
Interactive Arguments with Preprocessing

Michael Walfish

Dept. of Computer Science, Courant Institute, NYU

Bar-Ilan Winter School on Verifiable Computation
Class 5

January 4, 2016

arithmetic
constraints, C

f

Next two sessions: foundations for (implemented) arguments

§  Key ideas: linear PCPs, QAPs

This session: focus on interactive arguments

§  Conceptually illuminating

§  Based on standard assumptions

§  Plan: linear PCPs, interactivity, the role of QAPs

interactive proof

interactive argument

non-interactive argument
prover

verifier

front-end back-end (probabilistic proof protocol)

x y

arithmetic
constraints, C

f

Recall: by construction, C is satisfiable iff f executes correctly
More formally: C is degree-2 constraints over 𝔽 and variables (X, Y, Z) s.t.
 ∀x,y: ∃ w s.t. y=f(x,w) ⟺ C(X=x,Y=y) is satisfiable

Thus, as usual, P must convince V that constraints C’ are satisfiable.
(C’ is notation for C(X=x,Y=y).)

interactive proof

interactive argument

non-interactive argument
prover

verifier

front-end back-end (probabilistic proof protocol)

x y

Goal: P convinces V that a set of constraints is satisfiable while:

§  V’s running time (possibly amortized) is less than executing f

§  P’s running time is quasilinear in the time to execute f

§  mechanics are simple, concrete costs aren’t crazy

(Today, assume that P has an assignment, z. Tomorrow, we will
describe how P derives z.)

Attempt 0: P sends z to V; V checks that z satisfies all constraints

§  Doesn’t meet the goal; z is same “size” as running time of f

prover verifier

Attempt 1: Use PCPs that are asymptotically short
[ALMSS92, AS92]

...
...

ACCEPT/
REJECT

...

“short” PCP

[BGHSV05, BGHSV06, Dinur07, BS08, Meir12, BCGT13]

This also doesn’t meet the goal
(because |PCP| > running time of f).

For more detail on this picture, see the notes after
the end of the slides.

hash tree digest

Attempt 2: Use arguments or CS proofs
[Kilian92, Micali94, BG02]

prover verifier

...

ACCEPT/
REJECT

“short” PCP

But the constants seem too high …

For more detail on this picture, see the notes after
the end of the slides.

Attempt 3: Use long PCPs interactively

Claim (informal): V can check the satisfiability of constraints C’ by
inspecting a long proof in a constant number of entries.

A more formal version of this claim is a “lite” PCP theorem:
QuadConstraint𝔽 ⊂ PCP(poly(n), log|𝔽|), with soundness error 7/9.

More formally: Using additively homomorphic encryption, the PCP above implies an
argument (with similar soundess) in which the V→P communication complexity is the length
of the PCP queries, and the P→V communication is a constant number of field elements.

Claim (informal): P can play the role of the long proof without
materializing the proof explicitly.

Claim (soft): The approach is simple, with good constants.

This requires preprocessing, or setup work, for V.

Claim: V can check the satisfiability of degree-2 constraints C′ (over a
field F) by inspecting a long proof in a constant number of entries.

Consider a polynomial Q(Z) ,
m∑

j=1

γj · Qj(Z):

Q(Z) is a “bellwether”:

• If Z = z satisfies C′, then . . .

• If Z = z does not satisfy C′, then . . .

Q(z) can be evaluated with two queries to a correct proof oracle, π

Q(z) =

π1 =

π2 =

But what if π is adversarially constructed?

• π1, π2 might not be Hadamard codewords

• π1, π2 might be close to Hadamard codewords but inconsistent

• π1, π2 might be close to Hadamard codewords and consistent but
encode a non-satisfying assignment.

Hadamard codeword←→ linear function. So test for linearity [BLR90].

Defn. of δ-close, δ-far: functions g, h with the same domain are δ-close
(δ-far) if they disagree on less (more) then a fraction δ of their domain.

But what if π is adversarially constructed?

