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The Yao and BMR Protocols

* Yao presented the first protocol for secure (two-
party) computation

* Yao’s protocol was followed by several protocols
for the multi-party setting
— Goldreich-Micali-Wigderson (GMW)
— Ben Or-Goldwasser-Wigderson (BGW), Chaum-
Crepeau-Damgard (CCD)

* Beaver-Micali-Rogaway (BMR) presented a multi-
party protocol using a similar approach to Yao’s,
and with only O(1) communication rounds.
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Yao’s Protocol



Yao’s Protocol

* A protocol for general secure two-party
computation
— Constant number of rounds

— The basic protocol is secure only for semi-honest
adversaries

— Many applications of the methodology beyond
secure computation

* General secure computation
— Can securely compute any functionality

— Based on a representation of the functionality as
a Boolean circuit
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Representing functions as Boolean
circuits???

* |n some cases the circuits are small
— Adding numbers
— Comparing numbers
— Multiplying numbers?
— Computing AES?
— Working with indirect addressing (A[i]) ?

* We can efficiently do secure computation of
millions and billions of gates
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Basic ideas

* A plain circuit is evaluated by
— Setting values to its input gates

— For each gate, computing the value of the outgoing
wire as a function of the wires going into the gate

* Secure computation:

— No party should learn the values of any internal wires

* Yao’s protocol

— A compiler which takes a circuit and transforms it to a
circuit which hides all information but the final output
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Outline

 Garbled circuit

— An encrypted circuit together with a pair of keys
(ko k,) for every wire so that for any gate, given one
key on every input wire:

* |t is possible to compute the key of the
corresponding gate output

* |t is impossible to learn anything else
* Tool: oblivious transfer
— Input: sender has x,,x,; receiver has b
— Receiver obtains x, only
— Sender learns nothing
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A Garbled Circuit

* For the entire circuit, assign independent
random values/keys to each wire (key k, for O,
key k, for 1)

— These keys are also called “garbled values”

* Encrypt each gate, so that given one key for
each input wire, can compute the appropriate
key on the output wire
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An AND Gate

L = O O
R O - O
R O O O
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An AND Gate with Garbled Values

kg k\1 k\é’v
<K K
Kk Kk Kk
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A Garbled AND Gate

E,.o (E,0 (KS))
E,o (E, (KS))
E,. (E,.(KS))
E,. (E, (ki)
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A Garbled AND Gate

The actual garbled gate
g [ E(E (k)
o | Ee(E.(k])
2| EnE.kL)
S L E(E ()

Given K ° and K,! can obtain only K,°

Furthermore, since the order of the rows
is permuted, the party has no idea if it
obtained the 0 or 1 key
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Output Translation

 |f the gate is an output gate, also

need to provide the “decryption” of
the output wire

e Output translation table:

[(0,k,”),(1,k,,")]

(Note: this table is insecure if the wire w is used
as an input wire to any other gate. It is better to
use a table of the form [(0, H(k ")), (1,H(k,'))]
but this complicates the security proof.)

ellen,
k((;‘(’ Ce :
f'\l: Secure Computation and Efficiency
¢ Bar-llan University, Israel, 2015

19



Constructing a Garbled Circuit

* Given a Boolean circuit
— Assign garbled values to all wires
— Construct garbled gates using the garbled values

e Central property:

— Given a garbled value for each input wire, can
compute the entire circuit, and obtain garbled
values for the output wires

— Given a translation table for the output wires, can
obtain output

— Nothing but the final output is learned!
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An Example Circuit

[(0. k7). (1, k7)] [(0, k§), (1, kg)]
Eyo(Ero(k7)) Exo(Erg(kg))
Ekg(Ek%(kjg)) EkS(Ek%(ké))
Epa(Ero (kD)) Exy(Exg(kg))
Er1(Era(kf)) Exi(Exa(kg))

:5'\5 Secure Computation and Effi§e11cy xz yl yz
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Computing a Garbled Circuit

* How does the party computing the circuit know
that it decrypted the “correct” entry?
— A gate table has four entries in permuted order

— The keys known to the evaluator can decrypt only a
single entry, but symmetric encryption may decrypt
“correctly” even with incorrect keys

* Two possibilities (actually many...)

