Pseudorandomness

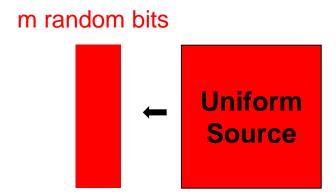
Benny Applebaum

Bar-Ilan Winter School, 2014

Randomness as a resource

Pure Randomness is

- Valuable, in fact, necessary for crypto
- But typically expensive



Goal: Given a short random string generate a long sequence of random bits?

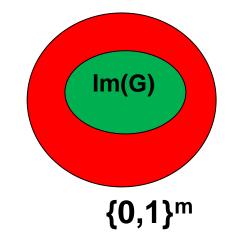
Generating randomness

G is a deterministic efficient function short random seed → long random string

Impossible!

The image of G consists of 2ⁿ strings

⇒ doesn't cover all possible 2^m strings

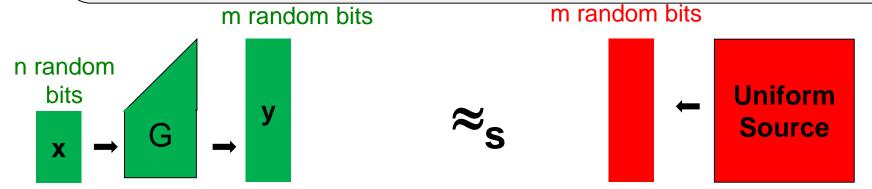


Generating randomness (relaxation I)

Output is **Statistically-Close** to uniform:

For every event A,

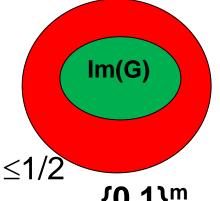
 $Pr_x[A(G(x))] = Pr[A(Uniform)] \pm negligible(n)$



Still Impossible!

Let A(y) be the event $y \in Im(G)$

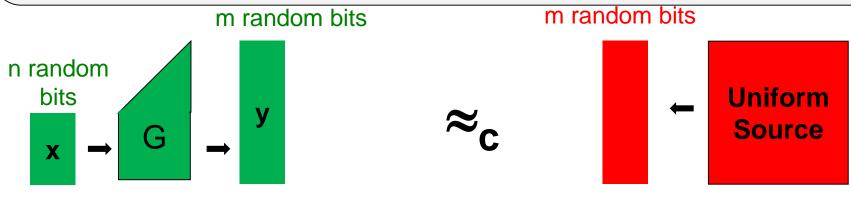
Then Pr[A(G(x))]=1 but $Pr[A(uniform)] \le 2^n/2^m \le 1/2$



Generating randomness (relaxation II)

Output is Computationally-Close to uniform (pseudorandom):

For every efficiently computable event A, $Pr_x[A(G(x))] = Pr[A(Uniform)] \pm negligible$

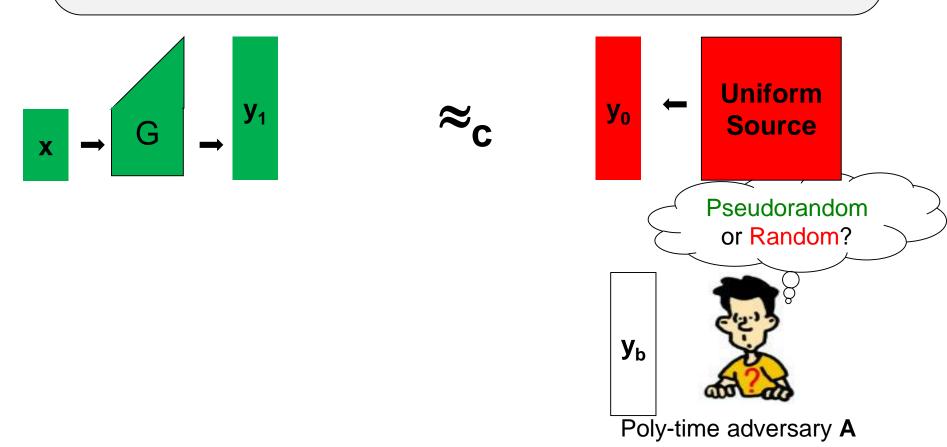


- **Observations:**
- Strict relaxation of statistical closeness
- Must be computationally hard to decide if y∈Image(G)
- In fact, G must be one-way (Exercise)
- WLOG, require Pr_x[A(G(x))]-Pr[A(Uniform)] < neg

