ Check random linear combination for $j = 1, ..., \ell$
- ▶ Confuse $(\mathbb{F}_2)^{\kappa}$ and $\mathbb{F}_{2^{\kappa}}$

Protocol

- 1. Sample $\chi_1, \ldots, \chi_\ell$ securely
- 2. Receiver computes and sends $\mathbf{v} = \sum_j \chi_j \cdot \mathbf{t}_j$ and $\mathbf{w} = \sum_j \chi_j \cdot y_j$
- 3. Sender checks whether $\sum_{i} \chi_{j} \cdot \mathbf{q}_{j} + \mathbf{v} = \mathbf{w} \cdot \mathbf{x}$

Sandar charles whether ∑ , v , n ⊥ v = w , v

Dishonest receiver: $Q + T = D_x Z$

- ightharpoonup $\mathbf{z}_1, \ldots, \mathbf{z}_\ell$ columns of Z, not all $(0, \ldots, 0)$ or $(1, \ldots, 1)$
- $ightharpoonup \mathbf{x} * \mathbf{z}_1, \dots, \mathbf{x} * \mathbf{z}_\ell \text{ columns of } D_{\mathbf{x}} Z$

Receiver needs to compute \mathbf{v} , \mathbf{w} such that

$$\mathbf{v} + \mathbf{w} \cdot \mathbf{x} = \sum_{j} \chi_{j} \cdot \mathbf{q}_{j}$$

$$= \sum_{j} \chi_{j} \cdot (\mathbf{t}_{j} + \mathbf{z}_{j} * \mathbf{x})$$

Intuition: Impossible without some guessing about ${\bf x}$ if ${\bf z}_1,\ldots,{\bf z}_\ell$ not all $(0,\ldots,0)$ or $(1,\ldots,1)$

Proof: Not straightforward

Correlation Check III

Receiver needs to compute w such that

$$\mathbf{v} + \mathbf{w} \cdot \mathbf{x} = \sum_{i} \chi_{j} \cdot (\mathbf{t}_{j} + \mathbf{z}_{j} * \mathbf{x})$$

Example

$$\mathbf{z}_j = (1, 0, 1, 0, \dots, 1, 0)$$
 for all j . If $x_1 = x_2, x_3 = x_4, \dots$, $\Rightarrow \mathbf{x} * \mathbf{z}_j = \mathbf{x}/(1+X)$ for all j $\Rightarrow \mathbf{v} = \sum_j \chi_j \cdot \mathbf{t}_j$, $\mathbf{w} = (1+X)^{-1} \cdot \sum_j \chi_j$

Theorem (Almost sufficient)

The receiver can learn whether \mathbf{x} is in some affine $(\kappa - m)$ -dimensional space with success probability 2^{-m} .

Correlation Check – The Other Side

Leakage

 $\sum_{j} \chi_{j} \cdot y_{j}$ gives information about **y**

Solution

Discard enough bits of y

Correlation Check III

Acceptance of the Control of the Con

 $r + \mathbf{w} \cdot \mathbf{x} = \sum_{j} \chi_{j} \cdot (\mathbf{x}_{j} + \mathbf{z}_{j} * \mathbf{x})$

Example $\mathbf{z}_j = (1, 0, 1, 0, \dots, 1, 0)$ for all j. If $\mathbf{x}_1 = \mathbf{x}_2, \mathbf{x}_3 = \mathbf{x}_4, \dots, \mathbf{x}_s = \mathbf{x}_s + \mathbf{x}_1 = \mathbf{x}_1(1+X)$ for all j. $\mathbf{v} = \mathbf{v} = \sum_j \chi_j \cdot \mathbf{t}_j$, $\mathbf{w} = (1+X)^{-1} \cdot \sum_j \chi_j$

Theorem (Almost sufficient)

The receiver can learn whether \mathbf{x} is in some affine $(\kappa-m)$ -dimensional space with success probability 2^{-m}

