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Next two sessions: foundations for (implemented) arguments 

§  Key ideas: linear PCPs, QAPs 

This session: focus on interactive arguments 

§  Conceptually illuminating 

§  Based on standard assumptions 

§  Plan: linear PCPs, interactivity, the role of  QAPs 
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Recall: by construction, C is satisfiable iff  f  executes correctly 
More formally: C is degree-2 constraints over 𝔽 and variables (X, Y, Z) s.t.  
                          ∀x,y: ∃ w s.t. y=f(x,w) ⟺ C(X=x,Y=y) is satisfiable 

Thus, as usual, P must convince V that constraints C’ are satisfiable. 
(C’ is notation for C(X=x,Y=y). ) 
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non-interactive argument 
prover 

verifier 
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Goal: P convinces V that a set of  constraints is satisfiable while: 

§  V’s running time (possibly amortized) is less than executing f  

§  P’s running time is quasilinear in the time to execute f  

§  mechanics are simple, concrete costs aren’t crazy 

(Today, assume that P has an assignment, z. Tomorrow, we will 
describe how P derives z.) 

Attempt 0: P sends z to V; V checks that z satisfies all constraints 

§  Doesn’t meet the goal; z is same “size” as running time of  f   



prover verifier 

Attempt 1: Use PCPs that are asymptotically short 
[ALMSS92, AS92] 

...  
...  

ACCEPT/
REJECT 

...  

“short” PCP 

[BGHSV05, BGHSV06, Dinur07, BS08, Meir12, BCGT13] 

This also doesn’t meet the goal 
(because |PCP| > running time of  f). 

For more detail on this picture, see the notes after 
the end of  the slides. 



hash tree digest 

Attempt 2: Use arguments or CS proofs 
[Kilian92, Micali94, BG02] 

prover verifier 

...  

ACCEPT/
REJECT 

“short” PCP 

But the constants seem too high … 

For more detail on this picture, see the notes after 
the end of  the slides. 



Attempt 3: Use long PCPs interactively 

Claim (informal): V can check the satisfiability of  constraints C’ by 
inspecting a long proof  in a constant number of  entries.  

A more formal version of  this claim is a “lite” PCP theorem: 
QuadConstraint𝔽 ⊂ PCP(poly(n), log|𝔽|), with soundness error 7/9. 

More formally: Using additively homomorphic encryption, the PCP above implies an 
argument (with similar soundess) in which the V→P communication complexity is the length 
of  the PCP queries, and the P→V communication is a constant number of  field elements. 

Claim (informal): P can play the role of  the long proof  without 
materializing the proof  explicitly. 

Claim (soft): The approach is simple, with good constants. 

This requires preprocessing, or setup work, for V. 



Claim: V can check the satisfiability of degree-2 constraints C′ (over a
field F) by inspecting a long proof in a constant number of entries.

Consider a polynomial Q(Z) ,
m∑

j=1

γj · Qj(Z):

Q(Z) is a “bellwether”:

• If Z = z satisfies C′, then . . .

• If Z = z does not satisfy C′, then . . .



Q(z) can be evaluated with two queries to a correct proof oracle, π

Q(z) =

π1 =

π2 =



But what if π is adversarially constructed?

• π1, π2 might not be Hadamard codewords

• π1, π2 might be close to Hadamard codewords but inconsistent

• π1, π2 might be close to Hadamard codewords and consistent but
encode a non-satisfying assignment.

Hadamard codeword←→ linear function. So test for linearity [BLR90].

Defn. of δ-close, δ-far: functions g, h with the same domain are δ-close
(δ-far) if they disagree on less (more) then a fraction δ of their domain.



But what if π is adversarially constructed?

• π1, π2 might not be (close to) Hadamard code words

• π1, π2 might be close to Hadamard codewords but inconsistent

• π1, π2 might be close to Hadamard codewords and consistent but
encode a non-satisfying assignment.

