
Session 2: The Yao and BMR 
Protocols for Secure Computation 

 

Benny Pinkas 

Bar-Ilan University 



The Yao and BMR Protocols 

• Yao presented the first protocol for secure (two-
party) computation 

• Yao’s protocol was followed by several protocols 
for the multi-party setting 
– Goldreich-Micali-Wigderson (GMW) 

– Ben Or-Goldwasser-Wigderson (BGW), Chaum-
Crepeau-Damgård (CCD) 

• Beaver-Micali-Rogaway (BMR) presented a multi-
party protocol using a similar approach to Yao’s, 
and with only O(1) communication rounds.  
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Yao’s Protocol 
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• A protocol for general secure two-party 
computation 
– Constant number of rounds 

– The basic protocol is secure only for semi-honest 
adversaries 

– Many applications of the methodology beyond 
secure computation 

• General secure computation 
– Can securely compute any functionality 

– Based on a representation of the functionality as 
a Boolean circuit 

Yao’s Protocol 
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Representing functions as Boolean 
circuits??? 

• In some cases the circuits are small 
– Adding numbers 

– Comparing numbers 

– Multiplying numbers? 

– Computing AES? 

– Working with indirect addressing (A[i]) ?  

 

• We can efficiently do secure computation of 
millions and billions of gates 
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Basic ideas 
• A plain circuit is evaluated by 

– Setting values to its input gates 

– For each gate, computing the value of the outgoing 
wire as a function of the wires going into the gate 

• Secure computation: 

– No party should learn the values of any internal wires 

• Yao’s protocol 

– A compiler which takes a circuit and transforms it to a 
circuit which hides all information but the final output 
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• Garbled circuit 
– An encrypted circuit together with a pair of keys 

(k0,k1) for every wire so that for any gate, given one 
key on every input wire: 
• It is possible to compute the key of the 

corresponding gate output 
• It is impossible to learn anything else 

• Tool: oblivious transfer 
– Input: sender has x0,x1; receiver has b 
– Receiver obtains xb only 
– Sender learns nothing 

Outline 
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• For the entire circuit, assign independent 
random values/keys to each wire (key k0 for 0, 
key k1 for 1) 

– These keys are also called “garbled values” 

 

• Encrypt each gate, so that given one key for 
each input wire, can compute the appropriate 
key on the output wire 

A Garbled Circuit 
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An AND Gate 
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An AND Gate with Garbled Values 
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A Garbled AND Gate 
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• The actual garbled gate 

 

 

 

 
• Given  Ku

0  and Kv
1 can obtain only Kw

0 

• Furthermore, since the order of the rows 
is permuted, the party has no idea if it 
obtained the 0 or 1 key 

A Garbled AND Gate 
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• If the gate is an output gate, also 
need to provide the “decryption” of 
the output wire 

• Output translation table: 
 [(0,kw

0),(1,kw
1)] 

 

• (Note: this table is insecure if the wire w is used 
as an input wire to any other gate. It is better to 
use a table of the form [(0, H(kw

0)), (1,H(kw
1))] 

but this complicates the security proof.) 

 

Output Translation 
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• Given a Boolean circuit 
– Assign garbled values to all wires 

– Construct garbled gates using the garbled values 

• Central property: 
– Given a garbled value for each input wire, can 

compute the entire circuit, and obtain garbled 
values for the output wires 

– Given a translation table for the output wires, can 
obtain output 

– Nothing but the final output is learned! 