— Add redundant zeroes to the plaintext; only correct
keys give redundant block

— Add a bit to signal which ciphertext to decrypt
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Computing a Garbled Circuit

* Option 1:
— Encryption: E.(m) =[r, F(r) © (m]|0")]

— By the pseudo-randomness of F, the probability of obtaining 0" with

an incorrect K is negligible any drawbacks?

* Option 2:

— For every wire, choc&se a random signal bit together with the keys

e Each wire has an “internal value”
bit which must be kept secret

e It also has an “external value” bit
which the evaluator can see

e External value is equal to
(internal value xor signal bit)
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Computing a Garbled Circuit with a
Signal Bit

* The actual garbled gate
wole (0,0) > E,, (B, (K5 D)

ordered 1

based 0,1) — Eklu (Eklv (ki 110))

on (1,0) —> Ekg (Ekg (kSV 1))

external (1,1) - E , (E . (ky, 1D) )
values u ’ o=l K

 Advantage

— Evaluator knows external values and therefore which entry to
decrypt. Computing the circuit requires just two decryptions per
gate (rather than an average of 5 if 0" is appended to plaintext)
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Yao’s protocol

* P,sendstoP,
— Tables encoding each circuit gate.
— The keys corresponding to P,’s input values.

* |If P, gets the keys corresponding to its input
values, it can compute the output of the circuit,

and nothing else.

— Why can’t P, provide P, with the keys corresponding
to both 0 and 1 for P,’s input wires?
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Yao’s protocol

* For every wire i of P,’s input:
— The parties run an OT protocol
— P,’s input is her input bit (y,).
— P /s inputis k© k.1
— P, learns k.

* The OTs for all input wires can be run in
parallel.

* Afterwards P, can compute the circuit by itself.
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Yao’s Protocol

* Input: x and y of length n
* P, generates a garbled circuit G(C)
— k,%k,* are the keys on wire w,

— Let wy,...,w, be the input wires of P, and w,,,,...,w,, be the
input wires of P,

* P, sendsto P, G(C) and the strings k,™,..., k™
* P,and P, run n OTs in parallel

— P, inputs (k.0 k. .:1)

— P, inputsy;

* Given all keys, P, computes G(C) and obtains C(x,y)
— P, sends result to P,
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The Example Circuit

(input wires P,=d,a; P, =b,e)

[0.k2) @) 1(0.k5) @ <5)

E, (E, (K9) E, (B, (K9))
E, (E,, (K9) E, (B, (k1))
E, (B, (K?) E,. (B, (k)
E, (E. k)| K E,. (B, (k)

E o (B, (K2))
E,o (B, (K2))
E,. (B, (K2))
E,. (B (K1)
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Double-Encryption Security

* Need to formally prove that given 4
encryptions of a garbled gate and only 2 keys

— Nothing is learned beyond one output

* Actually, in order to simulate the protocol, we
need something stronger

* Notation:
— Double encryption: E(k,,k,,m)=E, (E, (m))
— Oracles: E(-, k,,),E(k,,)
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Double-Encryption Security

Expt?0le (o)

1. The adversary .4 15 invoked upon input 1™ and outputs two keys kp and &y of
length n and two triples of messages (xg, w, 2p) and ({xq, ¥1, 21 ) where all messages
are of the same length.

b

Two keys kj, k] — G(1™) are chosen for the encryption scheme.
3. A 18 given the challenge ciphertext {T{_J.:.;..F:ﬁ-;!'a]_F[F:{;._kl-yaj_F[.ﬁﬁ_J.:"l. 2o )) 88
well as oracle access to E{-, k3,-) and F{kj,-.-)

4. A outputs a bi\ b and this iz taken as the output of the experiment.

Enabling A to access these oracles gives it more power

The encryption is secure if the adversary cannot identify which one of the
two triples as encrypted
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Proof of Security — P, is Corrupted