Alternative view: Indistinguishability

- The adversary A is given y_b where b←{0,1}
- A outputs a guess bit b' and wins if b'=b

Claim: G is pseudorandom iff Pr[win]<1/2+ neg



Alternative view: Indistinguishability

- The adversary A is given y_b where b←{0,1}
- A outputs a guess bit b' and wins if b'=b'

Claim: G is pseudorandom iff Pr[win]<1/2+ neg

$$x \rightarrow G \rightarrow y_1$$
 \approx_C $y_0 \leftarrow Uniform Source$

$$\begin{aligned} & \text{Pr}[\text{win}] & = & \text{Pr}[A(\textbf{y}_1) = 1]^* \text{Pr}[b = 1] \\ & = & \text{1/2} \big(\text{Pr}[(A(\textbf{y}_1) = 1] + \text{Pr}[A(\textbf{y}_0) = 0] \big) \\ & = & \text{1/2} \big(\text{Pr}_{x}[A(\text{PRG}(\textbf{x}))] + 1 - \text{Pr}[A(\textbf{U}_m)] \big) \\ & = & \text{1/2} + & \text{1/2} \big(\text{Pr}_{x}[A(\text{PRG}(\textbf{x}))] - \text{Pr}[A(\textbf{U}_m)] \big) < \frac{1}{2} + \text{neg} \end{aligned}$$

Properties

Proof by reduction to a single instance.

G(x1)

G(x2)

G(x3)

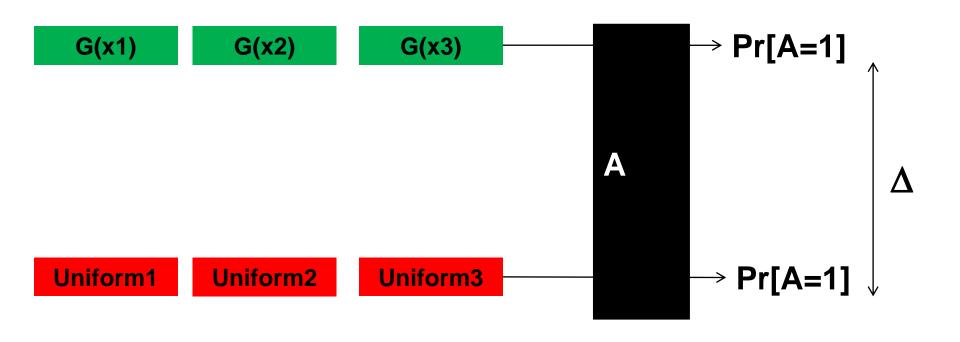
Uniform1

Uniform2

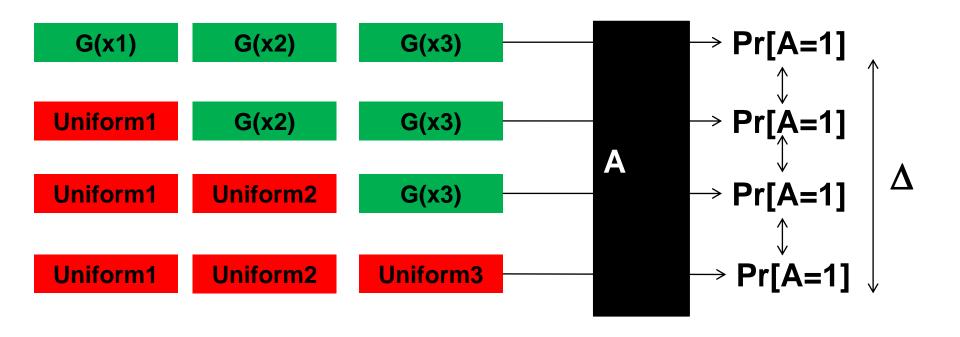
Uniform3

Assume a multiple-samples adversary A

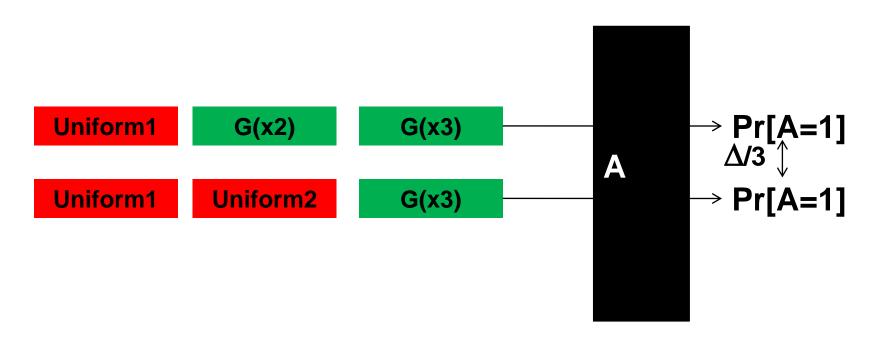
Goal: Construct a single-instance adversary B