Constructing a Garbled Circuit 
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An Example Circuit  
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• How does the party computing the circuit know 
that it decrypted the “correct” entry? 
– A gate table has four entries in permuted order 

– The keys known to the evaluator can decrypt only a 
single entry, but symmetric encryption may decrypt 
“correctly” even with incorrect keys 

• Two possibilities (actually many…) 

– Add redundant zeroes to the plaintext; only correct 
keys give redundant block 

– Add a bit to signal which ciphertext to decrypt 

Computing a Garbled Circuit 

Secure Computation and Efficiency         
Bar-Ilan University, Israel, 2015 22 



• Option 1:  

– Encryption: EK(m) = [r , FK(r)  (m||0n)] 

– By the pseudo-randomness of F, the probability of obtaining 0n with 
an incorrect K is negligible 

• Option 2: 
– For every wire, choose a random signal bit together with the keys 

Computing a Garbled Circuit 
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• External value is equal to 
(internal value xor signal bit) 
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• The actual garbled gate 

 

 

 

 
 

• Advantage 

– Evaluator knows external values and therefore which entry to 

decrypt. Computing the circuit requires just two decryptions per 

gate (rather than an average of 5 if 0n is appended to plaintext) 
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Yao’s protocol 

• P1 sends to P2 

– Tables encoding each circuit gate. 

– The keys corresponding to P1’s input values. 

 

• If P2 gets the keys corresponding to its input 
values, it can compute the output of the circuit, 
and nothing else. 
– Why can’t P1 provide P2 with the keys corresponding 

to both 0 and 1 for P2’s input wires? 
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Yao’s protocol 
• For every wire i of P2’s input: 

– The parties run an OT protocol 

– P2’s input is her input bit (yi). 

– P1’s input is ki
0,ki

1 

– P2 learns ki
yi 

 

• The OTs for all input wires can be run in 
parallel.  

• Afterwards P1 can compute the circuit by itself.  
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• Input: x and y of length n 

• P1 generates a garbled circuit G(C) 
– kL

0,kL
1 are the keys on wire wL 

– Let w1,…,wn be the input wires of P1 and wn+1,…,w2n be the 
input wires of P2 

• P1 sends to P2 G(C) and the strings k1
x1,…, kn

xn 

• P1 and P2 run n OTs in parallel 
– P1 inputs (kn+i

0, kn+i
1) 

– P2 inputs yi 

• Given all keys, P2 computes G(C) and obtains C(x,y)  
– P2 sends result to P1 

Yao’s Protocol 
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The Example Circuit  
(input wires P1= d,a; P2 = b,e) 
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• Need to formally prove that given 4 
encryptions of a garbled gate and only 2 keys 

– Nothing is learned beyond one output 

• Actually, in order to simulate the protocol, we 
need something stronger  

• Notation: 

– Double encryption:  

– Oracles:  

Double-Encryption Security 
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Double-Encryption Security 

Enabling A to access these oracles gives it more power 

Secure Computation and Efficiency         
Bar-Ilan University, Israel, 2015 30 

The encryption is secure if the adversary cannot identify which one of the 
two triples as encrypted 



• P1’s view consists only of the messages it 
receives in the oblivious transfers 

• In the OT-hybrid model, P1 receives no 
messages in the oblivious transfers 

• Simulation: 

– Generate an empty transcript 

Proof of Security – P1 is Corrupted 
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• More difficult case 

– Need to construct a fake garbled circuit G(C) that 
looks indistinguishable to G(C) 

– Simulated view contains keys to input wires and 
G(C)  

– G(C) together with the keys computes f(x,y) 

– But the simulator does not know x, so cannot 
generate a real garbled circuit 

Proof of Security – P2 is Corrupted 
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• The simulator 

– Given y and z = f(x,y), construct a fake garbled 
circuit G(C) that always outputs z 

• Do this by choosing wire keys as usual, but encrypting 
the same output key in all ciphertexts, e.g. 

