
SCAPI

The Secure Computation Application Programming Interface
https://github.com/cryptobiu/scapi

Yehuda Lindell

Software Team: Moriya Farbstein and Meital Levy

Bar-Ilan University

Thursday February 19, 2015
5th BIU Winter School

Yehuda Lindell SCAPI 19/2/2015 1 / 36



Implementing Secure Computation

I A typical protocol uses:
I Oblivious transfer
I Commitments
I Zero knowledge
I Circuits
I And more...

Implementing a protocol (well) is a very big project

I There exist general-purpose cryptographic libraries (cryptopp,
OpenSSL, BouncyCastle,...) but they are focused on secure
communication

I There are libraries for secure computation, but are mostly
either:

I Not open source
I Not maintained and supported
I Suitable for quick prototyping

Yehuda Lindell SCAPI 19/2/2015 2 / 36



Implementing Secure Computation

I A typical protocol uses:
I Oblivious transfer
I Commitments
I Zero knowledge
I Circuits
I And more...

Implementing a protocol (well) is a very big project

I There exist general-purpose cryptographic libraries (cryptopp,
OpenSSL, BouncyCastle,...) but they are focused on secure
communication

I There are libraries for secure computation, but are mostly
either:

I Not open source
I Not maintained and supported
I Suitable for quick prototyping

Yehuda Lindell SCAPI 19/2/2015 2 / 36



Implementing Secure Computation

I A typical protocol uses:
I Oblivious transfer
I Commitments
I Zero knowledge
I Circuits
I And more...

Implementing a protocol (well) is a very big project

I There exist general-purpose cryptographic libraries (cryptopp,
OpenSSL, BouncyCastle,...) but they are focused on secure
communication

I There are libraries for secure computation, but are mostly
either:

I Not open source
I Not maintained and supported
I Suitable for quick prototyping

Yehuda Lindell SCAPI 19/2/2015 2 / 36



Implementation of Secure Computation

I Most academic implementation projects are aimed at solving a
specific problem

I More efficiently
I With better security

I SCAPI is an implementation project with no specific problem
in mind

I SCAPI is a general-purpose secure computation library
(infrastructure)

Yehuda Lindell SCAPI 19/2/2015 3 / 36



Implementation of Secure Computation

I Most academic implementation projects are aimed at solving a
specific problem

I More efficiently
I With better security

I SCAPI is an implementation project with no specific problem
in mind

I SCAPI is a general-purpose secure computation library
(infrastructure)

Yehuda Lindell SCAPI 19/2/2015 3 / 36



SCAPI Basics

I An open-source project:
https://www.github.com/cryptobiu/scapi

I Long-term commitment (as long as we have money) to:
I Provide support to SCAPI users
I Fix bugs
I Improve existing implementations (efficiency, security)
I Add functionality: protocols, primitives, etc.

I We are happy to receive code contributions

Yehuda Lindell SCAPI 19/2/2015 4 / 36

https://www.github.com/cryptobiu/scapi


SCAPI Basics

I An open-source project:
https://www.github.com/cryptobiu/scapi

I Long-term commitment (as long as we have money) to:
I Provide support to SCAPI users
I Fix bugs
I Improve existing implementations (efficiency, security)
I Add functionality: protocols, primitives, etc.

I We are happy to receive code contributions

Yehuda Lindell SCAPI 19/2/2015 4 / 36

https://www.github.com/cryptobiu/scapi


Basic Design Decisions

I SCAPI is written in Java
I Suitable for large projects, and quick implementation
I Portability (e.g., secure computation between a mobile device

and a server)
I Existing libraries (e.g., Bouncy Castle)

I The JNI framework: can use libraries and primitives written in
native code (and thus inherit their efficiency):

I OpenSSL
I Miracl
I Cryptopp

Yehuda Lindell SCAPI 19/2/2015 5 / 36



Basic Design Decisions

I SCAPI is written in Java
I Suitable for large projects, and quick implementation
I Portability (e.g., secure computation between a mobile device

and a server)
I Existing libraries (e.g., Bouncy Castle)

I The JNI framework: can use libraries and primitives written in
native code (and thus inherit their efficiency):

I OpenSSL
I Miracl
I Cryptopp

Yehuda Lindell SCAPI 19/2/2015 5 / 36



Design Principle 1 – Flexibility

I Cryptographers write protocols in abstract terms (OT,
commitment, PRF, etc.)

