
Oblivious Polynomial Evaluation
and Secure Set-Intersection from

Algebraic PRFs
TCC 2015

Carmit Hazay
Bar-Ilan University

Pseudorandom Functions (PRFs)

o PRF is indistinguishable from a random function

o Adversary makes polynomial number of queries

PRF:
Let k← {0,1}n

Given x output Fk(x)

≈
Random function:
Let R: {0,1}n → {0,1}n

Given x output R(x)

Algebraic PRFs [BGV11]

o PRFs with Abelian group range

o Support fast batch PRFs evaluation given the
PRF key

o Originally introduced in the context of
verifiable delegation of polynomial evaluation

Algebraic PRFs [BGV11]

Closed from efficiency:

CFEvalh,z(x,k)= PRFk(zi)
hi(x)l

i=0
Running time of CFeval is sublinear in l

Special case: z = (0,...,d) and hi(x)=xi

Algebraic PRFs [BGV11]

o Implementations in prime order groups:
• Strong DDH:

 Pr D G, p, g, gx, gx2
, … , gxd

− D G, p, g, gx1 , gx2 , … , gxd ≤ negl(∙)

 PRFk(x) = gk0k1
x

• DDH (Naor-Reingold):

 PRFk(x1,…,xm) = gk0 k
i

xim
i=1

Algebraic PRFs [BGV11]

o Strong DDH

• CEEval with constant overhead follows from the
identity:

 k0k1
i xid

i=0 =
k0 k1

d+1xd+1−1

k1x−1

o DDH [NR]

• CEEval with log d overhead follows from the identity:

 k0 ki
xij+1

i=1
d
j=0 = k0(1+k1x)(1+k2x2)⋅⋅⋅(1+klog d xd)

Verifiable Polynomial Evaluation
[BGV11]

o Computing 𝐠 𝐫𝐢
𝐱𝐢

i requires sublinear time in d
given the PRF key

o The protocol is not private

Setup: The client stores Q(∙)=(q0,…qd) together with
(Fk(0)gaq0,…Fk(d)g aqd)=(gr0+aq0,…,grd+aqd)

Evaluation: Given x, the server returns Q(x) and 𝐠 (𝐫𝐢+𝐚𝐪𝐢)
𝐱𝐢

i

Verification: Given Q(x) and proof w check that

w=𝐠 𝐫𝐱𝐢
i +𝐚𝐐(𝐱)

Oblivious Polynomial Evaluation (OPE)

Sender Receiver

Inputs: Q(∙)=(q0,…qd) x

Outputs: ͞ Q(x)

Oblivious Polynomial Evaluation (OPE)

o Very useful building block:

• RSA key generation [Gil99]

• Approximation of Taylor series [LP02]

• Set-intersection [FNP04]

• Oblivious keyword search [FIPR05]

• Secure equality of strings [NP06]

• Data entanglement [ADDV12]

Prior maliciously secure work uses cut-and-choose
or somewhat homomorphic SIMD approach

OPE from Algebraic PRFs

o Our results:

 OPE in the exponent with malicious security

o Two phases protocol:

1. Use algebraic PRFs to mask the sender’s
polynomial

2. Unmask the evaluated masked polynomial

OPE from Algebraic PRFs

Masking: Given input gQ(∙)=(gq0,…gqd) the sender
sends the masked polynomial
gQ(∙)+R(∙) = (gq0+r0,…,gqd+rd)

Unmasking: The receiver computes gQ(x)+R(x) and
the parties compute gR(x)

Sender
Receiver

gQ(∙)+R(∙)

unmasking

OPE from Algebraic PRFs

o Unmasking requires computing 𝐠 𝐫𝐢
𝐱𝐢

i which
can be carried out in sublinear time in d

o Overhead:

• d+1 exponentiations in masking phase

• O(1)/O(log d) exponentiations in unmasking phase

Secure Set-Intersection

Sender Receiver

Inputs: X Y

Outputs: ͞ X∩Y

Secure Set-Intersection

o Intensively studied due to many applications
[FNP04,KS05,DSMRY09,JL09,JL10,HL10,HN12]

o Two common approaches in the plain model:

• Oblivious polynomial evaluation [FNP04]

• Oblivious PRF evaluation [FIPR05,LP10]

Set-Intersection - The OPE Approach

1. On input (x1,…,xm), sender masks polynomial
Q(t)=(x1-t) ∙∙∙ (xm−t) and sends gQ(t)+R(t)

2. For each y∈Y

• Receiver evaluates gQ(y)+R(y)

• The parties “unmask” the result by verifying
whether gQ(y)+R(y) = gR(y)

o Overhead is |X|∙|Y|

• Reduce overhead using hash functions

Set-Intersection - The OPE Approach
and Hash Functions

o Split the set into bins
• Receiver evaluates a small degree poly each time

• Easy to evaluate a polynomial of a particular bin

o Correctness:
• Sender proves that the polynomials are correct,

potentially can use zero polynomials or too many
elements

• Receiver proves that it uses the same input when
more than one hash is used

Set-Intersection - The OPE Approach
and Hash Functions

o Overhead:

• O(mX+mYloglog mX) under d-strong assumption

• O(mX+mYlog mX) under DDH assumption

 Better than [HN12]!

Set-Intersection - The Oblivious PRF
Approach

o The oblivious PRF functionality:

 Sender Receiver

Inputs: k x

Outputs: ͞ Fk(x)

Set-Intersection - The Oblivious PRF
Approach

o First phase: sender picks PRF key k and sends
FK(x) for all x ∈ X

o Second phase: parties run oblivious PRF,
receiver learns FK(y) for all y ∈ Y

Requires committed oblivious PRF!

Set-Intersection - The Committed
Oblivious PRF Approach

Sender Receiver

Inputs: k x1,…,xn

Outputs: ͞ Fk(x1),…, Fk(xn)

The committed oblivious PRF functionality:

Set-Intersection - The Committed
Oblivious PRF Approach

o Algebraic PRFs easily imply committed PRFs

• Use same protocols for unmasking

o One particular example is a simple committed
Naor-Reingold PRF

• Prior to that, no simple committed protocol

Set-Intersection - The Committed
Oblivious PRF Approach

o Overhead:

• O(mX+mY) under strong-DDH assumption

 Same as [JL09] but for prime order groups

 No setup (CRS)

 Proof complexity is independent of PRF domain

• O((mX+mY))log (mX+mY)) under DDH assumption

Future Research

o Use algebraic PRFs for more applications

o Construct new algebraic PRFs for large
domains

o Recent related work:
• Aggregate Pseudorandom Functions and

Connections to Learning

 Aloni Cohen and Shafi Goldwasser and Vinod Vaikuntanathan

