SCAPI

The Secure Computation Application Programming Interface
https://github.com/cryptobiu/scapi

Yehuda Lindell

Software Team: Moriya Farbstein and Meital Levy
Bar-llan University

Thursday February 19, 2015
5th BIU Winter School



Implementing Secure Computation

> A typical protocol uses:

» Oblivious transfer
Commitments
Zero knowledge
Circuits

And more...

vV vy VvVyy

Implementing a protocol (well) is a very big project



Implementing Secure Computation

> A typical protocol uses:
» Oblivious transfer

Commitments

Zero knowledge

Circuits

And more...

vV vy VvVyy

Implementing a protocol (well) is a very big project

» There exist general-purpose cryptographic libraries (cryptopp,
OpenSSL, BouncyCastle,...) but they are focused on secure
communication



Implementing Secure Computation

> A typical protocol uses:
» Oblivious transfer

Commitments

Zero knowledge

Circuits

And more...

vV vy VvVyy

Implementing a protocol (well) is a very big project

» There exist general-purpose cryptographic libraries (cryptopp,
OpenSSL, BouncyCastle,...) but they are focused on secure
communication

» There are libraries for secure computation, but are mostly
either:

» Not open source
» Not maintained and supported
» Suitable for quick prototyping



Implementation of Secure Computation

» Most academic implementation projects are aimed at solving a
specific problem
» More efficiently
» With better security



Implementation of Secure Computation

» Most academic implementation projects are aimed at solving a
specific problem
» More efficiently
» With better security
» SCAPI is an implementation project with no specific problem
in mind
» SCAPI is a general-purpose secure computation library
(infrastructure)



SCAPI Basics

> An open-source project:
https://www.github.com/cryptobiu/scapi
» Long-term commitment (as long as we have money) to:
» Provide support to SCAPI users
» Fix bugs
» Improve existing implementations (efficiency, security)
» Add functionality: protocols, primitives, etc.


https://www.github.com/cryptobiu/scapi

SCAPI Basics

> An open-source project:
https://www.github.com/cryptobiu/scapi
» Long-term commitment (as long as we have money) to:
» Provide support to SCAPI users
» Fix bugs
» Improve existing implementations (efficiency, security)
» Add functionality: protocols, primitives, etc.

» We are happy to receive code contributions


https://www.github.com/cryptobiu/scapi

Basic Design Decisions

» SCAPI is written in Java
» Suitable for large projects, and quick implementation
» Portability (e.g., secure computation between a mobile device
and a server)
» Existing libraries (e.g., Bouncy Castle)



Basic Design Decisions

» SCAPI is written in Java
» Suitable for large projects, and quick implementation
» Portability (e.g., secure computation between a mobile device
and a server)
» Existing libraries (e.g., Bouncy Castle)

» The JNI framework: can use libraries and primitives written in
native code (and thus inherit their efficiency):
» OpenSSL
» Miracl
» Cryptopp



Design Principle 1 — Flexibility

» Cryptographers write protocols in abstract terms (OT,
commitment, PRF, etc.)

» SCAPI encourages implementation at this abstract level



Design Principle 1 — Flexibility

» Cryptographers write protocols in abstract terms (OT,
commitment, PRF, etc.)

» SCAPI encourages implementation at this abstract level
» How does it work?

» SCAPI defines interfaces that represent cryptographic
primitives

» A protocol that uses OT, commitment and a group in which
DDH is assumed to be hard receives objects of these types in
its constructor

» The application calling the protocol instantiates the
appropriate concrete objects and hands them to the protocol



Design Principle 1 — Flexibility

» Cryptographers write protocols in abstract terms (OT,
commitment, PRF, etc.)

» SCAPI encourages implementation at this abstract level

» How does it work?

» SCAPI defines interfaces that represent cryptographic
primitives
» A protocol that uses OT, commitment and a group in which
DDH is assumed to be hard receives objects of these types in
its constructor
» The application calling the protocol instantiates the
appropriate concrete objects and hands them to the protocol
» A protocol can receive
> Any pseudorandom permutation (using the PRP interface)
> Any AES implementation (using the AES interface)
» AES from a specific library



Design Principle 1 — Flexibility

» The protocol code is independent of actual primitives
» Can easily compare the ramification of using different elliptic

curve groups (for example)
» The same code can run on a mobile device (in Java) and on a

PC (using native code via JNI)
» Don't need to reimplement or suffer the inefficiency of
Java-only on a PC
» Primitives or libraries added later can be utilized by
previously-implemented protocols (extendibility and efficiency —
next)



On Comparing Primitives

» It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting



On Comparing Primitives

» It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

» But not all primitives are comparable in this way:



On Comparing Primitives

» It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

» But not all primitives are comparable in this way:

» Some are based on less established assumptions (if they are

much faster, then maybe it's worth it, but if they only improve
the overall time by a little, then maybe not)



On Comparing Primitives

» It may seem that one should always just use the “fastest
primitive”, in which case the ability to compare different
elliptic curve groups is not really interesting

» But not all primitives are comparable in this way:

» Some are based on less established assumptions (if they are
much faster, then maybe it's worth it, but if they only improve
the overall time by a little, then maybe not)

» Some are better for some operations and worse for others:

Koblitz curves are faster for regular multiplications, but are
slower when a fixed base is used

> In a protocol where regular exponentiations are mixed with

fixed-base exponentiations, it's not necessarily easy to know
what is best, until you try...



Design Principle 2 — Extendibility

» SCAPI is a general infrastructure and so it's important that
new implementations can be added later
» Every primitive has an interface
» Any future implementation of a primitive just needs to
implement the interface



Design Principle 2 — Extendibility

Example 1 — Oblivious Transfer

» Seven years ago, OT with security against malicious
adversaries was horribly inefficient
» We now have highly efficient protocols for this

» Higher level protocols that use OT that were previously
implemented need to be changed

» This change can be trivial, but may also require working over a
different type of group altogether and so can involve many
changes

» In SCAPI, the new OT can be utilized by all protocols that
were implemented at the appropriate level of abstraction



Design Principle 2 — Extendibility

Example 2 — Libraries

» We have incorporated primitives from Bouncy Castle,
OpenSSL, Crypto++, and Miracl
» Assume that a new, faster, more secure library for elliptic
curve operations is released
» All that needs to be done is to write a SCAPI wrapper for the

library and all existing protocols can take advantage of the new
library



Design Principle 3 — Efficiency

» Any infrastructure for secure computation protocols must take
efficiency into account

» SCAPI achieves high efficiency via JNI and wrapping fast
low-level libraries (the overhead of JNI is very small)



Design Principle 3 — Efficiency

» Any infrastructure for secure computation protocols must take
efficiency into account

» SCAPI achieves high efficiency via JNI and wrapping fast
low-level libraries (the overhead of JNI is very small)

» There is no doubt that implementing an entire protocol in C
and optimizing at a low level will give better results

» But with SCAPI you still get fast implementations that are
quicker to implement, modular, suitable for reuse, and so on

» Sometimes, SCAPI wraps a large computation written in

native code (garbling, OT extension)



» Most cryptographic libraries are tailored for encryption and
authentication, and not secure computation

» Low-level group operations are typically buried deep down as
utilities

» Libraries don't use the terminology that we are used to

» Forcing a decision about which concrete implementation to use
at the onset is problematic since inefficiencies are often hard to
predict


http://scapi.readthedocs.org

» Most cryptographic libraries are tailored for encryption and
authentication, and not secure computation

» Low-level group operations are typically buried deep down as
utilities

» Libraries don't use the terminology that we are used to

» Forcing a decision about which concrete implementation to use
at the onset is problematic since inefficiencies are often hard to
predict

» SCAPI is documented, commented and (hopefully) written
clearly — it was written explicitly with other users in mind
see: http://scapi.readthedocs.org


http://scapi.readthedocs.org

Security Levels

» Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function
» The theorem stating security of the protocol would say:

» Assume that DDH is hard in the group, the commitment is
perfectly binding, and the hash function is collision resistant.
» Then, the OT protocol is secure.



Security Levels

» Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function
» The theorem stating security of the protocol would say:

» Assume that DDH is hard in the group, the commitment is
perfectly binding, and the hash function is collision resistant.

» Then, the OT protocol is secure.

» How does SCAPI differentiate between:

» A group in which CDH is hard but DDH is not

» A commitment scheme which is perfectly binding versus
perfectly hiding versus something else

» A hash function which is target collision resistant but not
collision resistant



Security Levels

» Consider a protocol that uses any asymmetric encryption
scheme that is NM-CCA1 (non-malleable under CCA1
attacks)



Security Levels

» Consider a protocol that uses any asymmetric encryption
scheme that is NM-CCA1 (non-malleable under CCA1
attacks)

» Can the protocol use Cramer-Shoup (which is CCA2-secure)?



Security Levels

» Consider a protocol that uses any asymmetric encryption
scheme that is NM-CCA1 (non-malleable under CCA1
attacks)

» Can the protocol use Cramer-Shoup (which is CCA2-secure)?

» If the protocol is written so that it works with any asymmetric
encryption scheme, then what happens if it is given a
CPA-secure scheme instead?