Experiments

- ▶ 10 million OTs
- ▶ 8 threads

	LAN	WAN
Passive security	3.3258 s	13.1510 s
Active security	3.3516 s	13.4157 s

Correlation Check - The Other Side

Acceptance from the Company of the C

 $\sum_{j} \chi_{j} \cdot y_{j}$ gives information about y Solution Discard enough bits of y

Part II

Beyond – The Road to SPDZ

Amplified Correlated OT

Experiments

- 10 million OTs
- 8 threads

LAN WAN
Passive security 3 3258 s 13150 s

Active security 3516 s 13457 s

TinyOT: Check correlated OT, then amplify SPDZ: Check in sacrificing, amplify first?

Amplification with random matrix $M \in \mathbb{F}_2^{\ell \times 3\ell}$ (honest receiver):

$$\begin{aligned} MQ + MT &= MD_{\mathbf{x}}Z \\ &= M \cdot (\mathbf{x} \otimes \mathbf{y}) \\ &= (M\mathbf{x}) \otimes \mathbf{y} \end{aligned}$$

Amplified Correlated OT

Experiments

* 10 million OTs.

* 8 threads

Fastor security 3.12318 * 131319 s.

Active security 3.13316 * 13437 s.

TinyOT: Check correlated OT, then amplify SPDZ: Check in sacrificing, amplify first?

Amplification with random matrix $M \in \mathbb{F}_2^{\ell \times 3\ell}$ (dishonest receiver):

$$MQ + MT = MD_{x}Z$$

$$= M \cdot (\mathbf{x} \otimes \mathbf{y}) + D_{x}E$$

$$= (M\mathbf{x}) \otimes \mathbf{y} + MD_{x}E$$

Amplification of Errors

Amplified Correlated OT
$$= \pm 0.00$$
 Tay,OT. Check corelated OT, then amplify SFDZ. Onch is association, amplify foot?
$$Amplification with sandom matrix $M \in \mathcal{E}_2^{(M)}$ (debhouse receiver):
$$MQ = MT - M\Omega_{\mathcal{L}} Z$$

$$= M(x \otimes y) + D_{\mathcal{L}} Z$$

$$= (Mx) \otimes y + M\Omega_{\mathcal{L}} Z$$$$

Amplification with random matrix $M \in \mathbb{F}_2^{\ell \times 3\ell}$:

$$MD_{\mathbf{x}}Z = (M\mathbf{x}) \otimes \mathbf{y} + MD_{\mathbf{x}}E =$$

$$M \cdot \begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_1y_4 & x_1y_5 & x_1y_6 & x_1y_7 \\ x_2y_1 & x_2y_2 & x_2y_3 & x_2y_4 & x_2y_5 & x_2y_6 & x_2y_7 \\ x_3y_1 & x_3y_2 & x_3y_3 & x_3y_4 & x_3 & x_3y_6 & x_3y_7 \\ x_4y_1 & x_4y_2 & x_4y_3 & x_4y_4 & x_4y_5 & x_4y_6 & x_4y_7 \\ x_5y_1 & x_5y_2 & x_5y_3 & x_5y_4 & x_5y_5 & x_5y_6 & x_5y_7 \\ x_6y_1 & x_6y_2 & x_6y_3 & x_6y_4 & x_6y_5 & x_6y_6 & x_6y_7 \\ x_7y_1 & x_7y_2 & x_7y_3 & x_7y_4 & x_7y_5 & x_7y_6 & x_7y_7 \end{pmatrix}$$

