
Pseudorandomness

Benny Applebaum

Bar-Ilan Winter School, 2014

Randomness as a resource

Pure Randomness is

• Valuable, in fact, necessary for crypto

• But typically expensive

Goal: Given a short random string generate a
long sequence of random bits?

Uniform

Source

m random bits

Generating randomness

G is a deterministic efficient function

short random seed  long random string

Im(G)

{0,1}m

Impossible !

The image of G consists of 2n strings
 doesn’t cover all possible 2m strings

n random

bits

m random bits m random bits

Uniform

SourceG
y

x

Output is Statistically-Close to uniform:

For every event A,

Prx[A(G(x))] = Pr[A(Uniform)]  negligible(n)

Generating randomness (relaxation I)

s

Im(G)

{0,1}m

Still Impossible !

Let A(y) be the event yIm(G)

Then Pr[A(G(x))]=1 but Pr[A(uniform)]  2n/2m1/2

n random

bits

m random bits m random bits

Uniform

SourceG
y

x

Output is Computationally-Close to uniform (pseudorandom):

For every efficiently computable event A,

Prx[A(G(x))] = Pr[A(Uniform)]  negligible

Generating randomness (relaxation II)

Observations:

• Strict relaxation of statistical closeness

• Must be computationally hard to decide if yImage(G)

• In fact, G must be one-way (Exercise)

• WLOG, require Prx[A(G(x))]-Pr[A(Uniform)] <neg

c

n random

bits

m random bits m random bits

Uniform

SourceG
y

x

Alternative view: Indistinguishability

Poly-time adversary A

yb

Pseudorandom

or Random?

c
Uniform

Source
y0

G
y1

x

• The adversary A is given yb where b{0,1}

• A outputs a guess bit b’ and wins if b’=b

Claim: G is pseudorandom iff Pr[win]<1/2+ neg

http://images.google.com/imgres?imgurl=http://www.colorama.co.uk/photo/images/confused man2 copy.jpg&imgrefurl=http://www.colorama.co.uk/photo/images/&h=479&w=300&sz=81&tbnid=gE2QBziRzPoJ:&tbnh=124&tbnw=78&start=119&prev=/images?q=confused&start=100&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://www.colorama.co.uk/photo/images/confused man2 copy.jpg&imgrefurl=http://www.colorama.co.uk/photo/images/&h=479&w=300&sz=81&tbnid=gE2QBziRzPoJ:&tbnh=124&tbnw=78&start=119&prev=/images?q=confused&start=100&hl=en&lr=&sa=N

• The adversary A is given yb where b{0,1}

• A outputs a guess bit b’ and wins if b’=b’

Claim: G is pseudorandom iff Pr[win]<1/2+ neg

Alternative view: Indistinguishability

Pr[win] =Pr[A(y1)=1]*Pr[b=1] + Pr[A(y0)=0]*Pr[b=0]

=½(Pr[(A(y1)=1]+Pr[A(y0)=0])

=½(Prx[A(PRG(x))]+1-Pr[A(Um)])

=½+½(Prx[A(PRG(x))]-Pr[A(Um)]) < ½+neg

Uniform

Source
y0

G
y1 cx

Properties

Pseudorandomness is preserved

under multiple samples

G(x1) G(x2) G(x3)

Uniform1 Uniform2 Uniform3

Proof by reduction to a single instance.

Pseudorandomness is preserved

under multiple samples

G(x1) G(x2) G(x3)

Uniform1 Uniform2 Uniform3

Assume a multiple-samples adversary A

Goal: Construct a single-instance adversary B

A

Pr[A=1]

Pr[A=1]



Pseudorandomness is preserved

under multiple samples

G(x1) G(x2) G(x3)

Uniform1 Uniform2 Uniform3

There must be two neighboring hybrids with gap >/3

A

Pr[A=1]

Pr[A=1]

Uniform1 G(x2) G(x3) Pr[A=1]

Uniform1 Uniform2 G(x3) Pr[A=1]


Pseudorandomness is preserved

under multiple samples

A /3
Uniform1 G(x2) G(x3) Pr[A=1]

Uniform1 Uniform2 G(x3) Pr[A=1]

There must be two neighboring hybrids with gap >/3

Adversary B(y)

Pseudorandomness is preserved

under multiple samples

A

Pr[A=1]

Pr[A=1]
Uniform1 G(x3)

B(y): Plant y in the changing point and call A.

Prx[B(PRG(x))=1]-Pr[B(Random)=1]>/3

 Contradicting the security of the PRG!

y /3

How to find a good pair of hybrids ?

G(x1) G(x2) G(x3)

Uniform1 Uniform2 Uniform3

Observation: the average gap i/t /t

Idea: Let B Choose a random pair

A

Pr[A=1]

Pr[A=1]

Uniform1 G(x2) G(x3) Pr[A=1]

Uniform1 Uniform2 G(x3) Pr[A=1]

1

2

3



How to find good pair of hybrids ?

G(x1) G(x2) G(x3)

Uniform1 Uniform2 Uniform3

B(y): Choose a random hybrid, plant y in the

changing point and call A

Ex: Prove Prx[B(PRG(x))=1]-Pr[B(Random)=1]= i/t

 /t

A

Pr[A=1]

Pr[A=1]

Uniform1 G(x2) G(x3) Pr[A=1]

Uniform1 Uniform2 G(x3) Pr[A=1]

y

1

2

3



The Hybrid method

Goal: X  Y for some complicated distributions

An extremely powerful technique in crypto

• Define a sequence of poly-many hybrids H0,…,Ht

• H0=X and Ht=Y

• Hi c Hi+1 typically by simple argument

• Conclude that X=H0 c Ht=Y

Formal Definitions

• Let X and Y be a probability distributions over {0,1}n

• Let A:{0,1}n{0,1} be an adversary (distinguisher)

The distinguishing gap is defined by

A(X,Y) = |Pr[A(X)=1]-Pr[A(Y)=1]|

A pair of distribution ensembles X={Xn} and Y={Yn} are

computationally indistinguishable, XcY, if for every PPT A,

A(Xn,Yn) <neg(n).