I SCAPI encourages implementation at this abstract level

I How does it work?
I SCAPI defines interfaces that represent cryptographic

primitives
I A protocol that uses OT, commitment and a group in which

DDH is assumed to be hard receives objects of these types in
its constructor

I The application calling the protocol instantiates the
appropriate concrete objects and hands them to the protocol

I A protocol can receive
I Any pseudorandom permutation (using the PRP interface)
I Any AES implementation (using the AES interface)
I AES from a specific library

Yehuda Lindell SCAPI 19/2/2015 6 / 36



Design Principle 1 – Flexibility

I Cryptographers write protocols in abstract terms (OT,
commitment, PRF, etc.)

I SCAPI encourages implementation at this abstract level
I How does it work?

I SCAPI defines interfaces that represent cryptographic
primitives

I A protocol that uses OT, commitment and a group in which
DDH is assumed to be hard receives objects of these types in
its constructor

I The application calling the protocol instantiates the
appropriate concrete objects and hands them to the protocol

I A protocol can receive
I Any pseudorandom permutation (using the PRP interface)
I Any AES implementation (using the AES interface)
I AES from a specific library

Yehuda Lindell SCAPI 19/2/2015 6 / 36



Design Principle 1 – Flexibility

I Cryptographers write protocols in abstract terms (OT,
commitment, PRF, etc.)

I SCAPI encourages implementation at this abstract level
I How does it work?

I SCAPI defines interfaces that represent cryptographic
primitives

I A protocol that uses OT, commitment and a group in which
DDH is assumed to be hard receives objects of these types in
its constructor

I The application calling the protocol instantiates the
appropriate concrete objects and hands them to the protocol

I A protocol can receive
I Any pseudorandom permutation (using the PRP interface)
I Any AES implementation (using the AES interface)
I AES from a specific library

Yehuda Lindell SCAPI 19/2/2015 6 / 36



Design Principle 1 – Flexibility

I The protocol code is independent of actual primitives
I Can easily compare the ramification of using different elliptic

curve groups (for example)
I The same code can run on a mobile device (in Java) and on a

PC (using native code via JNI)
I Don’t need to reimplement or suffer the inefficiency of

Java-only on a PC

I Primitives or libraries added later can be utilized by
previously-implemented protocols (extendibility and efficiency –
next)

Yehuda Lindell SCAPI 19/2/2015 7 / 36



On Comparing Primitives

I It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

I But not all primitives are comparable in this way:

I Some are based on less established assumptions (if they are
much faster, then maybe it’s worth it, but if they only improve
the overall time by a little, then maybe not)

I Some are better for some operations and worse for others:
Koblitz curves are faster for regular multiplications, but are
slower when a fixed base is used

I In a protocol where regular exponentiations are mixed with
fixed-base exponentiations, it’s not necessarily easy to know
what is best, until you try...

Yehuda Lindell SCAPI 19/2/2015 8 / 36



On Comparing Primitives

I It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

I But not all primitives are comparable in this way:

I Some are based on less established assumptions (if they are
much faster, then maybe it’s worth it, but if they only improve
the overall time by a little, then maybe not)

I Some are better for some operations and worse for others:
Koblitz curves are faster for regular multiplications, but are
slower when a fixed base is used

I In a protocol where regular exponentiations are mixed with
fixed-base exponentiations, it’s not necessarily easy to know
what is best, until you try...

Yehuda Lindell SCAPI 19/2/2015 8 / 36



On Comparing Primitives

I It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

I But not all primitives are comparable in this way:
I Some are based on less established assumptions (if they are

much faster, then maybe it’s worth it, but if they only improve
the overall time by a little, then maybe not)

I Some are better for some operations and worse for others:
Koblitz curves are faster for regular multiplications, but are
slower when a fixed base is used

I In a protocol where regular exponentiations are mixed with
fixed-base exponentiations, it’s not necessarily easy to know
what is best, until you try...

Yehuda Lindell SCAPI 19/2/2015 8 / 36



On Comparing Primitives

I It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

I But not all primitives are comparable in this way:
I Some are based on less established assumptions (if they are

much faster, then maybe it’s worth it, but if they only improve
the overall time by a little, then maybe not)

I Some are better for some operations and worse for others:
Koblitz curves are faster for regular multiplications, but are
slower when a fixed base is used

I In a protocol where regular exponentiations are mixed with
fixed-base exponentiations, it’s not necessarily easy to know
what is best, until you try...