* P,’s view consists only of the messages it
receives in the oblivious transfers

* In the OT-hybrid model, P, receives no
messages in the oblivious transfers

e Simulation:
— Generate an empty transcript

Ruwz\\ence
f'\’: Secure Computation and Efficiency
¢ Bar-llan University, Israel, 2015



Proof of Security — P, is Corrupted

* More difficult case

— Need to construct a fake garbled circuit G(C') that
looks indistinguishable to G(C)

— Simulated view contains keys to input wires and
G(C')
— G(C’') together with the keys computes f(x,y)

— But the simulator does not know x, so cannot
generate a real garbled circuit
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Proof of Security — P, is Corrupted

* The simulator

— Given y and z = f(x,y), construct a fake garbled
circuit G'(C) that always outputs z

* Do this by choosing wire keys as usual, but encrypting
the same output key in all ciphertexts, e.g.

Eki (Ek?/ (k8v)) Ekﬁ (Ek%/ (kSV))
Epo (B (KQ))  E, (B0 (K2))
* This ensures that no matter the input, the same known
garbled values on the output wires are received
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Proof of Security — P, is Corrupted

e Simulator (continued)

— Simulation of output translation tables

 Let k,k’ be the keys on the ith output wire; let k be the key
encrypted in all 4 entries of the gate which outputs this wire

* If z, = 0, write [(0,k),(1,k’)]
* If z, = 1, write [(0,k’),(1,k)]
— Simulation of input keys phase
* Input wires associated with P,’s input: send any one of the
two keys on the wire

* Input wires associated with P,’s input: simulate output of OT
to be any one of the two keys on the wire
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Proof of Security — P, is Corrupted

* Need to prove that the simulation is
indistinguishable from the real execution

* First step — modify simulator as follows

— Given circuit inputs x and y (just for the sake of the
proof), label all keys on the wires as active or inactive
 active: key is obtained on this wire upon inputs (x,y)
* inactive: key is not obtained on wire upon inputs (x,y)

— Make sure that the single key encrypted in each gate
is the active one

* This simulation is identical to the previous one
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Proof of Security — P, is Corrupted

* Proven by a hybrid argument

— Consider a garbled circuit G (C) for which:

e The first L gates are generated as in the (alternative)
simulation

* The rest of the gates are generated honestly
* Claim: G, ,(C) is indistinguishable from G,(C)
* Proof:

— Difference is in Lt gate

— Intuition: use indistinguishability of encryptions to say
that cannot distinguish real garbled gate from one
where the same active key is encrypted in all entries
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Proof of Security — P, Corrupted

* Observation — Lt" gate

— The encryption under both active keys is identical in
both cases

— The difference is encryptions where one or both of the
keys are inactive keys

* Must show that these three encryptions are indistinguishable
from the encryptions in real execution

* The problem

— The inactive keys in this gate may appear in other gates
as well

* We needed the oracles to generate these other encryptions...

Ruwz\\ence
f'\’: Secure Computation and Efficiency
¢ Bar-llan University, Israel, 2015



The Example Circuit

(input wires P,=d,a; P, =b,e)

[0.k2) @) 1(0.k5) @ <5)

E, (E, (K9) E, (B, (K9))
E, (E,, (K9) E, (B, (k1))
E, (B, (K?) E,. (B, (k)
E, (E. k)| K ki |E. (B ()

E o (B, (K2))
E,o (B, (K2))
E,. (B, (K2))
E,. (B (K1)
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Simulator’s Circuit (output 01)

E,, (E,o (k7)) E o (E o [(g )
E .o (E. (k7)) E,o (E,. (K}))
E,. (E(K?)) E,. (E,o (Kp))
E,. EulkiP| kS Ikt |Eu (B ()

Eko (Eko (kg))
2 R In each gate, all table
Ekg (Ek}) (ke)) entries are identical
0]
Eké (Ekg (kc)) .
k
Eké (Ekt (kgj) § b
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E,o (E,0 (k9))

E s (E,. (k)

E, (B0 (K9)

E,q (E,, (k)

Inactive Keys
Assuming input is (da=01,be=10), output is (fg=01)