Quad correction test:



But what if π is adversarially constructed?

• π1, π2 might not be (close to) Hadamard code words

• π1, π2 might be close to Hadamard codewords but inconsistent

• π1, π2 might be close to Hadamard codewords and consistent but
encode a non-satisfying assignment.

Circuit test:



Putting together the guarantees of the tests:

• If C′ is satisfiable, there are π1, π2 s.t. Pr{all tests pass} = 1.

• If C′ is not satisfiable, then for all π1, π2, Pr{all tests pass} ≤ 7/9.

There were 14 queries; each of length n or n2 field elements. The
mechanics were simple.

So our desired claim is established:

V can check the satisfiability of degree-2 constraints C′ (over
F) by inspecting a long proof in a constant number of entries.

More formally, QuadConstraintF ⊂ PCP(poly(n), log |F|).

This kind of PCP is known as a Hadamard PCP, or linear PCP
[ALMSS92, IKO07].



Attempt 3: Use long PCPs interactively 

Claim (informal): V can check the satisfiability of  constraints C’ by 
inspecting a long proof  in a constant number of  entries.  

A more formal version of  this claim is a “lite” PCP theorem: 
QuadConstraint𝔽 ⊂ PCP(poly(n), log|𝔽|), with soundness error 7/9. 

Claim (informal): P can play the role of  the long proof  without 
materializing the proof  explicitly. 

Claim (soft): The approach is simple, with good constants. 

This requires preprocessing, or setup work, for V. 

More formally: Using additively homomorphic encryption, the PCP above implies an 
argument (with similar soundess) in which the V→P communication complexity is the length 
of  the PCP queries, and the P→V communication is a constant number of  field elements. 



How can P play the role of an exponentially-sized linear PCP?

• Idea: represent linear PCP implicitly, as a linear function

• Idea: V uses additively homomorphic encryption to make P
commit to a function of this form.



Informal guarantee of linear commitment primitive: P is bound to a
fixed function.

This leads to our desired claim:

P can play the role of the linear PCP without materializing
that PCP explicitly. More formally:

Using additively homomorphic encryption, a linear PCP can
be transformed into an argument (with negligibly more
soundness error) in which the V-to-P communication
complexity equals the PCP query length and the P-to-V
communication is a constant number of field elements.
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argument verifier  

[IKO07, SMBW12] 

linear PCP 
tests (linearity, 

quad, …)  

q1, q2, …, qu 

π(q1), …, π(qu) 

PCP verifier 

R 

π(t) = π(r) + α1�π (q1) + … + αu�π (qu)  

t = r + α1�q1 + … + αu�qu ,   αi ← 𝔽 
? 

 
π(�)=
<�,v> 

? 

prover 

(q1, …, qu, t) 

(π(q1), …, π(qu), π(t))   

Enc(r), r ← 𝔽n 

Enc(π(r)) 

consistency 
test 

consistency test: 

consistency query: 



prover 
commit request 

commit response 

q1�v    q2�v     q3�v 

L(�) = <�,v> 

Attempt 3: Use long PCPs interactively (summary) 
[IKO07, SMBW12] 

Achieves simplicity, with good constants … 

… and prover’s work is quadratic; address that shortly 

ACCEPT/ 
REJECT 

z ⊗ z 

z 

v 

queries: q1, q2, q3, … 

verifier 

Hadamard 
encoding of  v 

...  

… but pre-processing is required (because |qi|=|v|)  



prover 

E(q1�v)    E(q2�v)   E(q3�v) 

L(�) = <�,v> 

Attempt 4: Use long PCPs non-interactively 
[BCIOP13] 

ACCEPT/ 
REJECT 

z ⊗ z 

z 

v 

E(q1), E(q2), E(q3)… 

verifier 

Hadamard 
encoding of  v 

...  