Yehuda Lindell SCAPI 19/2/2015 8 / 36



Design Principle 2 – Extendibility

I SCAPI is a general infrastructure and so it’s important that
new implementations can be added later

I Every primitive has an interface
I Any future implementation of a primitive just needs to

implement the interface

Yehuda Lindell SCAPI 19/2/2015 9 / 36



Design Principle 2 – Extendibility
Example 1 – Oblivious Transfer

I Seven years ago, OT with security against malicious
adversaries was horribly inefficient

I We now have highly efficient protocols for this
I Higher level protocols that use OT that were previously

implemented need to be changed
I This change can be trivial, but may also require working over a

different type of group altogether and so can involve many
changes

I In SCAPI, the new OT can be utilized by all protocols that
were implemented at the appropriate level of abstraction

Yehuda Lindell SCAPI 19/2/2015 10 / 36



Design Principle 2 – Extendibility
Example 2 – Libraries

I We have incorporated primitives from Bouncy Castle,
OpenSSL, Crypto++, and Miracl

I Assume that a new, faster, more secure library for elliptic
curve operations is released

I All that needs to be done is to write a SCAPI wrapper for the
library and all existing protocols can take advantage of the new
library

Yehuda Lindell SCAPI 19/2/2015 11 / 36



Design Principle 3 – Efficiency

I Any infrastructure for secure computation protocols must take
efficiency into account

I SCAPI achieves high efficiency via JNI and wrapping fast
low-level libraries (the overhead of JNI is very small)

I There is no doubt that implementing an entire protocol in C
and optimizing at a low level will give better results

I But with SCAPI you still get fast implementations that are
quicker to implement, modular, suitable for reuse, and so on

I Sometimes, SCAPI wraps a large computation written in
native code (garbling, OT extension)

Yehuda Lindell SCAPI 19/2/2015 12 / 36



Design Principle 3 – Efficiency

I Any infrastructure for secure computation protocols must take
efficiency into account

I SCAPI achieves high efficiency via JNI and wrapping fast
low-level libraries (the overhead of JNI is very small)

I There is no doubt that implementing an entire protocol in C
and optimizing at a low level will give better results

I But with SCAPI you still get fast implementations that are
quicker to implement, modular, suitable for reuse, and so on

I Sometimes, SCAPI wraps a large computation written in
native code (garbling, OT extension)

Yehuda Lindell SCAPI 19/2/2015 12 / 36



Ease of Use

I Most cryptographic libraries are tailored for encryption and
authentication, and not secure computation

I Low-level group operations are typically buried deep down as
utilities

I Libraries don’t use the terminology that we are used to
I Forcing a decision about which concrete implementation to use

at the onset is problematic since inefficiencies are often hard to
predict

I SCAPI is documented, commented and (hopefully) written
clearly – it was written explicitly with other users in mind
see: http://scapi.readthedocs.org

Yehuda Lindell SCAPI 19/2/2015 13 / 36

http://scapi.readthedocs.org


Ease of Use

I Most cryptographic libraries are tailored for encryption and
authentication, and not secure computation

I Low-level group operations are typically buried deep down as
utilities

I Libraries don’t use the terminology that we are used to
I Forcing a decision about which concrete implementation to use

at the onset is problematic since inefficiencies are often hard to
predict

I SCAPI is documented, commented and (hopefully) written
clearly – it was written explicitly with other users in mind
see: http://scapi.readthedocs.org

Yehuda Lindell SCAPI 19/2/2015 13 / 36

http://scapi.readthedocs.org


Security Levels

I Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function

I The theorem stating security of the protocol would say:
I Assume that DDH is hard in the group, the commitment is

perfectly binding, and the hash function is collision resistant.
I Then, the OT protocol is secure.

I How does SCAPI differentiate between:
I A group in which CDH is hard but DDH is not
I A commitment scheme which is perfectly binding versus

perfectly hiding versus something else
I A hash function which is target collision resistant but not

collision resistant

Yehuda Lindell SCAPI 19/2/2015 14 / 36



Security Levels

I Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function

I The theorem stating security of the protocol would say:
I Assume that DDH is hard in the group, the commitment is

perfectly binding, and the hash function is collision resistant.
I Then, the OT protocol is secure.

