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Pseudorandom Functions (PRFs) 

o PRF is indistinguishable from a random function 

 

 

 

 

 

o Adversary makes polynomial number of queries 

PRF: 
Let k← {0,1}n  

Given x output Fk(x) 

≈ 
Random function: 
Let R: {0,1}n → {0,1}n 

Given x output R(x) 



Algebraic PRFs [BGV11] 

o PRFs with Abelian group range 

 

o Support fast batch PRFs evaluation given the 
PRF key 

 

o Originally introduced in the context of 
verifiable delegation of polynomial evaluation 

 

 

 

 



Algebraic PRFs [BGV11] 

Closed from efficiency: 

CFEvalh,z(x,k)= PRFk(zi)
hi(x)l

i=0  
Running time of CFeval is sublinear in l 

Special case:  z = (0,...,d) and hi(x)=xi 



Algebraic PRFs [BGV11] 

o Implementations in prime order groups: 
• Strong DDH: 

 Pr D G, p, g, gx, gx2
, … , gxd

− D G, p, g, gx1 , gx2 , … , gxd  ≤ negl(∙) 

         PRFk(x) = gk0k1
x
 

 

• DDH (Naor-Reingold): 

    PRFk(x1,…,xm) = gk0  k
i

xim
i=1  

 



Algebraic PRFs [BGV11] 

o Strong DDH 

• CEEval with constant overhead follows from the 
identity:            

 k0k1
i xid

i=0 = 
k0 k1

d+1xd+1−1

k1x−1
 

 

o DDH [NR] 

• CEEval with log d overhead follows from the identity: 

 k0  ki
xij+1

i=1
d
j=0 = k0(1+k1x)(1+k2x2)⋅⋅⋅(1+klog d xd) 



Verifiable Polynomial Evaluation 
[BGV11] 

 

 

 

 

 

 

o Computing 𝐠 𝐫𝐢
𝐱𝐢

i  requires sublinear time in d 
given the PRF key 

o The protocol is not private 

Setup: The client stores Q(∙)=(q0,…qd) together with 
(Fk(0)gaq0,…Fk(d)g aqd)=(gr0+aq0,…,grd+aqd) 
 

Evaluation: Given x, the server returns Q(x) and 𝐠 (𝐫𝐢+𝐚𝐪𝐢)
𝐱𝐢

i  
 
Verification: Given Q(x) and proof w check that 

w=𝐠 𝐫𝐱𝐢
i +𝐚𝐐(𝐱) 

 



Oblivious Polynomial Evaluation (OPE) 

Sender Receiver 

Inputs: Q(∙)=(q0,…qd) x 

Outputs: ͞ Q(x) 



Oblivious Polynomial Evaluation (OPE) 

o Very useful building block: 

• RSA key generation [Gil99] 

• Approximation of Taylor series [LP02]  

• Set-intersection [FNP04] 

• Oblivious keyword search [FIPR05] 

• Secure equality of strings [NP06] 

• Data entanglement [ADDV12] 

Prior maliciously secure work uses cut-and-choose 
or somewhat homomorphic SIMD approach 



OPE from Algebraic PRFs 

o Our results:  

    OPE in the exponent with malicious security 

 

o Two phases protocol: 

1. Use algebraic PRFs to mask the sender’s 
polynomial 

2. Unmask the evaluated masked polynomial 

 

 



OPE from Algebraic PRFs 

Masking: Given input gQ(∙)=(gq0,…gqd) the sender 
sends the masked polynomial     
gQ(∙)+R(∙) = (gq0+r0,…,gqd+rd)  
 

Unmasking: The receiver computes gQ(x)+R(x) and 
the parties compute gR(x) 

Sender 
Receiver 

gQ(∙)+R(∙) 

unmasking 



OPE from Algebraic PRFs 

o Unmasking requires computing 𝐠 𝐫𝐢
𝐱𝐢

i which 
can be carried out in sublinear time in d 

 

o Overhead: 

• d+1 exponentiations in masking phase 

• O(1)/O(log d) exponentiations in unmasking phase 



Secure Set-Intersection 

Sender Receiver 

Inputs: X Y 

Outputs: ͞ X∩Y 



Secure Set-Intersection 

o Intensively studied due to many applications 
[FNP04,KS05,DSMRY09,JL09,JL10,HL10,HN12] 

 

o Two common approaches in the plain model: 

• Oblivious polynomial evaluation [FNP04] 

• Oblivious PRF evaluation [FIPR05,LP10] 



Set-Intersection - The OPE Approach 

1. On input (x1,…,xm), sender masks polynomial 
Q(t)=(x1-t) ∙∙∙ (xm−t) and sends gQ(t)+R(t) 

2. For each y∈Y   

• Receiver evaluates gQ(y)+R(y)  

• The parties “unmask” the result by verifying 
whether gQ(y)+R(y) = gR(y) 

o Overhead is |X|∙|Y| 

• Reduce overhead using hash functions 



Set-Intersection - The OPE Approach 
and Hash Functions 

o Split the set into bins 
• Receiver evaluates a small degree poly each time 

• Easy to evaluate a polynomial of a particular bin 

 

o Correctness: 
• Sender proves that the polynomials are correct, 

potentially can use zero polynomials or too many 
elements 

• Receiver proves that it uses the same input when 
more than one hash is used  



Set-Intersection - The OPE Approach 
and Hash Functions 

o Overhead: 

 

• O(mX+mYloglog mX) under d-strong assumption 

 

• O(mX+mYlog mX) under DDH assumption 

    Better than [HN12]! 

 



Set-Intersection - The Oblivious PRF 
Approach 

o The oblivious PRF functionality: 

 Sender Receiver 

Inputs: k x 

Outputs: ͞ Fk(x) 



Set-Intersection - The Oblivious PRF 
Approach 

o First phase: sender picks PRF key k and sends 
FK(x) for all x ∈ X 

o Second phase: parties run oblivious PRF, 
receiver learns FK(y) for all y ∈ Y  

Requires committed oblivious PRF! 



Set-Intersection - The Committed 
Oblivious PRF Approach 

Sender Receiver 

Inputs: k x1,…,xn 

Outputs: ͞ Fk(x1),…, Fk(xn) 

The committed oblivious PRF functionality: 



Set-Intersection - The Committed 
Oblivious PRF Approach 

o Algebraic PRFs easily imply committed PRFs 

• Use same protocols for unmasking 

 

o One particular example is a simple committed 
Naor-Reingold PRF 

• Prior to that, no simple committed protocol 



Set-Intersection - The Committed 
Oblivious PRF Approach 

o Overhead: 

 

• O(mX+mY) under strong-DDH assumption 

    Same as [JL09] but for prime order groups 

    No setup (CRS) 

    Proof complexity is independent of PRF domain 

 

• O((mX+mY))log (mX+mY)) under DDH assumption 

 



Future Research 

o Use algebraic PRFs for more applications 

o Construct new algebraic PRFs for large 
domains 

 

o Recent related work: 
• Aggregate Pseudorandom Functions and  

Connections to Learning  

    Aloni Cohen and Shafi Goldwasser and Vinod Vaikuntanathan  

 

 