There must be two neighboring hybrids with gap $>\Delta/3$



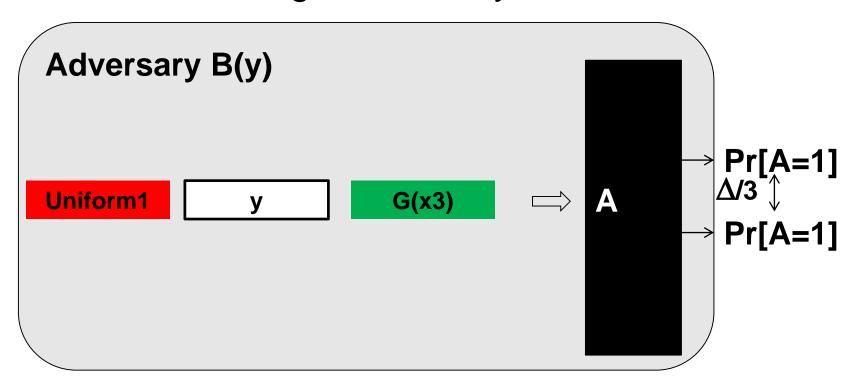
There must be two neighboring hybrids with gap $>\Delta/3$



B(y): Plant y in the changing point and call A.

$$\Rightarrow$$
Pr_x[B(PRG(x))=1]-Pr[B(Random)=1]> Δ /3

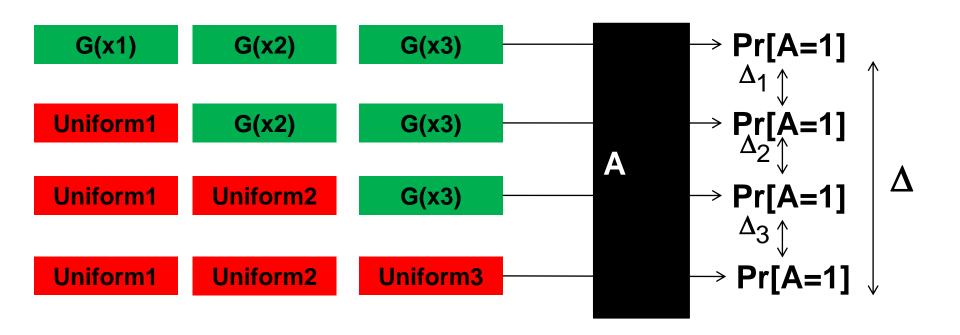
⇒ Contradicting the security of the PRG!



How to find a good pair of hybrids?

Observation: the average gap $\sum \Delta_i / t \ge \Delta / t$

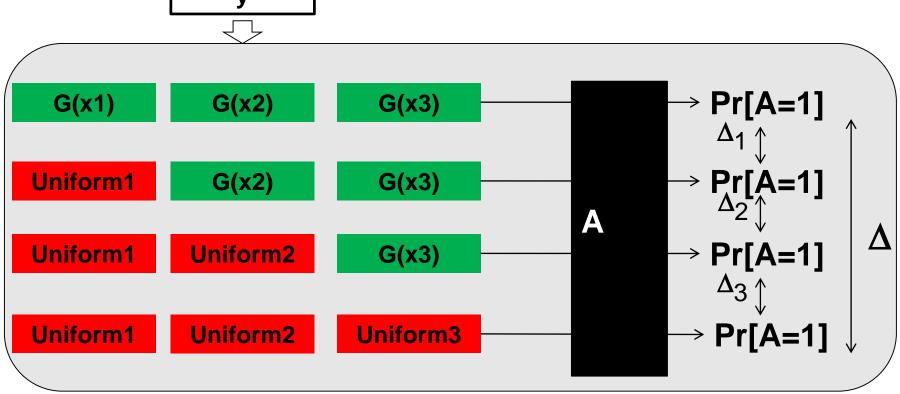
Idea: Let B Choose a random pair



How to find good pair of hybrids?