Security Levels
SCAPI defines hierarchies of interfaces for security levels
E—

[Z] EncsecLevel

"
«interfaces
DlogSecLevel

x

"
<interfaces
g HashSecLevel
x
#interfaces
Eav

#interfaces
Indistinguishable
«interface>
TargetCollisionResistant
7
«interfaces facer
NonMalleable Cpa
#interfaces «interfaces
nResistant =1 cDH
"

= Coll

=interfaces




Security Level Use

» The OT protocol receives a dlog group, commitment and hash
function in its constructor
» It checks that:
» The dlog group is an instance of DDH
» The commitment is an instance of PerfectBinding
» The hash function is an instance of CollisionResistant
» Security levels will be defined for protocols (semi-honest,
covert, malicious, stand-alone, UC secure, and so on)



Layers and Primitives

SCAPI has three layers
» Basic primitives
» Non-interactive schemes

» Interactive protocols (not in the current release)



Layer 1 — Basic Primitives

» Most of the code at this level is wrappers

» The exceptions: HKDF, universal hash, Luby-Rackoff, and
more

» This layer provides a common interface for low-level libraries
» Same interface for Bouncy Castle, Crypto+-+, OpenSSL,
Miracl (and whatever else in the future)

» This provides the flexibility and extendibility that we discussed



Layer 1 — Basic Primitives

» Different levels of abstraction
» A protocol can be written using any

> PRF
» PRP

» AES (from any library)

» AES from a specific library (not a good idea)



Layer 1 — Implemented Primitives

Pseudorandom functions and permutations

v

» Fixed lengths, varying lengths, etc.

v

Cryptographic hash functions

Universal hash functions

v

v

Trapdoor permutations

v

Pseudorandom generators

v

Key derivation functions

v

Discrete log groups
» This has the most novelty — the same API exists for groups
based on Z,* and elliptic curves, and for elliptic curves over a
prime-order field or a binary field, and for Koblitz curves...



Layer 2 — Non-Interactive Schemes

» Essentially encryption, signatures and MACs
» Commitments are not included since they are also interactive
» Asymmetric schemes implemented:

» RSA-OAEP (BC and Crypto++)
» El Gamal over any dlog group

> Encryption of group element or byte array (former is
important for proving ZK statements about the ciphertext)

» Cramer-Shoup over any dlog group
> As above, encryption of group element or byte array
» Damgard-Jurik
» Other standard schemes: AES with CBC or CTR, CBC-MAC,
DSA and RSA signatures, and so on



Layer 3 — Interactive Protocols

» Sigma protocols
» Over 10 common protocols (DLOG, DDH, Jurik-Damgérd and
more)
» Operations: AND of multiple statements, OR or two or more
statements, transformation to ZK and ZKPOK, Fiat-Shamir to
NIZK, transformation to UCZK

» Commitments

» Pedersen, EIGamal, hash-based, equivocal, extractable, fully
trapdoor, homomorphic, non-malleable, UC



Layer 3 — Interactive Protocols

» Oblivious transfer
» Semi-honest
» Stand-alone (Naor-Pinkas optimized)
» OT extension (ACM CCS 2013 version)
» Malicious
> Privacy only
One-sided simulation
Full simulation — stand-alone
UC secure
OT extension (to be added soon)

vvyyepy

» Garbled circuits
» Basic and optimized (free XOR, fixed AES, etc.)

» Coin tossing (single bit, string, semi-simulatable)



Layer 3 — Interactive Protocols

Plans for the future:
» Improvements on existing protocols
» Adding new functionality

» Improving overall infrastructure (e.g., the communication layer
was just improved to add Queue functionality as well as
Socket)



Example Usage

The Cramer-Shoup Encryption Scheme

public interface CramerShoupDDHEnc extends AsymmetricEnc, Cca2 {

public CramerShoupAbs(DlogGroup dlogGroup, CryptographicHash hash, SecureRandom random){
//The Cramer-Shoup encryption scheme must work with a Dlog Group that has DDH security level
//and a Hash function that has CollisionResistant security level. If any of this conditions is not
//met then cannot construct an object of type Cramer-Shoup encryption scheme; therefore throw exception.

if (! (dlogGroup instanceof DDH)){
throw new IllegalArgumentException("The Dlog group has to have DDH security level");
¥

if (! (hash instanceof CollisionResistant)){
throw new IllegalArgumentException("The hash function has to have CollisionResistant security level")

}

// Everything is correct, then sets the member variables and creates object.
this.dlogGroup = dlogGroup;

qMinusOne = dlogGroup.getOrder().subtract (BigInteger.ONE);

this.hash = hash;

this.random = random;



Example Usage

The Cramer-Shoup Encryption Scheme

public AsymmetricCiphertext encrypt(Plaintext plaintext){

/* Choose a random r in Zq; calculate ul = gl°r, u2 = g2°r, e = (h"r)*msgEl
* Convert ul, u2, e to byte[] using the dlogGroup
* Compute alpha - the result of computing the hash function on the concatenation ul+u2+e.