Query process now happens “in the exponent”  

… prover’s work still quadratic; addressing that soon 

… pre-processing still required (again because |qi|=|v|)  

preview 



efficient (short) 
PCPs 

arguments, 
CS proofs 

arguments w/ 
preprocessing 

SNARGs w/ 
preprocessing 

who ALMSS92, AS92, 
BGSHV, Dinur, … 

Kilian92, 
Micali94 

IKO07, SMBW12, 
SVPBBW12 

Groth10, GGPR12, 
BCIOP13, … 

what classical PCP commit to  
PCP by 
hashing  

commit to long 
PCP using 
linearity 

encrypt queries to 
a long PCP 

security unconditional CRHFs linearly HE knowledge-of-
exponent 

why/why not not efficient 
for V 

constants are 
unfavorable 

simple  simple, non-
interactive 

Recap 

(Thanks to Rafael Pass.) 

preview 



“As noted above, state-of-the-art PCP constructions leave little to be desired in 
terms of  asymptotic efficiency. However, the practical motivation of  verifying 
computations may call for a more refined efficiency analysis. From this point of  
view, we believe that our approach has potential to yield better efficiency, at 
least in some circumstances. … our approach does not inherently require the 
prover to compute a redundant encoding of  its input. This suggests the 
possibility of  designing PCPs that are optimized to make better use of  the 
‘implicit encoding’ feature of  our approach.” 

−Ishai, Kushilevitz, and Ostrovsky, 
Efficient Arguments without Short PCPs, 2007 



z 

h 

PCP structure implicit in GGPR. Made explicit in [BCIOP13, SBVBBW13].  

[Groth10, Lipmaa12, GGPR12] 

Final attempt: apply linear query structure to GGPR’s QAPs 

prover 

L(�) { 
   return <�,v>; 
} 

z ⊗ z 

z 

v 
queries 

Addresses the issue of  quadratic costs. 

preview 



•  standard assumptions 
•  amortize over batch 
•  interactive 

•  non-falsifiable assumptions 
•  amortize indefinitely 
•  non-interactive, ZK, … 

plaintext 
queries 

linear PCP via QAPs 

queries in 
exponent 

“Pinocchio,” “libsnark” 
[PGHR13, BCTV14b] 

“Zaatar” 
[SBVBBW13] 

interactive 
argument 

[IKO07] 

SNARG, zk-SNARK with 
preprocessing 
[Groth10, BCCT12, GGPR12]  

All recent implementations are based on GGPR 
SBVBPW13, PGHR13, BFRSBW13, BCGTV13, BCGGMTV14, BCTV14a, 
BCTV14b, FL14, KPPSST14, WSRBW15, CFHKKNPZ15, BBFR15, CTV15 

preprocessing lowered to 
(high) constant 
[BCCT13, BCTV14a, CTV15] 

Summary of  published argument implementations 

[GGPR13] 



1.  Linear (Hadamard) PCPs, to prove satisfiability 
§  Exponentially long but mechanically simple, with good constants 

2.  Linear PCPs can be transformed into argument protocols 
with preprocessing 

§  Interactive version: only standard assumptions 

§  Non-interactive version: better amortization and properties 

3. QAPs lower quadratic costs to quasilinear, and fit into 
the linear PCP framework. 

Summary of  key concepts  



NOTES 



Notes for Attempt 1 (Use asymptotically short PCPs)
(This note relies heavily on [AB09, Ch. 11].)

Let us define the complexity class PCP. A language L ∈ PCP(r(n), q(n)) if:

• Efficiency. There is a PPT (probabilistic polynomial-time algorithm) VL that, on
input a ∈ {0, 1}n, uses O(r(n)) random coins and inspects O(q(n)) locations in
a string π, after which VL outputs “accept” or “reject”.

• Completeness. If a ∈ L, there exists a π s.t. Pr{VπL (a) accepts} = 1.

• Soundness. If a /∈ L, then for all π̃, Pr{V π̃L (a) accepts} < 1/2.