• π1, π2 might not be (close to) Hadamard code words

• π1, π2 might be close to Hadamard codewords but inconsistent

• π1, π2 might be close to Hadamard codewords and consistent but
encode a non-satisfying assignment.

Quad correction test:

But what if π is adversarially constructed?

• π1, π2 might not be (close to) Hadamard code words

• π1, π2 might be close to Hadamard codewords but inconsistent

• π1, π2 might be close to Hadamard codewords and consistent but
encode a non-satisfying assignment.

Circuit test:

Putting together the guarantees of the tests:

• If C′ is satisfiable, there are π1, π2 s.t. Pr{all tests pass} = 1.

• If C′ is not satisfiable, then for all π1, π2, Pr{all tests pass} ≤ 7/9.

There were 14 queries; each of length n or n2 field elements. The
mechanics were simple.

So our desired claim is established:

V can check the satisfiability of degree-2 constraints C′ (over
F) by inspecting a long proof in a constant number of entries.

More formally, QuadConstraintF ⊂ PCP(poly(n), log |F|).

This kind of PCP is known as a Hadamard PCP, or linear PCP
[ALMSS92, IKO07].

Attempt 3: Use long PCPs interactively

Claim (informal): V can check the satisfiability of constraints C’ by
inspecting a long proof in a constant number of entries.

A more formal version of this claim is a “lite” PCP theorem:
QuadConstraint𝔽 ⊂ PCP(poly(n), log|𝔽|), with soundness error 7/9.

Claim (informal): P can play the role of the long proof without
materializing the proof explicitly.

Claim (soft): The approach is simple, with good constants.

This requires preprocessing, or setup work, for V.

More formally: Using additively homomorphic encryption, the PCP above implies an
argument (with similar soundess) in which the V→P communication complexity is the length
of the PCP queries, and the P→V communication is a constant number of field elements.

How can P play the role of an exponentially-sized linear PCP?

• Idea: represent linear PCP implicitly, as a linear function

• Idea: V uses additively homomorphic encryption to make P
commit to a function of this form.

Informal guarantee of linear commitment primitive: P is bound to a
fixed function.

This leads to our desired claim:

P can play the role of the linear PCP without materializing
that PCP explicitly. More formally:

Using additively homomorphic encryption, a linear PCP can
be transformed into an argument (with negligibly more
soundness error) in which the V-to-P communication
complexity equals the PCP query length and the P-to-V
communication is a constant number of field elements.

R

argument verifier

[IKO07, SMBW12]

linear PCP
tests (linearity,

quad, …)

q1, q2, …, qu

π(q1), …, π(qu)

PCP verifier

R

π(t) = π(r) + α1�π (q1) + … + αu�π (qu)

t = r + α1�q1 + … + αu�qu , αi ← 𝔽
?

π(�)=
<�,v>

?

prover

(q1, …, qu, t)

(π(q1), …, π(qu), π(t))

Enc(r), r ← 𝔽n

Enc(π(r))

consistency
test

consistency test:

consistency query:

prover
commit request

commit response

q1�v q2�v q3�v

L(�) = <�,v>

Attempt 3: Use long PCPs interactively (summary)
[IKO07, SMBW12]

Achieves simplicity, with good constants …

… and prover’s work is quadratic; address that shortly

ACCEPT/
REJECT

z ⊗ z

z

v

queries: q1, q2, q3, …

verifier

Hadamard
encoding of v

...

… but pre-processing is required (because |qi|=|v|)

prover

E(q1�v) E(q2�v) E(q3�v)

L(�) = <�,v>

Attempt 4: Use long PCPs non-interactively
[BCIOP13]

ACCEPT/
REJECT

z ⊗ z

z

v

E(q1), E(q2), E(q3)…

verifier

Hadamard
encoding of v

...