Few errors: Mx independent of errors with high probability

Many errors: MD_xE has high entropy

⇒ SPDZ sacrifice will fail with high probability

Amplification of Errors

Amplification with random matrix $M \in \mathbb{F}_2^{\ell \times 3\ell}$:

$$MD_{\mathbf{x}}Z = (M\mathbf{x}) \otimes \mathbf{y} + MD_{\mathbf{x}}E =$$

$$M \cdot \begin{pmatrix} x_1 & x_1y_2 & x_1y_3 & x_1y_4 & x_1y_5 & x_1y_6 & x_1y_7 \\ x_2y_1 & x_2y_2 & x_2 & x_2y_4 & x_2y_5 & x_2y_6 & x_2y_7 \\ x_3y_1 & x_3y_2 & x_3y_3 & x_3y_4 & x_3 & x_3y_6 & x_3y_7 \\ x_4y_1 & x_4y_2 & x_4y_3 & x_4y_4 & x_4y_5 & x_4y_6 & x_4y_7 \\ x_5y_1 & x_5 & x_5y_3 & x_5y_4 & x_5y_5 & x_5y_6 & x_5y_7 \\ x_6 & x_6y_2 & x_6 & x_6 & x_6y_5 & x_6y_6 & x_6y_7 \\ x_7y_1 & x_7y_2 & x_7y_3 & x_7y_4 & x_7y_5 & x_7y_6 & x_7y_7 \end{pmatrix}$$

Few errors: Mx independent of errors with high probability

Many errors: MD_xE has high entropy

⇒ SPDZ sacrifice will fail with high probability

Generating \mathbb{F}_{2^n} SPDZ Triples

```
Amplification with random matrix M \in \mathbb{F}_2^{d \times d}.

MD_{ij} = \{(M_i) \in \mathbf{y} : M_i \in \mathbb{F}_2^{d \times d} : M_i \in \mathbb
```

Amplified correlated OT is a two-party tensor product box \Rightarrow Use for every pair of parties

Protocol

- 1. Pairwise amplified OT to get secret-shared triple $[a], [b], [c = a \cdot b]$
- 2. Pairwise leaky correlated OT to get secret-shared MACs $[a \cdot \Delta], [b \cdot \Delta], [c \cdot \Delta]$
- 3. Improved SPDZ sacrifice (error detection)

Running Time

Estimate: 200 times faster than SPDZ for \mathbb{F}_{2^n}

Generating \mathbb{F}_{2^n} SPDZ Triples

```
Amplification of Errors

Anglification with random mutrix <math>M \in \mathbb{F}_2^{l \times N}.

AD_{ij} = \{(M_i) \otimes_j + MD_i, E = \begin{cases} -1 & M_i & M_i = 1 \\ -1 & M_i & M_j = 1 & M_j & M_j & M_j & M_j = 1 \\ -1 & M_j & M_j = 1 & M_j & M_j & M_j = 1 \\ -1 & M_j & M_j = 1 & M_j & M_j & M_j & M_j = 1 \\ -1 & M_j & M_j = 1 & M_j & M_j & M_j & M_j = 1 \\ -1 & M_j & M_j = 1 & M_j & M_j & M_j & M_j = 1 \\ -1 & M_j & M_j = 1 & M_j & M_j & M_j & M_j = 1 \\ -1 & M_j & M_j = 1 & M_j & M_j & M_j & M_j = 1 \\ -1 & M_j = 1 \\ -1 & M_j = 1 \\ -1 & M_j \\ -1 & M_j \\ -1 & M_j \\ -1 & M_j \\ -1 & M_j \\ -1 & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_j & M_j & M_j \\ -1 & M_j & M_
```

Protocol

- 1. Pairwise amplified OT to get secret-shared triple
- 2. Pairwise leaky correlated OT to get secret-shared MACs
- 3. Improved SPDZ sacrifice (error detection)

Attacks

- Cheating in amplified OT:
 Erased by amplification or fail error detection
- Cheating in leaky correlated OT:
 Some bits of MAC key are leaked. Not an issue because complete leakage succeeds only with negligible probability
- ▶ Use different inputs for different parties: fail error detectin