* Calculate v = c"r * d”(r*alpha)
* Create and return an CramerShoupCiphertext object with ul, u2, e and v. */

GroupElement msgElement = ((GroupElementPlaintext) plaintext).getElement();

BigInteger r = chooseRandomR(); //Choose a random value between O and q-1 (q = group order)
GroupElement ul = calcUl(r); //Does: dlogGroup.exponentiate(publicKey.getGeneratori(), r);
GroupElement u2 = calcU2(r); //Does: dlogGroup.exponentiate (publicKey.getGenerator(), r);

GroupElement hExpr = calcHExpR(r); //Does: dlogGroup.exponentiate(publicKey.getH(), r);
GroupElement e = dlogGroup.multiplyGroupElements (hExpr, msgElement);

byte[] ulToByteArray = dlogGroup.mapAnyGroupElementToByteArray(ul);
byte[] u2ToByteArray = dlogGroup.mapAnyGroupElementToByteArray(u2);
byte[] eToByteArray = dlogGroup.mapAnyGroupElementToByteArray(e);

//Calculates the hash(ul + u2 + e).
byte[] alpha = calcAlpha(ulToByteArray, u2ToByteArray, eToByteArray);

GroupElement v = calcV(r, alpha); //Calculates v = c°r * d”(r*alpha).
//Creates and return an CramerShoupCiphertext object with ul, u2, e and v.

CramerShoupOnGroupElementCiphertext cipher = new CramerShoupOnGroupElementCiphertext(ul, u2, e, v);
return cipher;



Example Usage

The Cramer-Shoup Encryption Scheme

public static void main(String[] args) throws FactoriesException {

// Get parameters from config file:
CramerShoupTestConfig[] config = readConfigFile();

for (int i = 0; i < config.length; i++) {
result = runTest(configl[il);
out.println(result);
System.out.println(result);

¥

}

Example from configuration file:

dlogGroup = DlogZpSafePrime
dlogProvider = CryptoPP
algorithmParameterSpec = 1024
hash = SHA-256

providerHash = BC
numTimesToEnc = 1000

dlogGroup = D1ogECFp
dlogProvider = BC
algorithmParameterSpec = P-224
hash = SHA-1

providerHash = BC
numTimesToEnc = 1000

dlogGroup = DlogECFp
dlogProvider = Miracl

algorithmParameterSpec = P-224
hach = QHA-1



Example Usage

The Cramer-Shoup Encryption Scheme

static public String runTest(CramerShoupTestConfig config) throws FactoriesException{
DlogGroup dlogGroup;
//Create the requested Dlog Group object. Do this via the factory.
//1If no provider specified, take the SCAPI-defined default provider.
if (config.dlogProvider !'= null){
dlogGroup = DlogGroupFactory.getInstance().getObject (config.dlogGroup+
"("+config.algorithmParameterSpec+")", config.dlogProvider);
Yelse {
dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+
"("+config.algorithmParameterSpec+")");

}

CryptographicHash hash;
//Create the requested hash. Do this via the factory.
if (config.hashProvider != null){
hash = CryptographicHashFactory.getInstance().getObject(config.hash, config.hashProvider);
Yelse {
hash = CryptographicHashFactory.getInstance().getObject(config.hash);
}

//Create a random group element. This element will be encrypted several times as specified in
//config file and decrypted several times
GroupElement gEl = dlogGroup.createRandomElement () ;

//Create a Cramer Shoup Encryption/Decryption object. Do this directly by calling the relevant
//constructor. (Can be done instead via the factory).
ScCramerShoupDDHOnGroupElement enc = new ScCramerShoupDDHOnGroupElement (dlogGroup, hash);



Example Usage

The Cramer-Shoup Encryption Scheme

//Generate and set a suitable key.
KeyPair keyPair = enc.generateKey();
try {
enc.setKey (keyPair.getPublic() ,keyPair.getPrivate());
} catch (InvalidKeyException e) {
e.printStackTrace() ;

}

//Wrap the group element we want to encrypt with a Plaintext object.
Plaintext plainText = new GroupElementPlaintext(gEl);
AsymmetricCiphertext cipher = null;

//Measure the time it takes to encrypt each time. Calculate and output the average running time.
long allTimes = 0;

long start = System.currentTimeMillis();

long stop = 0;

long duration = 0;

int encTestTimes = new Integer(config.numTimesToEnc).intValue();
for(int i = 0; i < encTestTimes; i++){
cipher = enc.encrypt(plainText);
stop = System.currentTimeMillis();
duration = stop - start;
start = stop;
allTimes += duration;
}
double encAvgTime = (double)allTimes/(double)encTestTimes;

//Repeat for decryption...