Query process now happens “in the exponent”

… prover’s work still quadratic; addressing that soon

… pre-processing still required (again because |qi|=|v|)

preview

efficient (short)
PCPs

arguments,
CS proofs

arguments w/
preprocessing

SNARGs w/
preprocessing

who ALMSS92, AS92,
BGSHV, Dinur, …

Kilian92,
Micali94

IKO07, SMBW12,
SVPBBW12

Groth10, GGPR12,
BCIOP13, …

what classical PCP commit to
PCP by
hashing

commit to long
PCP using
linearity

encrypt queries to
a long PCP

security unconditional CRHFs linearly HE knowledge-of-
exponent

why/why not not efficient
for V

constants are
unfavorable

simple simple, non-
interactive

Recap

(Thanks to Rafael Pass.)

preview

“As noted above, state-of-the-art PCP constructions leave little to be desired in
terms of asymptotic efficiency. However, the practical motivation of verifying
computations may call for a more refined efficiency analysis. From this point of
view, we believe that our approach has potential to yield better efficiency, at
least in some circumstances. … our approach does not inherently require the
prover to compute a redundant encoding of its input. This suggests the
possibility of designing PCPs that are optimized to make better use of the
‘implicit encoding’ feature of our approach.”

−Ishai, Kushilevitz, and Ostrovsky,
Efficient Arguments without Short PCPs, 2007

z

h

PCP structure implicit in GGPR. Made explicit in [BCIOP13, SBVBBW13].

[Groth10, Lipmaa12, GGPR12]

Final attempt: apply linear query structure to GGPR’s QAPs

prover

L(�) {
 return <�,v>;
}

z ⊗ z

z

v
queries

Addresses the issue of quadratic costs.

preview

•  standard assumptions
•  amortize over batch
•  interactive

•  non-falsifiable assumptions
•  amortize indefinitely
•  non-interactive, ZK, …

plaintext
queries

linear PCP via QAPs

queries in
exponent

“Pinocchio,” “libsnark”
[PGHR13, BCTV14b]

“Zaatar”
[SBVBBW13]

interactive
argument

[IKO07]

SNARG, zk-SNARK with
preprocessing
[Groth10, BCCT12, GGPR12]

All recent implementations are based on GGPR
SBVBPW13, PGHR13, BFRSBW13, BCGTV13, BCGGMTV14, BCTV14a,
BCTV14b, FL14, KPPSST14, WSRBW15, CFHKKNPZ15, BBFR15, CTV15

preprocessing lowered to
(high) constant
[BCCT13, BCTV14a, CTV15]

Summary of published argument implementations

[GGPR13]

1. Linear (Hadamard) PCPs, to prove satisfiability
§  Exponentially long but mechanically simple, with good constants

2. Linear PCPs can be transformed into argument protocols
with preprocessing

§  Interactive version: only standard assumptions

§  Non-interactive version: better amortization and properties

3. QAPs lower quadratic costs to quasilinear, and fit into
the linear PCP framework.

Summary of key concepts

NOTES

Notes for Attempt 1 (Use asymptotically short PCPs)
(This note relies heavily on [AB09, Ch. 11].)

Let us define the complexity class PCP. A language L ∈ PCP(r(n), q(n)) if:

• Efficiency. There is a PPT (probabilistic polynomial-time algorithm) VL that, on
input a ∈ {0, 1}n, uses O(r(n)) random coins and inspects O(q(n)) locations in
a string π, after which VL outputs “accept” or “reject”.

• Completeness. If a ∈ L, there exists a π s.t. Pr{VπL (a) accepts} = 1.

• Soundness. If a /∈ L, then for all π̃, Pr{V π̃L (a) accepts} < 1/2.

The notation VπL (·) denotes VL with random access to π. The probabilities are taken
over the random coins of VL.

The PCP theorem [ALMSS92,AS92] says: NP = PCP(log n, 1).

What happens if we apply this theory to QuadConstraintF?

Correct proofs are “short”: asymptotically, they are bounded by 2O(log n) · O(1)
(because this is the space “swept out” by the verifier’s coin flips).

But this length is still longer than n (which in our context, is the length of the
execution trace of the computation), so transmitting such a proof to V would conflict
with our efficiency goals.