The notation VπL (·) denotes VL with random access to π. The probabilities are taken
over the random coins of VL.

The PCP theorem [ALMSS92,AS92] says: NP = PCP(log n, 1).

What happens if we apply this theory to QuadConstraintF?

Correct proofs are “short”: asymptotically, they are bounded by 2O(log n) · O(1)
(because this is the space “swept out” by the verifier’s coin flips).

But this length is still longer than n (which in our context, is the length of the
execution trace of the computation), so transmitting such a proof to V would conflict
with our efficiency goals.



Notes for Attempt 2 (Use arguments or CS proofs)
Informal and rough definition of an argument: an interactive proof (that is, a
probabilistic verifier V and a prover P) plus an assumption that any would-be prover is
computationally limited [BCC86, GMR85, Kilian92, Micali94, BG02]. In particular, a
dishonest P with unbounded computational ability can “win” (spuriously convince V
that instances are in a language). In addition, in the current context, we want the
protocol to require not much more of an honest P than T: the time required to decide
the given instance’s membership (in our context, this corresponds to running the
computation f ). We also want V’s work to be substantially less than T . These
properties were beautifully articulated by [Micali94] in the context of CS proofs.

Theorem (informal): Assuming CRHFs (collision-resistant hash functions), arguments
(and CS proofs) exist.

The construction is “PCP + tree hash” [Kilian92, Micali94, BG02]. Specifically, P
materializes a PCP, and commits to it using a hash tree [Merkle87]. Then, V asks P
what values the PCP contains at particular locations; P is forced (by the CRHF
assumption) to respond in a way that is consistent with the original commitment
[Merkle87, BEGKN91]. Thus (except with negligible probability), P “acts like” the
fixed proof string of the PCP model.

This results in a 4-message (2-round) scheme. Micali makes this approach
non-interactive, in the Random Oracle model. Barak and Goldreich strengthen the
analysis so that the construction can work with a CRHF that resists a stronger prover.



Notes for Attempt 2, continued

What happens if we apply this theory to QuadConstraintF?

This is a great idea in principle. In fact, it remains asymptotically the best approach, if
we are limited to standard assumptions (in which case we use the interactive version)
or we are comfortable with the Fiat-Shamir Heuristic and the Random Oracle Model
(in which case we get a non-interactive version).

But in practice, it’s rather costly because of the high constants and intricate
constructions in asymptotically short PCP constructions. Indeed, despite intense
interest, no experimental results from this approach have been reported.



Notes for Attempt 3 (Use long PCPs interactively)
This approach turns to a long (or linear) PCP (a concept that we are fleshing out in this
class). This approach is worse in theory than the prior approach; yet, it’s a simpler
approach, and yields good constants. Perhaps for this reason, the ideas that underly it
have been at the heart of published implementations of arguments.

The first claim that we are establishing is certainly not a strong PCP theorem. But the
construction that we present highlights some important techniques. We are going
through the construction in class, so here are just a few brief notes.

The constraint set C is over variables in the set X (corresponding to the inputs), the set
Y (corresponding to the outputs), and the set Z (corresponding to “intermediate”
variables and variables set non-deterministically). We label the constraints in C as
Q1, . . . ,Qm. Notice: each Qj is a degree-2 function of (X, Y, Z) and that, at a particular
(X=x, Y=y), the Qj are functions only of Z1, . . . , Zn. Denote C(X=x, Y=y) with C′.

Let’s notate Q(z) as Q(γ)(z) to make clearer that it is a random variable. The reason
that Q(γ)(z) is a bellwether is as follows:

• If Z = z satisfies C′, then Prγ{Q(γ)(z) = 0} = 1.

• If Z = z does not satisfy C′, then Prγ{Q(γ)(z) = 0} ≤ 1/|F|.
The second one holds because at least one constraint Qj′(z) is not equal to 0. So the
whole sum is equal to 0 only if: γj′ = (−∑

j 6=j′ γj · Qj(z)) · (Qj′(z))−1, which has
probability 1/|F| (since γj′ is conceptually chosen after z).