(0, k) (. k)

E . (E,o (K9)

E .o (B, (K9)

E,. (B, (K2))

E,. (B (K2))

Secure Computation and Efficiency
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(0. 15) (L. k)

E,o (E, (k1))

E,o (E,. (K2)

E,. (B0 (K2))

E,q (B, (K1)
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E oy (B (K9))

E s (E,s ()

Er (B (K))

E e (E, (K2))

Inactive Keys
Assuming input is (da=01,be=10), output is (fg=01)

(0, k) (. k)

E o (Ee (KO)

E o (E . (K)

E,. (Ege (K)

E,. (E. (k)

Secure Computation and Efficiency
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(0. 15) (L. k)

Epr (E o (K1)

e (B (K3))

E,. (B0 (K2))

E, (B (K5))
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E oy (B (K9))

E s (E,s ()

Er (B (K))

E e (E, (K2))

Modify Simulator
(Encrypt Active Keys Only)

(0, k) (L. ki)

|

change in
encrypted

Note

E o (Eg (K1)

E o (E; (K1)

e }75@ (B (K2))

E,. (B (K1)
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Epr (E o (K1)

e (B (K3))

E,. (B0 (K2))

E, (B (K5))
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Hybrid on OR Gate — Simulated OR

REAL l

E s (Ea (K9)

E s (E,s ()

Er (B (K))

E e (E, (K1)

(0.k?) @ k)| [0.Kkg) @ k)

SIM

E e (E 0 (k1))

e (B (K3))

E,. (B0 (K2))

E, (B (K5))

SIM

oeetence

E o (Eg (K1)

E o (E; (K1)

E, (Egg (K1)

E,. (B (K1)

ecure Computation and Efficiency
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Hybrid on OR Gate — Real OR

REAL !

E oy (B (K9))

E s (E,s ()

Er (B (K))

E e (E, (K1)

(0, k) (L. ki)

SIM

oeetence

E o (Eg (K1)

E o (E; (K1)

E, (Egg (K1)

E,. (B (K1)

ecure Computation and Efficiency
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(0. 15) (L. k)

l REAL

Epr (E .0 (k)

e (B (K2))

E,. (B0 (K2))

E, (B (K5))
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What’s the Difference

* In the simulated OR case, the inactive key k_°
encrypts the key k*

* In the real OR case, the inactive key k°
encrypts the key k.°

* |Indistinguishability follows from the
indistingushability of encryptions under the
inactive key k °
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Proving Indistinguishability

* Follows from the indistingushability of
encryptions under the inactive key k °

* The good news

— Key k. is not encrypted anywhere (as data) because
prior gates are simulated

* The bad news

— The key k. needs to be used to construct the real AND
gate for the hybrid

* The solution
— The special double-encryption CPA game
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The problem: inactive key used in
another gate

REAL !

=, G

Ekg (E k% (k?))

(0, k) (L. ki)

S (€

?))

E (B (k)| K

SIM

E o (Eg (K1)

E o (E; (K1)

E, (Egg (K1)

E,. (B (K1)
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(0. 15) (L. k)

SIM

EatF: (k1)

k2 ki (kg ))

Ek<1: (Ekg (k]g- ))

E, (B (K5))

47




Double-Encryption Security

Expt0hle (o)

1. The adversary .A 18 invoked upon input 1™ and outputs two keys kp and &y of

length n and two triples of messages (rg, wp. 2o) and (xq, ¥, 21) where all messages
are of the same length.

2. Two keys kj. k] — G(1™) are chosen for the encryption scheme.

3. A 18 given the c-hal]l:&m_ri ciphertext E_-.'-_‘}:n.i.*i-ﬂ'r,]-?[k.;’-,- L'-_.l.n,T_II-F[A*E,-}:'f_. Xy )) 88
well as oracle access to E{-, ki,-) and FE{kj,-,-).”