B(y): Choose a **random** hybrid, plant y in the changing point and call A

Ex: Prove $Pr_x[B(PRG(x))=1]-Pr[B(Random)=1]=\sum \Delta_i/t$ $\geq \Delta/t$



The Hybrid method

Goal: X ≈ Y for some complicated distributions

- Define a sequence of poly-many hybrids H₀,...,H_t
- H₀=X and H_t=Y
- H_i ≈_c H_{i+1} typically by simple argument
- Conclude that X=H₀ ≈_c H_t=Y

An extremely powerful technique in crypto

Formal Definitions

- Let X and Y be a probability distributions over {0,1}ⁿ
- Let $A:\{0,1\}^n \rightarrow \{0,1\}$ be an adversary (distinguisher)

The distinguishing gap is defined by $\Delta_A(X,Y) = |Pr[A(X)=1]-Pr[A(Y)=1]|$

A pair of distribution ensembles $X=\{X_n\}$ and $Y=\{Y_n\}$ are computationally indistinguishable, $X\approx_c Y$, if for every PPT A, $\Delta_A(X_n,Y_n)$ <neg(n).

A deterministic efficient function G is a **PRG** if:

- 1. G expands n-bits to m-bits where m(n)>n.
- 2. $\{G(U_n)\} \approx_c \{U_{m(n)}\}$

Useful facts

Indistinguishability behaves like a distance

(Transitive) If X ≈_cY and Y ≈_c Z then X ≈_c Z

Proof: $\Delta_A(X,Z) \leq \Delta_A(X,Y) + \Delta_A(Y,Z)$, for every A

Useful facts

Indistinguishability behaves like a distance

(Transitive) If X ≈_cY and Y ≈_c Z then X ≈_c Z

(Preserved under efficient computations):
 If X ≈ Y then F(X) ≈ F(Y) where F is PPT

Proof: (contra positive)

Assume $\Delta_{A}(F(X),F(Y))$ is non-negligible for some PPT A

Define a new PPT adversary **B=A°F** then

 $\Delta_{B}(X,Y) = \Delta_{A}(F(X),F(Y))$ is non-negligible \Rightarrow contradiction.

Useful facts

Indistinguishability behaves like a distance

(Transitive) If X ≈_cY and Y ≈_c Z then X ≈_c Z

(Preserved under efficient computations):
 If X ≈_cY then F(X) ≈_cF(Y) where F is PPT

(Preserved under ind. samples)
 For efficiently samplable X,X',Y,Y' If X≈_cX' and Y≈_cY' then (X,Y)≈_c(X',Y')

Pf: Hybrid argument (as we saw)

Constructions

PRGs from One-Way Functions

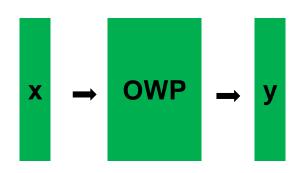
Thm. [Hastad-Impagliazzo-Levin-Luby 1990]

If one-way functions exist, then there are pseudorandom generators.

- Recall that the converse direction also holds.
- Fundamental theorem: "PRGs are feasible"
- Complicated and beautiful proof with many important concepts (randomness extractors, pseudoentropy,...).
- We will see a proof of a weaker theorem that builds PRGs from one-way permutations.

PRGs from One-Way Permutations

Recall that a **one way permutation** is a **bijection** over {0,1}ⁿ which is **easy-to-compute** but **hard-to-invert**



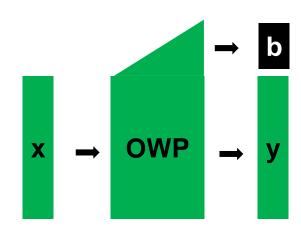
Good start: y is truly uniform

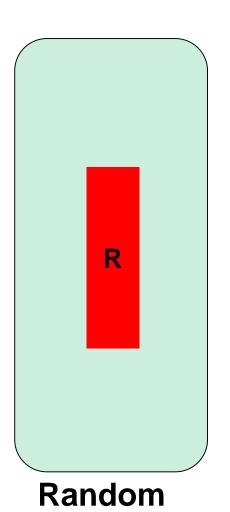
How to generate an extra pseudorandom bit?