 

 

• This ensures that no matter the input, the same known 
garbled values on the output wires are received 

Proof of Security – P2 is Corrupted 
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• Simulator (continued) 

– Simulation of output translation tables 

• Let k,k be the keys on the ith output wire; let k be the key 
encrypted in all 4 entries of the gate which outputs this wire 

• If zi = 0, write [(0,k),(1,k)] 

• If zi = 1, write [(0,k),(1,k)] 

– Simulation of input keys phase 

• Input wires associated with P1’s input: send any one of the 
two keys on the wire 

• Input wires associated with P2’s input: simulate output of OT 
to be any one of the two keys on the wire 

Proof of Security – P2 is Corrupted 
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• Need to prove that the simulation is 
indistinguishable from the real execution 

• First step – modify simulator as follows 
– Given circuit inputs x and y (just for the sake of the 

proof), label all keys on the wires as active or inactive 
• active: key is obtained on this wire upon inputs (x,y) 

• inactive: key is not obtained on wire upon inputs (x,y) 

– Make sure that the single key encrypted in each gate 
is the active one 
 

• This simulation is identical to the previous one 

Proof of Security – P2 is Corrupted 
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• Proven by a hybrid argument 
– Consider a garbled circuit GL(C) for which: 

• The first L gates are generated as in the (alternative) 
simulation 

• The rest of the gates are generated honestly 

• Claim: GL-1(C) is indistinguishable from GL(C) 
• Proof: 

– Difference is in Lth gate 
– Intuition: use indistinguishability of encryptions to say 

that cannot distinguish real garbled gate from one 
where the same active key is encrypted in all entries 

Proof of Security – P2 is Corrupted 
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• Observation – Lth gate 
– The encryption under both active keys is identical in 

both cases 

– The difference is encryptions where one or both of the 
keys are inactive keys 
• Must show that these three encryptions are indistinguishable 

from the encryptions in real execution 

• The problem 
– The inactive keys in this gate may appear in other gates 

as well 
• We needed the oracles to generate these other encryptions… 

Proof of Security – P2 Corrupted 
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The Example Circuit  
(input wires P1= d,a; P2 = b,e) 

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND 

AND OR 

))(k(EE 1

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 0

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

Secure Computation and Efficiency         
Bar-Ilan University, Israel, 2015 38 



Simulator’s Circuit (Output 01) 
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In each gate, all table 
entries are identical 



Inactive Keys  
Assuming input is (da=01,be=10), output is (fg=01) 
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Assuming input is (da=01,be=10), output is (fg=01) 
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Modify Simulator 
(Encrypt Active Keys Only) 
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Hybrid on OR Gate – Simulated OR 

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND 

AND OR 

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

))(k(EE 1

ckk 1
b

1
a

))(k(EE 1

ckk 1
b

0
a

))(k(EE 1

ckk 0
b

0
a

))(k(EE 1

ckk 0
b

1
a

SIM 

REAL SIM 

Secure Computation and Efficiency         
Bar-Ilan University, Israel, 2015 43 



Hybrid on OR Gate – Real OR 
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• In the simulated OR case, the inactive key kc
0 

encrypts the key kg
1 

• In the real OR case, the inactive key kc
0 

encrypts the key kg
0 

• Indistinguishability follows from the 
indistingushability of encryptions under the 
inactive key kc

0 

What’s the Difference 
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• Follows from the indistingushability of 
encryptions under the inactive key kc

0  

• The good news 
– Key kc

0 is not encrypted anywhere (as data) because 
prior gates are simulated 

• The bad news  
– The key kc

0 needs to be used to construct the real AND 
gate for the hybrid 

• The solution 
– The special double-encryption CPA game 

 

Proving Indistinguishability 
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The problem: inactive key used in 
another gate 
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• k0,k1 (i.e., kc
1,ke

0) are active keys  

• k0,k1 (i.e, kc
0,ke

1) are inactive keys 

– Can use oracle to generate the REAL  AND gate 

Double-Encryption Security 
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• Since each gate-replacement is 
indistinguishable, using a hybrid argument we 
have that the distributions are 
indistinguishable  (see paper for details) 

 

• QED 

Proof of Security – P2 is Corrupted 
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• 2-4 rounds (depending on OT and if one party 
or both parties receive output) 

• |y| oblivious transfers 

• 8|C| symmetric encryptions to generate 
circuit and 2|C| to compute it (using the 
signal bit) 