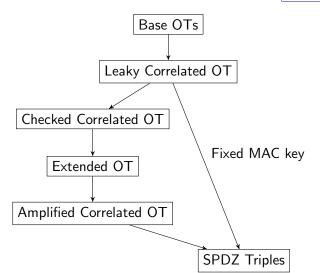
Toolchain

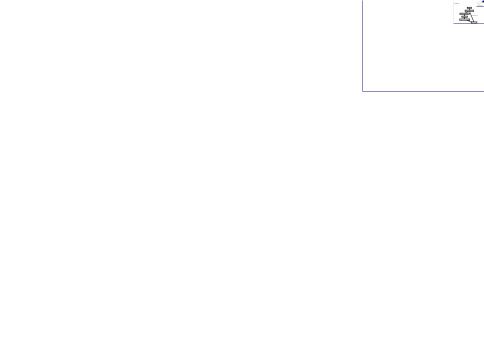
- Protocol

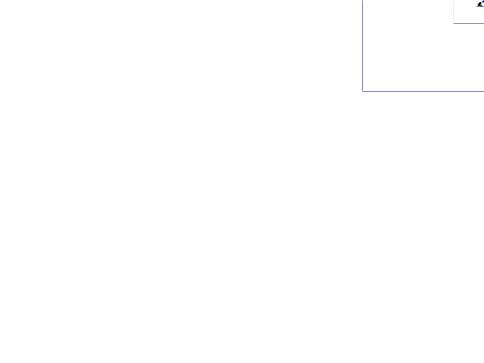
 1. Pairwise amplified OT to get secret-shared triple
- Pairwise leaky correlated OT to get secret-shared MACs
 Improved SPDZ sacrifice (error detection)
- ttacks
- Cheating in amplified OT: Erased by amplification or fail error detection
- Cheating in leaky correlated OT:

 Some bits of MAC key are leaked. Not an issue because complete leakage succeeds only with negligible probability.

 Use different insults for different pacties: fail error detectin







Field Multiplication from Tensor Product

$$(1, X, X^2, \dots) \cdot (\mathbf{x} \otimes \mathbf{y}) \cdot (1, X, X^2, \dots)^{\top} =$$

$$= x_1y_1 + (x_1y_2 + x_2y_1) \cdot X + (x_1y_3 + x_2y_2 + x_3y_1) \cdot X^2 + \dots$$

$$= \mathbf{x} \cdot \mathbf{y}$$

Hashing Step

Field Multiplication from Tensor Product
$$(1, X, X^2, \dots) \cdot (x \otimes y) \cdot (1, X, X^2, \dots)^T =$$

$$(1 \ X \ X^2 \ \dots) \cdot \begin{pmatrix} x_1 & x_1 & x_2 & x_1 \\ x_2 & x_2 & x_2 & x_3 \\ x_3 & x_3 & x_3 & x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ X \\ X^2 \\ \vdots \\ x_n & x_n & x_n \end{pmatrix} \cdot \begin{pmatrix} 1 \\ X \\ X^2 \\ \vdots \\ x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n \end{pmatrix} \cdot \begin{pmatrix} 1 \\ X \\ X^2 \\ \vdots \\ X^n \\ \vdots \\ x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n & x_n & x_n & x_n \\ \vdots \\ x_n & x_n &$$

Extended random OT: j-th input is $H(\mathbf{q}_j)$ and $H(\mathbf{q}_j + \mathbf{x})$

$$H(\mathbf{q}_j) = H(\mathbf{t}_j + \mathbf{x} * \mathbf{z}_j)$$

 $H(\mathbf{q}_j + \mathbf{x}) = H(\mathbf{t}_j + \mathbf{x} * \overline{\mathbf{z}_j})$

Theorem (Sufficient)

If the check passes with probability 2^{-m} , then $\kappa - m$ bits of either $\mathbf{x} * \mathbf{z}_j$ or $\mathbf{x} * \overline{\mathbf{z}_j}$ remain unknown to the sender of the base OT / receiver of the extended OT.