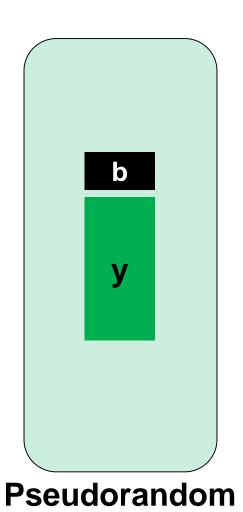
PRGs from One-Way Permutations

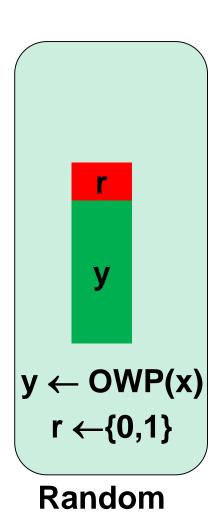
Thm. Let b(x) be a hard-core bit of the OWP.

Then the mapping $x\rightarrow (OWP(x),b(x))$ is PRG

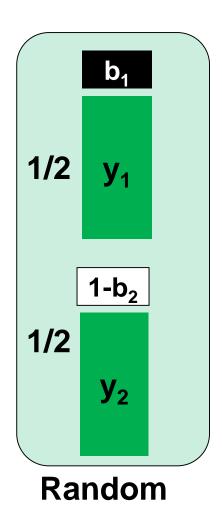


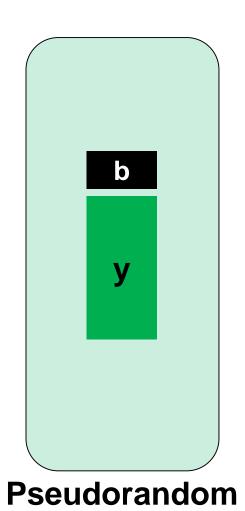




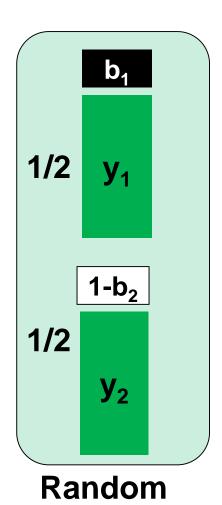


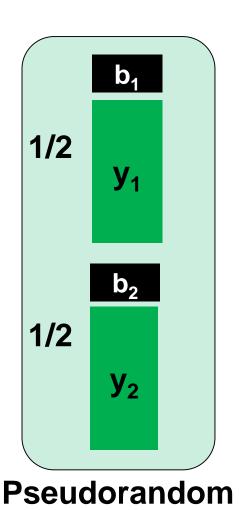
y
Pseudorandom





By "useful fact" it suffices to prove indistinguishability for

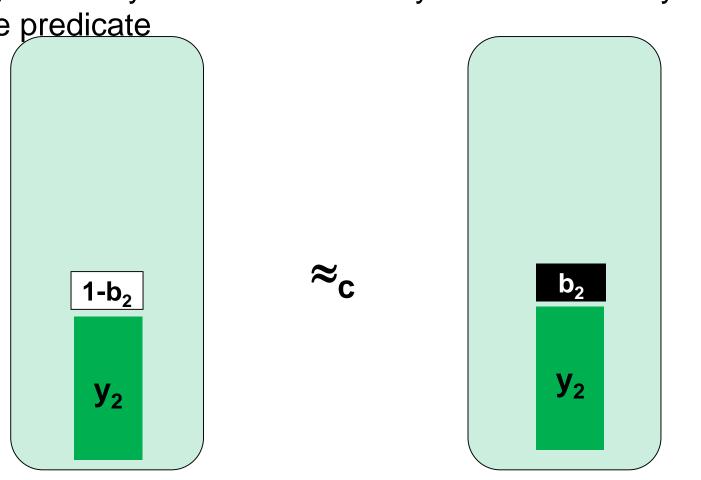




By "useful fact" it suffices to prove indistinguishability for

Indistinguishability follows immediately from the security of

hardcore predicate

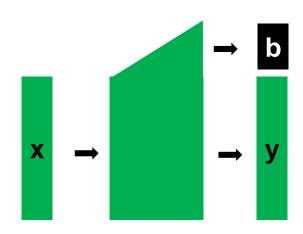


Expanding the Stretch

The length matters...

- PRG which stretches its input by a single-bit is not very useful...
- Can we expand the stretch?