Notes for Attempt 2 (Use arguments or CS proofs)
Informal and rough definition of an argument: an interactive proof (that is, a
probabilistic verifier V and a prover P) plus an assumption that any would-be prover is
computationally limited [BCC86, GMR85, Kilian92, Micali94, BG02]. In particular, a
dishonest P with unbounded computational ability can “win” (spuriously convince V
that instances are in a language). In addition, in the current context, we want the
protocol to require not much more of an honest P than T: the time required to decide
the given instance’s membership (in our context, this corresponds to running the
computation f). We also want V’s work to be substantially less than T . These
properties were beautifully articulated by [Micali94] in the context of CS proofs.

Theorem (informal): Assuming CRHFs (collision-resistant hash functions), arguments
(and CS proofs) exist.

The construction is “PCP + tree hash” [Kilian92, Micali94, BG02]. Specifically, P
materializes a PCP, and commits to it using a hash tree [Merkle87]. Then, V asks P
what values the PCP contains at particular locations; P is forced (by the CRHF
assumption) to respond in a way that is consistent with the original commitment
[Merkle87, BEGKN91]. Thus (except with negligible probability), P “acts like” the
fixed proof string of the PCP model.

This results in a 4-message (2-round) scheme. Micali makes this approach
non-interactive, in the Random Oracle model. Barak and Goldreich strengthen the
analysis so that the construction can work with a CRHF that resists a stronger prover.

Notes for Attempt 2, continued

What happens if we apply this theory to QuadConstraintF?

This is a great idea in principle. In fact, it remains asymptotically the best approach, if
we are limited to standard assumptions (in which case we use the interactive version)
or we are comfortable with the Fiat-Shamir Heuristic and the Random Oracle Model
(in which case we get a non-interactive version).

But in practice, it’s rather costly because of the high constants and intricate
constructions in asymptotically short PCP constructions. Indeed, despite intense
interest, no experimental results from this approach have been reported.

Notes for Attempt 3 (Use long PCPs interactively)
This approach turns to a long (or linear) PCP (a concept that we are fleshing out in this
class). This approach is worse in theory than the prior approach; yet, it’s a simpler
approach, and yields good constants. Perhaps for this reason, the ideas that underly it
have been at the heart of published implementations of arguments.

The first claim that we are establishing is certainly not a strong PCP theorem. But the
construction that we present highlights some important techniques. We are going
through the construction in class, so here are just a few brief notes.

The constraint set C is over variables in the set X (corresponding to the inputs), the set
Y (corresponding to the outputs), and the set Z (corresponding to “intermediate”
variables and variables set non-deterministically). We label the constraints in C as
Q1, . . . ,Qm. Notice: each Qj is a degree-2 function of (X, Y, Z) and that, at a particular
(X=x, Y=y), the Qj are functions only of Z1, . . . , Zn. Denote C(X=x, Y=y) with C′.

Let’s notate Q(z) as Q(γ)(z) to make clearer that it is a random variable. The reason
that Q(γ)(z) is a bellwether is as follows:

• If Z = z satisfies C′, then Prγ{Q(γ)(z) = 0} = 1.

• If Z = z does not satisfy C′, then Prγ{Q(γ)(z) = 0} ≤ 1/|F|.
The second one holds because at least one constraint Qj′(z) is not equal to 0. So the
whole sum is equal to 0 only if: γj′ = (−∑

j 6=j′ γj · Qj(z)) · (Qj′(z))−1, which has
probability 1/|F| (since γj′ is conceptually chosen after z).

Notes for Attempt 3, continued

There is a proof oracle such that Q(γ)(z) can be evaluated with two queries to that
oracle (if it’s correctly constructed). To see this, write

Q(γ)(z) = 〈λ2, z⊗ z〉+ 〈λ1, z〉+ λ0,

where v⊗ w is the outer product of two vectors, meaning all pairs viwj (how do we
know that Q(γ)(z) has this form?). Notice that λ0, λ1, λ2 depend on γ and the structure
of the Qj(·). In addition, λ0 depends on x, y (but we can arrange for λ1 and λ2 not to
have such a dependence).

The proof oracle is then, for some z, two long tables:
(1) π1 = 〈u1, z〉 for all u1 ∈ Fn

(2) π2 = 〈u2, z⊗ z〉 for all u2 ∈ Fn2

Notice that π1, π2 can be thought of as linear functions.