4. A outputs a bit b and this 1s taken as the outp t of the experiment.

ko K, (i-e., k.1 kL) are active keys
* k'o,k'; (i.e, kO k,) are inactive keys
— Can use oracle to generate the REAL AND gate
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Proof of Security — P, is Corrupted

* Since each gate-replacement is

indistinguishable, using a hybrid argument we
have that the distributions are

indistinguishable (see paper for details)

* QED
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Efficiency

e 2-4 rounds (depending on OT and if one party
or both parties receive output)

* |y| oblivious transfers

 8|C| symmetric encryptions to generate
circuit and 2|C| to compute it (using the
signal bit)

* For a circuit of 33,000 gates, about 528 Kbytes
with 128bit AES encryption
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Malicious Adversaries

e Assume that the OT is secure for malicious adv:

— A corrupted P, cannot learn anything (it receives no
messages in the protocol, in the hybrid-OT model)

* Thus, we have privacy
— We can prove full security for the case of a corrupted P,

* This can be useful, but...

— This does not ensure that the parties compute the
required functionality

— E.g., consider P, that builds circuit so that if P,’s first bit is
0, the circuit doesn’t decrypt

* If P, can detect this in the real world, privacy is lost
— Proving full security against a malicious P1 is hard
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The BMR Protocol



The BMR protocol

* Beaver-Micali-Rogaway
* A multi-party version of Yao’s protocol

* Works in O(1) communication rounds, regardless

of the depth of the Boolean circuit. (The GMW,BGW,
CCD protocol have O(d) rounds)

— D. Beaver, S. Micali and P. Rogaway, “The round
complexity of secure protocols”, 1990.

— A. Ben-David, N. Nisan and B. Pinkas, “FairplayMP — A
System for Secure Multi-Party Computation”, 2010.
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The BMR protocol: the basic idea

 Two random seeds (aka keys, garbled values)
are set for every wire of the Boolean circuit:

— Each seed is a concatenation of seeds generated
by all players and secretly shared among them.

* The parties securely compute together a 4x1
table for every gate (in parallel):

— Given a 0/1 seed to each of the two input wires,
the table reveals the seed of the resulting value of
the output wire.
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Encoding Gates

* Wire a hasseedss, ,%s. .%,..., s, .9 s, ! of parties
PP

* Every wire has similar seeds.

* Each wire has a secret bit A. If A_=0 then sa’iO
corresponds to an internal value of 0 and sa’i1
corresponds to an internal value of 1. Otherwise sa,iO

corresponds to 1 and s ;" to 0.

 The A values are random and shared between
the parties, so no one knows to which internal
value the 0 seeds correspond.

C
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Encoding Gates

* Suppose that A_=0, A, =1 and A_=0.
* Theseedss,,’.., s, "ands, °.., s, °

«r San
— Correspond to internal values of a=0, b=1, and
consequently to c=0.

— Since A_=0 they will encrypt the corresponding seeds
of wirec,s_,%...,s.°
* Cansimilarly decide which seed of wire ¢
must be encrypted by each combination
of the seeds of wires a,b.
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Encoding Gates

* For each gate, the table encrypting the outputs of the
gate is a function of

— A,=0, A, =1, A =0 (these values are shared by the
parties)

— The seeds s, % s, 1%, 5,0 San®s Sp1 Spatreees Shns Spn's

a,n ’
0 1 0 1
and SC,]. ) SC,:I. JAKKY) Sc’n ) Sc’n

— Gate type (AND, OR, etc.)

* The size of this function is independent of the
circuit size

* The parties can run a secure computation to
compute the table (using, e.g., GMW etc.) a' 'b
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The BMR protocol

e Offline: The parties securely compute together a
4x1 table for every gate (in parallel for all gates):

— This is essentially a secure computation of the table

— All tables are computed in parallel. Therefore overall
O(1) rounds.

— This is the main bottleneck of the BMR protocol
(FairplayMP optimizes this computation).

* Online: Given the tables and the seeds of the
input values, compute the circuit as in Yao.

(‘}gz\\ence
& ’ \
¥ 4
g
:



Summary

* Can compute any functionality securely in
presence of semi-honest adversaries.

 The Yao and BMR protocols are efficient, for
circuits that are not too large.

e Obtaining security against malicious
adversaries is hard.
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