Thm. A PRG: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ can be transformed into PRG: $\{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ for an arbitrary polynomial m(n)



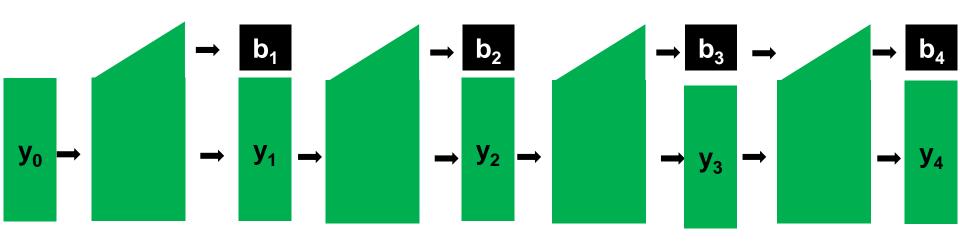
Expanding the stretch

$NewPRG(y_0)$

For i=0 to m:

-
$$(y_{i+1},b_{i+1})=PRG(y_i)$$

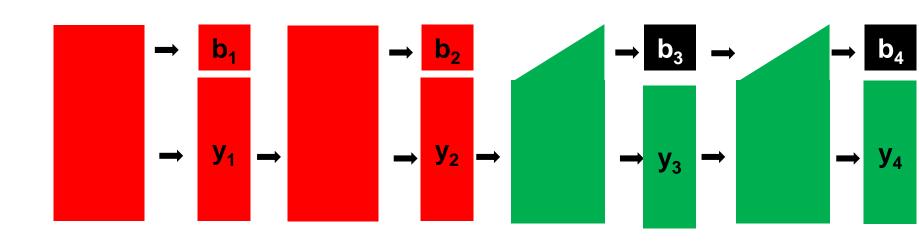
Output $b_1,...,b_m$



Proof via Hybrid Argument

Hybrid **H**_k

• For i=0 to m:
•
$$(y_{i+1},b_{i+1}) = \begin{cases} PRG(y_i) & \text{if } i \leq k \\ PRG(y_i) & \text{if } i > k \end{cases}$$
Output b_1, \dots, b_m

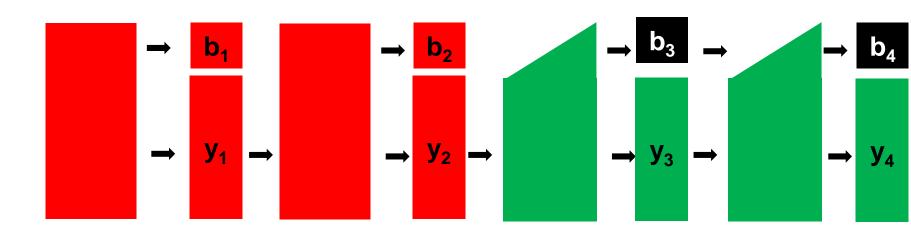


Proof via Hybrid Argument

H₀=NewPRG and H_m=Random

Assume $A(b_1,...,b_m)$ distinguishes H_0 from H_m with gap Δ

Transform **A** into a distinguisher **B**(y,b) for original PRG



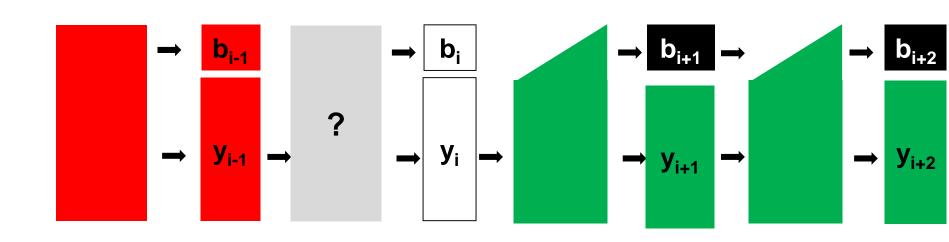
Breaking the original PRG

B puts challenge (y,b) in a random location i & calls A

Analysis: If (y,b) pseudorandom $Pr[B=1]=Pr[A(H_{i-1})=1]$

If (y,b) is random $Pr[B=1]=Pr[A(H_i)=1]$

 \Rightarrow B's gap $1/m\sum(Pr[\mathbf{A}(H_i)]-Pr[\mathbf{A}(H_{i-1})])>\Delta/m$



Summary

PRGs generate long strings which are indistinguishable from random by efficient adversaries

- Extremely useful in crypto and complexity
- Can be constructed from any one-way function
- In practice, there are very efficient candidates with long stretch
- Computational Indistinguishability is a useful abstract notion with many friendly properties