EXERCISE: Convince yourself that if π1, π2 are constructed this way, Q(γ)(z) can be
evaluated with only one query each to π1 and π2.

Notes for Attempt 3, continued

But of course π might be constructed adversarially. To address this issue, V will
perform three tests:

• Linearity tests of π1 and π2. This consists of choosing two elements a, b at
random from the domain of a (purportedly) linear function π and checking
whether π(a) + π(b) = π(a + b). (In a linear function, this holds for all a, b in
the domain.)

• Quadratic test (self-corrected). This consists of choosing two elements q5, q6 at
random from the domain of π1 and an element q7 from the domain of π2 and
checking whether π1(q5) · π1(q6) = π2(q5 ⊗ q6 + q7)− π2(q7).

• Circuit test (self-corrected). This is a modified form of our idealized check on
the previous page. Choose random q8 from the domain of π1 and q9 from the
domain of π2 and check whether
π2(λ2 + q9)− π2(q9) + π1(λ1 + q8)− π1(q8) + λ0 = 0.

Notes for Attempt 3, continued
The remaining step is to prove the completeness and soundness of this long PCP by
analyzing the tests. Take the following as a given:

LEMMA ([BLR90, BGLR93, BCHKS96]): If no linear function is (1/10)-close to g,
then Pra,b{linearity test passes} ≤ 7/9.

EXERCISE: Prove the following lemma:
If π1 and π2 are (1/10)-close to some linear functions π̃1 and π̃2 (respectively) and
Pr{π1, π2 pass the quadratic test} > 4 · (1/10) + 2/|F| (the probability is taken over
the random choices made in the quadratic test), then there exists a vector w for which
π̃1(·) = 〈·,w〉 and π̃2(·) = 〈·,w⊗ w〉.

EXERCISE: Prove the following lemma: If π1 and π2 are (1/10)-close to some linear
functions π̃1 and π̃2 (respectively), if π̃1 and π̃2 are consistent (in the sense of encoding
the same vector, z), and Pr{π1, π2 pass the circuit test} > 4 · (1/10) + 1/|F| (the
probability is taken over the random choices made in the circuit test), then z is a
satisfying assignment.

EXERCISE: Prove completeness and soundness:

• If C′ is satisfiable, there are π1, π2 s.t. Pr{all tests pass} = 1.

• If C′ is not satisfiable, then for all π1, π2, Pr{all tests pass} ≤ 7/9.

Notes on linear commitment primitive

In the security proof for this primitive, we imagine running the “commitment” phase
once and the “decommit” phase twice. If P could, with non-negligible probability,
produce different answers for the same query in the two different decommit phases,
then P could break the semantic security of the additively homomorphic encryption
scheme.

This in turn means that the prover is bound to a single function after the commitment
phase. The details are given in [IKO07], and the compiler given there is improved in
[SMBW12].

References
[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the ACM, 45(3):501–555, May
1998. Prelim. version FOCS 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, January 1998. Prelim. version FOCS 1992.

[Babai85] L. Babai. Trading group theory for randomness. In STOC, May 1985.

[BBFR15] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In IEEE Symposium on Security
and Privacy, May 2015.

[BCC86] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and Systems Sciences, 37(2):156–189, October 1988. Prelim.
versions: several papers in CRYPTO and FOCS 1986.

[BCCGLRT14] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and E.
Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Report 2014/580.
2014.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In ITCS,
January 2012.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for SNARKs and proof-carrying data. In STOC, June 2013.

[BCGGMTV14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Decentralized anonymous payments from Bitcoin. In IEEE Symposium on Security
and Privacy, May 2014.

[BCGT13] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the concrete-efficiency
threshold of probabilistically-checkable proofs. In STOC, June 2013.

[BCGTV13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
verifying program executions succinctly and in zero knowledge. In CRYPTO, August
2013.

[BCHKS96] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi, and M. Sudan. Linearity testing
in characteristic two. IEEE transactions on information theory, 42(6):1781–1795,
November 1996.