A deterministic efficient function G is a PRG if:

1. G expands n-bits to m-bits where m(n)>n.

2. {G(Un)} c {Um(n)}

Useful facts

Indistinguishability behaves like a distance

• (Transitive) If X cY and Y c Z then X c Z

Proof: A(X,Z)  A(X,Y)+ A(Y,Z), for every A

Useful facts

Indistinguishability behaves like a distance

• (Transitive) If X cY and Y c Z then X c Z

• (Preserved under efficient computations):

If X cY then F(X) cF(Y) where F is PPT

Proof: (contra positive)

Assume A(F(X),F(Y)) is non-negligible for some PPT A

Define a new PPT adversary B=AF then

B(X,Y)= A(F(X),F(Y)) is non-negligible  contradiction.

Useful facts

Indistinguishability behaves like a distance

• (Transitive) If X cY and Y c Z then X c Z

• (Preserved under efficient computations):

If X cY then F(X) cF(Y) where F is PPT

• (Preserved under ind. samples)

For efficiently samplable X,X’,Y,Y’ If XcX’ and YcY’

then (X,Y)c(X’,Y’)

Pf: Hybrid argument (as we saw)

Constructions

PRGs from One-Way Functions

Thm. [Hastad-Impagliazzo-Levin-Luby 1990]

If one-way functions exist, then there are pseudorandom

generators.

• Recall that the converse direction also holds.

• Fundamental theorem: “PRGs are feasible”

• Complicated and beautiful proof with many important

concepts (randomness extractors, pseudoentropy,…).

• We will see a proof of a weaker theorem that builds

PRGs from one-way permutations.

PRGs from One-Way Permutations

Recall that a one way permutation is a bijection over {0,1}n

which is easy-to-compute but hard-to-invert

Good start: y is truly uniform

How to generate an extra pseudorandom bit?

OWPx y

PRGs from One-Way Permutations

Thm. Let b(x) be a hard-core bit of the OWP.

Then the mapping x(OWP(x),b(x)) is PRG

OWPx y

b

Goal: Prove indistinguishability

y

b

R

Random Pseudorandom

y

b

Random Pseudorandom

y

r

y  OWP(x)

r {0,1}

Goal: Prove indistinguishability

y1

b1

1-b2

y2

1/2

1/2

Random

y

b

Pseudorandom

Goal: Prove indistinguishability

y1

b1

y2

1/2

1/2

b2

y1

b1

1-b2

y2

1/2

1/2

Random

Goal: Prove indistinguishability
By “useful fact” it suffices to prove indistinguishability for

Pseudorandom

y2

c b21-b2

y2

Goal: Prove indistinguishability

Indistinguishability follows immediately from the security of

hardcore predicate

By “useful fact” it suffices to prove indistinguishability for

Expanding the Stretch

The length matters…

x y

b

• PRG which stretches its input by a single-bit is not

very useful…

• Can we expand the stretch?

Thm. A PRG:{0,1}n{0,1}n+1 can be transformed into

PRG:{0,1}n{0,1}m(n) for an arbitrary polynomial m(n)

Expanding the stretch

y1

b1

NewPRG(y0)

• For i=0 to m:

- (yi+1,bi+1)=PRG(yi)

Output b1,…,bm

y0 y2

b2

y3

b3

y4

b4

Proof via Hybrid Argument
Hybrid Hk

• For i=0 to m:

- (yi+1,bi+1) =

Output b1,…,bm

PRG(yi) if i>k

Random if ik

y1

b1

y2

b2

y3

b3

y4

b4

Proof via Hybrid Argument
H0=NewPRG and Hm=Random

Assume A(b1,…,bm) distinguishes H0 from Hm with gap 

Transform A into a distinguisher B(y,b) for original PRG

y1

b1

y2

b2

y3

b3

y4

b4

Breaking the original PRG
B puts challenge (y,b) in a random location i & calls A

Analysis: If (y,b) pseudorandom Pr[B=1]=Pr[A(Hi-1)=1]

If (y,b) is random Pr[B=1]=Pr[A(Hi)=1]

B’s gap 1/m(Pr[A(Hi)]-Pr[A(Hi-1)])>/m

yi-1

bi-1

yi

bi

yi+1

bi+1

yi+2

bi+2

?

Summary

G
Uniform

Source
y1 y0

Poly-time adversary A

PRGs generate long strings which are indistinguishable

from random by efficient adversaries

• Extremely useful in crypto and complexity

• Can be constructed from any one-way function

• In practice, there are very efficient candidates with long

stretch

• Computational Indistinguishability is a useful abstract

notion with many friendly properties

http://images.google.com/imgres?imgurl=http://www.colorama.co.uk/photo/images/confused man2 copy.jpg&imgrefurl=http://www.colorama.co.uk/photo/images/&h=479&w=300&sz=81&tbnid=gE2QBziRzPoJ:&tbnh=124&tbnw=78&start=119&prev=/images?q=confused&start=100&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://www.colorama.co.uk/photo/images/confused man2 copy.jpg&imgrefurl=http://www.colorama.co.uk/photo/images/&h=479&w=300&sz=81&tbnid=gE2QBziRzPoJ:&tbnh=124&tbnw=78&start=119&prev=/images?q=confused&start=100&hl=en&lr=&sa=N