Notes for Attempt 3, continued

There is a proof oracle such that Q(γ)(z) can be evaluated with two queries to that
oracle (if it’s correctly constructed). To see this, write

Q(γ)(z) = 〈λ2, z⊗ z〉+ 〈λ1, z〉+ λ0,

where v⊗ w is the outer product of two vectors, meaning all pairs viwj (how do we
know that Q(γ)(z) has this form?). Notice that λ0, λ1, λ2 depend on γ and the structure
of the Qj(·). In addition, λ0 depends on x, y (but we can arrange for λ1 and λ2 not to
have such a dependence).

The proof oracle is then, for some z, two long tables:
(1) π1 = 〈u1, z〉 for all u1 ∈ Fn

(2) π2 = 〈u2, z⊗ z〉 for all u2 ∈ Fn2

Notice that π1, π2 can be thought of as linear functions.

EXERCISE: Convince yourself that if π1, π2 are constructed this way, Q(γ)(z) can be
evaluated with only one query each to π1 and π2.



Notes for Attempt 3, continued

But of course π might be constructed adversarially. To address this issue, V will
perform three tests:

• Linearity tests of π1 and π2. This consists of choosing two elements a, b at
random from the domain of a (purportedly) linear function π and checking
whether π(a) + π(b) = π(a + b). (In a linear function, this holds for all a, b in
the domain.)

• Quadratic test (self-corrected). This consists of choosing two elements q5, q6 at
random from the domain of π1 and an element q7 from the domain of π2 and
checking whether π1(q5) · π1(q6) = π2(q5 ⊗ q6 + q7)− π2(q7).

• Circuit test (self-corrected). This is a modified form of our idealized check on
the previous page. Choose random q8 from the domain of π1 and q9 from the
domain of π2 and check whether
π2(λ2 + q9)− π2(q9) + π1(λ1 + q8)− π1(q8) + λ0 = 0.



Notes for Attempt 3, continued
The remaining step is to prove the completeness and soundness of this long PCP by
analyzing the tests. Take the following as a given:

LEMMA ([BLR90, BGLR93, BCHKS96]): If no linear function is (1/10)-close to g,
then Pra,b{linearity test passes} ≤ 7/9.

EXERCISE: Prove the following lemma:
If π1 and π2 are (1/10)-close to some linear functions π̃1 and π̃2 (respectively) and
Pr{π1, π2 pass the quadratic test} > 4 · (1/10) + 2/|F| (the probability is taken over
the random choices made in the quadratic test), then there exists a vector w for which
π̃1(·) = 〈·,w〉 and π̃2(·) = 〈·,w⊗ w〉.

EXERCISE: Prove the following lemma: If π1 and π2 are (1/10)-close to some linear
functions π̃1 and π̃2 (respectively), if π̃1 and π̃2 are consistent (in the sense of encoding
the same vector, z), and Pr{π1, π2 pass the circuit test} > 4 · (1/10) + 1/|F| (the
probability is taken over the random choices made in the circuit test), then z is a
satisfying assignment.

EXERCISE: Prove completeness and soundness:

• If C′ is satisfiable, there are π1, π2 s.t. Pr{all tests pass} = 1.

• If C′ is not satisfiable, then for all π1, π2, Pr{all tests pass} ≤ 7/9.



Notes on linear commitment primitive

In the security proof for this primitive, we imagine running the “commitment” phase
once and the “decommit” phase twice. If P could, with non-negligible probability,
produce different answers for the same query in the two different decommit phases,
then P could break the semantic security of the additively homomorphic encryption
scheme.

This in turn means that the prover is bound to a single function after the commitment
phase. The details are given in [IKO07], and the compiler given there is improved in
[SMBW12].
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