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In IACR TCC, March 2013.

[BCTV14a] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via
cycles of elliptic curves. In CRYPTO, August 2014.

[BCTV14b] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In USENIX Security Symposium, August
2014.

[BEGKN91] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness
of memories. In FOCS, October 1991.

[BF11] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In Eurocrypt, May 2011, pages 149–168.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. In STOC, May 1991.

[BFR13] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In ACM CCS, November 2013.

[BFRSBW13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying
computations with state. In SOSP, November 2013.

[BG02] B. Barak and O. Goldreich. Universal arguments and their applications. SIAM Journal
on Computing, 38(5):1661–1694, 2008. Prelim. version CCC 2002.

[BGHSV05] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Short PCPs
verifiable in polylogarithmic time. In Conference on Computational Complexity
(CCC), 2005.

[BGHSV06] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of
proximity, shorter PCPs and applications to coding. SIAM Journal on Computing,
36(4):889–974, December 2006.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs and applications to approximations. In STOC, 1993.

[BGV11] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In CRYPTO, August 2011, pages 111–131.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and Systems Sciences, 47(3):549–595,
December 1993. Prelim. version STOC 1990.

[Braun12] B. Braun. Compiling computations to constraints for verified computation. UT Austin
Honors thesis HR-12-10. December 2012.

[BS08] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, May 2008.

[BZF11] M. Blanton, Y. Zhang, and K. Frikken. Secure and verifiable outsourcing of large-
scale biometric computations. In IEEE International Conference on Information
Privacy, Security, Risk and Trust (PASSAT), October 2011.

[CFHKKNPZ15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno,
and S. Zahur. Geppetto: versatile verifiable computation. In IEEE Symposium on
Security and Privacy, May 2015.

[CL99] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002. Prelim.
versions OSDI 1999, OSDI 2000.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with
streaming interactive proofs. In ITCS, January 2012.

[CRR11] R. Canetti, B. Riva, and G. Rothblum. Practical delegation of computation using
multiple servers. In ACM CCS, October 2011.

[CT10] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature
cards. In ICS, 2010.

[CTV15] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero knowledge. In
Eurocrypt, April 2015, pages 371–403.

[DFKP13] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio coin: building
zerocoin from a succinct pairing-based proof system. In Workshop on Language
Support for Privacy-enhancing Technologies, November 2013.

[Din07] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3), June
2007.

[FG12] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In ACM CCS, May 2012, pages 501–512.

[FGLSS91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, March
1996. Prelim. version FOCS 1991.

[FGP14] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable computation on encrypted
data. In ACM CCS, 2014.

[FL14] M. Fredrikson and B. Livshits. ZØ: an optimizing distributing zero-knowledge
compiler. In USENIX Security Symposium, August 2014.

[Freivalds77] R. Freivalds. Probabilistic machines can use less running time. In Proceedings of the
IFIP Congress, 1977, pages 839–842.

[GF95] A. M. Ghuloum and A. L. Fisher. Flattening and parallelizing irregular, recurrent
loop nests. In ACM PPoPP, July 1995.

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In CRYPTO, August 2010.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Eurocrypt, 2013.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive
proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, August 2015. Prelim.
version STOC 2008.

[GLR11] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejec-
tion problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report
2011/456. 2011.

[GM01] P. Golle and I. Mironov. Uncheatable distributed computations. In RSA Conference,
April 2001, pages 425–440.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Prelim. version
STOC 1985.

[Goldreich07] O. Goldreich. Probabilistic proof systems – a primer. Foundations and trends in
theoretical computer science, 3(1):1–91, 2007.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM, 59(3):11:1–11:35, June 2012. Prelim. versions
CRYPTO 2006, Eurocrypt 2006.

[Groth10] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Asi-
acrypt, 2010.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, June 2011.

[HKD07] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical accountability
for distributed systems. In SOSP, October 2007, pages 175–188.

[IKO07] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs.
In Conference on Computational Complexity (CCC), 2007.

[Kilian92] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, May 1992.