Results — Average of 1000 Runs

The Cramer-Shoup Encryption Scheme

Dlog Group Diog Dlog Hash Hash Encrypt Decrypt
Type Provider Param Function Provider Time (ms) Time (ms)
DlogZpSafePrime CryptoPP 1024 SHA-256 BC 6.072 3.665
DlogZpSafePrime CryptoPP 2048 SHA-256 BC 43.818 26.289
DlogECFp BC P-224 SHA-1 BC 54.171 31.662
DlogECF2m BC B-233 SHA-1 BC 107.316 65.185
DlogECF2m BC K-233 SHA-1 BC 25.292 14.886
DlogECFp Miracl P-224 SHA-1 BC 6.571 3.929
DlogECF2m Miracl B-233 SHA-1 BC 5.819 3.652
DlogECF2m Miracl K-233 SHA-1 BC 2.753 1.787




Garbled Circuit Example

public void fastCircuitExample() throws NotAllInputsSetException, InvalidKeyException, CheatAttemptException{
SecureRandom random = new SecureRandom();

rep seed T wh
byte[] seed = new byte[16];
random.nextBytes (seed) ;

ScNativeGarbledBooleanCircuit fastGarbledCircuit = new ScNativeGarbledBooleanCircuit ("AES_Final-2.txt", true, false):

FastCircuitCreationValues initialValues = fastGarbledCircuit.garble (seed);

byte[] inputKeys = setInputForFast(fastGarbledCircuit, initialValues);
fastGarbledCircuit.setInputs (inputKeys):

byte[] outputKeys = fastGarbledCircuit.compute():

the gar output to me:

fastGarbledCircuit.translate (outputKeys);




ro Knowledge Prover Example

public void exampleZKFromSigmaProtocol (Channel channel) throws IOException, CheatAttemptException,
ClassNotFoundExcepcion,ICommicValneExcepcion {

pr

-233") ;

I rs fo
new OpenSSLDlogECF2m ("™

DlogGroup dlog
int t = 80;
SecureRandom random = new SecureRandom();

ngmaProverCompatatxon sxgmaProver = new SigmaDHProverComputation(dlog, t, random);

comp

ZKProver prover = null;
try {

used in the prot

CmtReceiver ctReceiver = new CthedersenRecelver(chanﬁel, dlog, random);

prover = new ZKF:GNSlgmaFraver(cna1nel, sigmaProver, ctReceiver);
} catch (SecurlcyLevelExcep:lcn e) {

11d not occur

} catch (InvallleongoupExcePCLOn e) {

SigmaProverInput input = createlnput (dlog):

/Prov
prover.prove (input) ;




ro Knowledge Verifier Example

public void exampleZKFromSigmaProtocol (Channel channel) throws IOException, CheatAttemptException,
ClassNotFoundException, CommitValueException {
Create the necessary parameters for the verifier.
DlogGroup dlog new OpenSSLD1ogECF2m("K-233");
int t = 80;
SecureRandom random = new SecureRandom():;

ZKVerifier verifier = null;
ey

ma verifier computation.
SlgmaVerlflerComputatlcn slgmaVerlfler = new SigmaDHVerifierComputation(dlog, t, random);

commi 's commi in

CmtCommitter ctCommitter = new CthedersenCommAtter(chaﬂnel dlog, random);

Create the ZK verifier.

verifier = new ZKFromSigmaVerifier (channel, sigmaVerifier, ctCommitter, random);
catch (SecurityLevelException e) {

Create

SigmaCommonInput input = createlnput (dlog):

rify and

boolean verified = verifier.verify(input):;
System.out.println("verification result = " + verified);



Proving Different Languages

= new SigmaDHVerifierComputation(dlog, t, random):;

SigmaVerifierComputation sigmaVerifier = new SigmaDHExtendedVerifierComputation(dlog, t, random);



» SCAPI is an open-source library for secure computation
implementations

» Currently, the focus is on primitives for the no honest-majority
setting (the vision is to add honest-majority tools as well)
» We plan on supporting SCAPI in the long term
» Help to users
» Bug fixes
» Improve existing code
» Expand code base