• For a circuit of 33,000 gates, about 528 Kbytes 
with 128bit AES encryption 

Efficiency 
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• Assume that the OT is secure for malicious adv: 
– A corrupted P1 cannot learn anything (it receives no 

messages in the protocol, in the hybrid-OT model) 

• Thus, we have privacy 

– We can prove full security for the case of a corrupted P2 

• This can be useful, but… 
– This does not ensure that the parties compute the 

required functionality 

– E.g., consider P1 that builds circuit so that if P2’s first bit is 
0, the circuit doesn’t decrypt 

• If P1 can detect this in the real world, privacy is lost 

– Proving full security against a malicious P1 is hard 

Malicious Adversaries 
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The BMR Protocol 
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• Beaver-Micali-Rogaway 

• A multi-party version of Yao’s protocol 

• Works in O(1) communication rounds, regardless 
of the depth of the Boolean circuit. (The GMW,BGW, 
CCD protocol have O(d) rounds) 

 

– D. Beaver, S. Micali and P. Rogaway, “The round 
complexity of secure protocols”, 1990. 

– A. Ben-David, N. Nisan and B. Pinkas, “FairplayMP – A 
System for Secure Multi-Party Computation”, 2010. 

 

 

The BMR protocol 
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• Two random seeds (aka keys, garbled values) 
are set for every wire of the Boolean circuit: 

– Each seed is a concatenation of seeds generated 
by all players and secretly shared among them. 

• The parties securely compute together a 4x1 
table for every gate (in parallel):  

– Given a 0/1 seed to each of the two input wires, 
the table reveals the seed of the resulting value of 
the output wire.  

The BMR protocol: the basic idea 

54 



Encoding Gates 

• Wire a has seeds sa,1
0,sa,1

1,…, sa,n
0, sa,n

1 of parties 
P1,…,Pn.  

• Every wire has similar seeds. 

• Each wire has a secret bit . If a=0 then sa,i
0 

corresponds to an internal value of  0 and sa,i
1 

corresponds to an internal value of 1. Otherwise sa,i
0 

corresponds to 1 and sa,i
1  to 0. 

• The  values are random and shared between         
the parties, so no one knows to which internal      
value the 0 seeds correspond. 
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Encoding Gates 

• Suppose that a=0, b=1 and c=0. 

• The seeds sa,1
0,…, sa,n

0 and sb,1
0,…, sb,n

0 

– Correspond to internal values of a=0, b=1, and 
consequently to c=0. 

– Since c=0 they will encrypt the corresponding seeds 
of wire c, sc,1

0,…, sc,n
0 

• Can similarly decide which seed of wire c                
must be encrypted by each combination                     
of the seeds of wires a,b. 
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Encoding Gates 

• For each gate, the table encrypting the outputs of the 
gate is a function of  

– a=0, b=1, c=0 (these values are shared by the 
parties) 

– The seeds sa,1
0, sa,1

1,..., sa,n
0, sa,n

1, sb,1
0, sb,1

1,..., sb,n
0, sb,n

1, 
and sc,1

0, sc,1
1,..., sc,n

0, sc,n
1 

– Gate type (AND, OR, etc.) 

• The size of this function is independent of the           
circuit size 

• The parties can run a secure computation to                   
compute the table (using, e.g., GMW etc.) 
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• Offline: The parties securely compute together a 
4x1 table for every gate (in parallel for all gates):  

– This is essentially a secure computation of the table 

– All tables are computed in parallel. Therefore overall 
O(1) rounds.  

– This is the main bottleneck of the BMR protocol 
(FairplayMP optimizes this computation). 

• Online: Given the tables and the seeds of the 
input values, compute the circuit as in Yao. 

The BMR protocol 
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• Can compute any functionality securely in 
presence of semi-honest adversaries. 
 

• The Yao and BMR protocols are efficient, for 
circuits that are not too large. 
 

• Obtaining security against malicious 
adversaries is hard. 

Summary 
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