[Knijnenburg98] P. M. W. Knijnenburg. Flattening: VLIW code generation for imperfectly nested
loops. In CPC98, June 1998.

[KNP05] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Enhanced loop coalescing: a
compiler technique for transforming non-uniform iteration spaces. In ISHPC05/ALPS06,
September 2005.

[KP15] Y. T. Kalai and O. Paneth. Delegating RAM computations. Cryptology ePrint Archive,
Report 2015/957. 2015.

[KPPSST14] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Trian-
dopoulos. TRUESET: faster verifiable set computations. In USENIX Security Sympo-
sium, August 2014.

[KR09] Y. T. Kalai and R. Raz. Probabilistically checkable arguments. In CRYPTO, 2009.

[KRR14] Y. T. Kalai, R. Raz, and R. Rothblum. How to delegate computations: the power of
no-signaling proofs. In STOC, 2014.

[KSC09] G. O. Karame, M. Strasser, and S. Čapkun. Secure remote execution of sequential
computations. In International Conference on Information and Communications
Security, December 2009.

[KZMQCPPsS15] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, abhi shelat,
and E. Shi. How to use SNARKs in universally composable protocols. Cryptology
ePrint Archive, Report 2015/1093. 2015.

[Lipmaa11] H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In IACR TCC, 2011.

[Meir12] O. Meir. Combinatorial PCPs with short proofs. In Conference on Computational
Complexity (CCC), 2012.

[Merkle87] R. C. Merkle. A digital signature based on a conventional encryption function. In
CRYPTO, August 1987.

[Micali94] S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Prelim. version FOCS 1994.

[MR97] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, October 1998. Prelim. version STOC 1997.

[MSG07] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content integrity for untrusted
peer-to-peer content distribution networks. In Symposium on Networked Systems
Design and Implementation (NSDI), 2007.

[MWR99] F. Monrose, P. Wycko, and A. D. Rubin. Distributed execution with remote audit. In
Network and Distributed System Security Symposium (NDSS), February 1999.

[PGHR13] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, May 2013.

[PMP11] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in modern computers.
Springer, 2011.

[Polychron87] C. D. Polychronopoulos. Loop coalescing: a compiler transformation for parallel
machines. In ICPP, August 1987.

[SBVBPW13] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving
the conflict between generality and plausibility in verified computation. In Eurosys,
April 2013.

[SBW11] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional
verification of remote computations. In Workshop on Hot Topics in Operating Systems
(HotOS), May 2011.

[Sion05] R. Sion. Query execution assurance for outsourced databases. In International Con-
ference on Very Large Databases (VLDB), August 2005, pages 601–612.

[SLSPDK05] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:
verifying integrity and guaranteeing execution of code on legacy platforms. In SOSP,
October 2005.

[SMBW12] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument sys-
tems for outsourced computation practical (sometimes). In Network and Distributed
System Security Symposium (NDSS), February 2012.

[SSW10] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud computing: secure
outsourcing of data and arbitrary computations with lower latency. In TRUST, June
2010.

[SVPBBW12] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-
based verified computation a few steps closer to practicality. In USENIX Security
Symposium, August 2012.

[Thaler13] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, August
2013.

[TRMP12] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with
massively parallel interactive proofs. In USENIX HotCloud Workshop, June 2012.

[VSBW13] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive
verifiable computation. In IEEE Symposium on Security and Privacy, May 2013.

[WB15] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them:
from theoretical possibility to near practicality. Communications of the ACM, 58(2):74–
84, February 2015.

[WHGsW15] R. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish. Verifiable ASICs.
Preprint. December 2015.

[WSRBW15] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM
and control flow in verifiable outsourced computation. In Network and Distributed
System Security Symposium (NDSS), February 2015.

[YCFVEEGH08] B. Ylvisaker, A. Carroll, S. Friedman, B. Van Essen, C. Ebeling, D. Grossman, and
S. Huack. Macah: a “C-level” language for programming kernels on coprocessor
accelerators. Technical report. University of Washington, Department of CSE, 2008.