I How does SCAPI differentiate between:
I A group in which CDH is hard but DDH is not
I A commitment scheme which is perfectly binding versus

perfectly hiding versus something else
I A hash function which is target collision resistant but not

collision resistant

Yehuda Lindell SCAPI 19/2/2015 14 / 36



Security Levels

I Consider a protocol that uses any asymmetric encryption
scheme that is NM-CCA1 (non-malleable under CCA1
attacks)

I Can the protocol use Cramer-Shoup (which is CCA2-secure)?
I If the protocol is written so that it works with any asymmetric

encryption scheme, then what happens if it is given a
CPA-secure scheme instead?

Yehuda Lindell SCAPI 19/2/2015 15 / 36



Security Levels

I Consider a protocol that uses any asymmetric encryption
scheme that is NM-CCA1 (non-malleable under CCA1
attacks)

I Can the protocol use Cramer-Shoup (which is CCA2-secure)?

I If the protocol is written so that it works with any asymmetric
encryption scheme, then what happens if it is given a
CPA-secure scheme instead?

Yehuda Lindell SCAPI 19/2/2015 15 / 36



Security Levels

I Consider a protocol that uses any asymmetric encryption
scheme that is NM-CCA1 (non-malleable under CCA1
attacks)

I Can the protocol use Cramer-Shoup (which is CCA2-secure)?
I If the protocol is written so that it works with any asymmetric

encryption scheme, then what happens if it is given a
CPA-secure scheme instead?

Yehuda Lindell SCAPI 19/2/2015 15 / 36



Security Levels

SCAPI defines hierarchies of interfaces for security levels

Yehuda Lindell SCAPI 19/2/2015 16 / 36



Security Level Use

I The OT protocol receives a dlog group, commitment and hash
function in its constructor

I It checks that:
I The dlog group is an instance of DDH
I The commitment is an instance of PerfectBinding
I The hash function is an instance of CollisionResistant

I Security levels will be defined for protocols (semi-honest,
covert, malicious, stand-alone, UC secure, and so on)

Yehuda Lindell SCAPI 19/2/2015 17 / 36



Layers and Primitives

SCAPI has three layers

I Basic primitives

I Non-interactive schemes

I Interactive protocols (not in the current release)

Yehuda Lindell SCAPI 19/2/2015 18 / 36



Layer 1 – Basic Primitives

I Most of the code at this level is wrappers
I The exceptions: HKDF, universal hash, Luby-Rackoff, and

more

I This layer provides a common interface for low-level libraries
I Same interface for Bouncy Castle, Crypto++, OpenSSL,

Miracl (and whatever else in the future)

I This provides the flexibility and extendibility that we discussed

Yehuda Lindell SCAPI 19/2/2015 19 / 36



Layer 1 – Basic Primitives

I Different levels of abstraction
I A protocol can be written using any

I PRF
I PRP
I AES (from any library)
I AES from a specific library (not a good idea)

Yehuda Lindell SCAPI 19/2/2015 20 / 36



Layer 1 – Implemented Primitives

I Pseudorandom functions and permutations
I Fixed lengths, varying lengths, etc.

I Cryptographic hash functions

I Universal hash functions

I Trapdoor permutations

I Pseudorandom generators

I Key derivation functions
I Discrete log groups

I This has the most novelty – the same API exists for groups
based on Zp∗ and elliptic curves, and for elliptic curves over a
prime-order field or a binary field, and for Koblitz curves...

Yehuda Lindell SCAPI 19/2/2015 21 / 36



Layer 2 – Non-Interactive Schemes

I Essentially encryption, signatures and MACs
I Commitments are not included since they are also interactive

I Asymmetric schemes implemented:
I RSA-OAEP (BC and Crypto++)
I El Gamal over any dlog group

I Encryption of group element or byte array (former is
important for proving ZK statements about the ciphertext)

I Cramer-Shoup over any dlog group
I As above, encryption of group element or byte array

I Damg̊ard-Jurik

I Other standard schemes: AES with CBC or CTR, CBC-MAC,
DSA and RSA signatures, and so on

Yehuda Lindell SCAPI 19/2/2015 22 / 36



Layer 3 – Interactive Protocols

I Sigma protocols
I Over 10 common protocols (DLOG, DDH, Jurik-Damg̊ard and

more)
I Operations: AND of multiple statements, OR or two or more

statements, transformation to ZK and ZKPOK, Fiat-Shamir to
NIZK, transformation to UCZK

I Commitments
I Pedersen, ElGamal, hash-based, equivocal, extractable, fully

trapdoor, homomorphic, non-malleable, UC

Yehuda Lindell SCAPI 19/2/2015 23 / 36



Layer 3 – Interactive Protocols

I Oblivious transfer
I Semi-honest

I Stand-alone (Naor-Pinkas optimized)
I OT extension (ACM CCS 2013 version)

I Malicious
I Privacy only
I One-sided simulation
I Full simulation – stand-alone
I UC secure
I OT extension (to be added soon)

I Garbled circuits
I Basic and optimized (free XOR, fixed AES, etc.)

I Coin tossing (single bit, string, semi-simulatable)

Yehuda Lindell SCAPI 19/2/2015 24 / 36



Layer 3 – Interactive Protocols

Plans for the future:

I Improvements on existing protocols

I Adding new functionality

I Improving overall infrastructure (e.g., the communication layer
was just improved to add Queue functionality as well as
Socket)

Yehuda Lindell SCAPI 19/2/2015 25 / 36



Example Usage
The Cramer-Shoup Encryption Scheme

public interface CramerShoupDDHEnc extends AsymmetricEnc, Cca2 {

}

public CramerShoupAbs(DlogGroup dlogGroup, CryptographicHash hash, SecureRandom random){

//The Cramer-Shoup encryption scheme must work with a Dlog Group that has DDH security level

//and a Hash function that has CollisionResistant security level. If any of this conditions is not

//met then cannot construct an object of type Cramer-Shoup encryption scheme; therefore throw exception.

if(!(dlogGroup instanceof DDH)){

throw new IllegalArgumentException("The Dlog group has to have DDH security level");

}

if(!(hash instanceof CollisionResistant)){

throw new IllegalArgumentException("The hash function has to have CollisionResistant security level");

}

// Everything is correct, then sets the member variables and creates object.

this.dlogGroup = dlogGroup;

qMinusOne = dlogGroup.getOrder().subtract(BigInteger.ONE);

this.hash = hash;

this.random = random;

}

Yehuda Lindell SCAPI 19/2/2015 26 / 36



Example Usage
The Cramer-Shoup Encryption Scheme

public AsymmetricCiphertext encrypt(Plaintext plaintext){

/* Choose a random r in Zq; calculate u1 = g1^r, u2 = g2^r, e = (h^r)*msgEl

* Convert u1, u2, e to byte[] using the dlogGroup

* Compute alpha - the result of computing the hash function on the concatenation u1+u2+e.

* Calculate v = c^r * d^(r*alpha)

* Create and return an CramerShoupCiphertext object with u1, u2, e and v. */

...

GroupElement msgElement = ((GroupElementPlaintext) plaintext).getElement();

BigInteger r = chooseRandomR(); //Choose a random value between 0 and q-1 (q = group order)

GroupElement u1 = calcU1(r); //Does: dlogGroup.exponentiate(publicKey.getGenerator1(), r);

GroupElement u2 = calcU2(r); //Does: dlogGroup.exponentiate(publicKey.getGenerator(), r);

GroupElement hExpr = calcHExpR(r); //Does: dlogGroup.exponentiate(publicKey.getH(), r);

GroupElement e = dlogGroup.multiplyGroupElements(hExpr, msgElement);

byte[] u1ToByteArray = dlogGroup.mapAnyGroupElementToByteArray(u1);

byte[] u2ToByteArray = dlogGroup.mapAnyGroupElementToByteArray(u2);

byte[] eToByteArray = dlogGroup.mapAnyGroupElementToByteArray(e);

//Calculates the hash(u1 + u2 + e).

byte[] alpha = calcAlpha(u1ToByteArray, u2ToByteArray, eToByteArray);

GroupElement v = calcV(r, alpha); //Calculates v = c^r * d^(r*alpha).

//Creates and return an CramerShoupCiphertext object with u1, u2, e and v.

CramerShoupOnGroupElementCiphertext cipher = new CramerShoupOnGroupElementCiphertext(u1, u2, e, v);

return cipher;

}

Yehuda Lindell SCAPI 19/2/2015 27 / 36



Example Usage
The Cramer-Shoup Encryption Scheme

public static void main(String[] args) throws FactoriesException {

...

// Get parameters from config file:

CramerShoupTestConfig[] config = readConfigFile();

...

for (int i = 0; i < config.length; i++) {

result = runTest(config[i]);

out.println(result);

System.out.println(result);

}

...

}

Example from configuration file:

dlogGroup = DlogZpSafePrime

dlogProvider = CryptoPP

algorithmParameterSpec = 1024

hash = SHA-256

providerHash = BC

numTimesToEnc = 1000

dlogGroup = DlogECFp

dlogProvider = BC

algorithmParameterSpec = P-224

hash = SHA-1

providerHash = BC

numTimesToEnc = 1000

dlogGroup = DlogECFp

dlogProvider = Miracl

algorithmParameterSpec = P-224

hash = SHA-1

providerHash = BC

numTimesToEnc = 1000

Yehuda Lindell SCAPI 19/2/2015 28 / 36



Example Usage
The Cramer-Shoup Encryption Scheme

static public String runTest(CramerShoupTestConfig config) throws FactoriesException{

DlogGroup dlogGroup;

//Create the requested Dlog Group object. Do this via the factory.

//If no provider specified, take the SCAPI-defined default provider.

if(config.dlogProvider != null){

dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+

"("+config.algorithmParameterSpec+")", config.dlogProvider);

}else {

dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+

"("+config.algorithmParameterSpec+")");

}

CryptographicHash hash;

//Create the requested hash. Do this via the factory.

if(config.hashProvider != null){

hash = CryptographicHashFactory.getInstance().getObject(config.hash, config.hashProvider);

}else {

hash = CryptographicHashFactory.getInstance().getObject(config.hash);

}

//Create a random group element. This element will be encrypted several times as specified in

//config file and decrypted several times

GroupElement gEl = dlogGroup.createRandomElement();

//Create a Cramer Shoup Encryption/Decryption object. Do this directly by calling the relevant

//constructor. (Can be done instead via the factory).

ScCramerShoupDDHOnGroupElement enc = new ScCramerShoupDDHOnGroupElement(dlogGroup, hash);

Yehuda Lindell SCAPI 19/2/2015 29 / 36



Example Usage
The Cramer-Shoup Encryption Scheme

//Generate and set a suitable key.

KeyPair keyPair = enc.generateKey();

try {

enc.setKey(keyPair.getPublic(),keyPair.getPrivate());

} catch (InvalidKeyException e) {

e.printStackTrace();

}

//Wrap the group element we want to encrypt with a Plaintext object.

Plaintext plainText = new GroupElementPlaintext(gEl);

AsymmetricCiphertext cipher = null;

//Measure the time it takes to encrypt each time. Calculate and output the average running time.

long allTimes = 0;

long start = System.currentTimeMillis();

long stop = 0;

long duration = 0;

int encTestTimes = new Integer(config.numTimesToEnc).intValue();

for(int i = 0; i < encTestTimes; i++){

cipher = enc.encrypt(plainText);

stop = System.currentTimeMillis();

duration = stop - start;

start = stop;

allTimes += duration;

}

double encAvgTime = (double)allTimes/(double)encTestTimes;

//Repeat for decryption...

...

return result;

}

Yehuda Lindell SCAPI 19/2/2015 30 / 36



Results – Average of 1000 Runs
The Cramer-Shoup Encryption Scheme

Dlog Group

Type

Dlog

Provider

Dlog

Param
Hash

Function
Hash

Provider

Encrypt

Time (ms)

Decrypt

Time (ms)

DlogZpSafePrime CryptoPP 1024 SHA-256 BC 6.072 3.665

DlogZpSafePrime CryptoPP 2048 SHA-256 BC 43.818 26.289

DlogECFp BC P-224 SHA-1 BC 54.171 31.662

DlogECF2m BC B-233 SHA-1 BC 107.316 65.185

DlogECF2m BC K-233 SHA-1 BC 25.292 14.886

DlogECFp Miracl P-224 SHA-1 BC 6.571 3.929

DlogECF2m Miracl B-233 SHA-1 BC 5.819 3.652

DlogECF2m Miracl K-233 SHA-1 BC 2.753 1.787

Yehuda Lindell SCAPI 19/2/2015 31 / 36



Garbled Circuit Example

Yehuda Lindell SCAPI 19/2/2015 32 / 36



Zero Knowledge Prover Example

Yehuda Lindell SCAPI 19/2/2015 33 / 36



Zero Knowledge Verifier Example

Yehuda Lindell SCAPI 19/2/2015 34 / 36



Proving Different Languages

Replace:

with:

Yehuda Lindell SCAPI 19/2/2015 35 / 36



Summary

I SCAPI is an open-source library for secure computation
implementations

I Currently, the focus is on primitives for the no honest-majority
setting (the vision is to add honest-majority tools as well)

I We plan on supporting SCAPI in the long term
I Help to users
I Bug fixes
I Improve existing code
I Expand code base

Yehuda Lindell SCAPI 19/2/2015 36 / 36


