
Session 2: The Yao and BMR
Protocols for Secure Computation

Benny Pinkas

Bar-Ilan University

The Yao and BMR Protocols

• Yao presented the first protocol for secure (two-
party) computation

• Yao’s protocol was followed by several protocols
for the multi-party setting
– Goldreich-Micali-Wigderson (GMW)

– Ben Or-Goldwasser-Wigderson (BGW), Chaum-
Crepeau-Damgård (CCD)

• Beaver-Micali-Rogaway (BMR) presented a multi-
party protocol using a similar approach to Yao’s,
and with only O(1) communication rounds.

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 2

Yao’s Protocol

3

• A protocol for general secure two-party
computation
– Constant number of rounds

– The basic protocol is secure only for semi-honest
adversaries

– Many applications of the methodology beyond
secure computation

• General secure computation
– Can securely compute any functionality

– Based on a representation of the functionality as
a Boolean circuit

Yao’s Protocol

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 4

Representing functions as Boolean
circuits???

• In some cases the circuits are small
– Adding numbers

– Comparing numbers

– Multiplying numbers?

– Computing AES?

– Working with indirect addressing (A[i]) ?

• We can efficiently do secure computation of
millions and billions of gates

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 5

Basic ideas
• A plain circuit is evaluated by

– Setting values to its input gates

– For each gate, computing the value of the outgoing
wire as a function of the wires going into the gate

• Secure computation:

– No party should learn the values of any internal wires

• Yao’s protocol

– A compiler which takes a circuit and transforms it to a
circuit which hides all information but the final output

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 6

• Garbled circuit
– An encrypted circuit together with a pair of keys

(k0,k1) for every wire so that for any gate, given one
key on every input wire:
• It is possible to compute the key of the

corresponding gate output
• It is impossible to learn anything else

• Tool: oblivious transfer
– Input: sender has x0,x1; receiver has b
– Receiver obtains xb only
– Sender learns nothing

Outline

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 7

• For the entire circuit, assign independent
random values/keys to each wire (key k0 for 0,
key k1 for 1)

– These keys are also called “garbled values”

• Encrypt each gate, so that given one key for
each input wire, can compute the appropriate
key on the output wire

A Garbled Circuit

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 14

An AND Gate

u v

w

0 1 0 1

0 1

u v w

0 0 0

0 1 0

1 0 0

1 1 1

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 15

An AND Gate with Garbled Values

u v

w

0

uk
1

uk 0

vk 1

vk

0

wk 1

wk

u v w

0

uk
0

uk
1

uk
1

uk

0

vk
1

vk
0

vk
1

vk

0

wk
0

wk
0

wk
1

wk

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 16

A Garbled AND Gate

u v

w

0

uk
1

uk 0

vk 1

vk

0

wk 1

wk

0

uk
0

uk
1

uk

1

uk

0

vk
1

vk
0

vk

1

vk

0

wk
0

wk
0

wk

1

wk

u v w

0

uk
0

uk
1

uk

1

uk

0

vk
1

vk

0

vk
1

vk

))(k(EE 0

wkk 0
v

0
u

))(k(EE 0

wkk 1
v

0
u

))(k(EE 0

wkk 0
v

1
u

))(k(EE 1

wkk 1
v

1
u

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 17

• The actual garbled gate

• Given Ku

0 and Kv
1 can obtain only Kw

0

• Furthermore, since the order of the rows
is permuted, the party has no idea if it
obtained the 0 or 1 key

A Garbled AND Gate

u v

w

0

uk
1

uk 0

vk 1

vk

0

wk 1

wk

))(k(EE 0

wkk 0
v

0
u

))(k(EE 0

wkk 1
v

0
u

))(k(EE 0

wkk 0
v

1
u

))(k(EE 1

wkk 1
v

1
u

in
 p

e
rm

u
te

d
 o

rd
e

r

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 18

• If the gate is an output gate, also
need to provide the “decryption” of
the output wire

• Output translation table:
 [(0,kw

0),(1,kw
1)]

• (Note: this table is insecure if the wire w is used
as an input wire to any other gate. It is better to
use a table of the form [(0, H(kw

0)), (1,H(kw
1))]

but this complicates the security proof.)

Output Translation

u v

w

0

uk
1

uk 0

vk 1

vk

0

wk 1

wk

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 19

• Given a Boolean circuit
– Assign garbled values to all wires

– Construct garbled gates using the garbled values

• Central property:
– Given a garbled value for each input wire, can

compute the entire circuit, and obtain garbled
values for the output wires

– Given a translation table for the output wires, can
obtain output

– Nothing but the final output is learned!

Constructing a Garbled Circuit

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 20

An Example Circuit

AND

AND OR

𝒙𝟏 𝒙𝟐 𝒚𝟐 𝒚𝟏

0, 𝑘𝑓
0 , 1, 𝑘𝑓

1 0, 𝑘𝑔
0 , 1, 𝑘𝑔

1

𝐸𝑘𝑑
0 𝐸𝑘𝑐0 𝑘𝑓

0

𝐸𝑘𝑑
0 𝐸𝑘𝑐1 𝑘𝑓

0

𝐸𝑘𝑑
1 𝐸𝑘𝑐0 𝑘𝑓

0

𝐸𝑘𝑑
1 𝐸𝑘𝑐1 𝑘𝑓

1

𝐸𝑘𝑎0 𝐸𝑘𝑏
0 𝑘𝑐

0

𝐸𝑘𝑎0 𝐸𝑘𝑏
1 𝑘𝑐

0

𝐸𝑘𝑎1 𝐸𝑘𝑏
0 𝑘𝑐

0

𝐸𝑘𝑎1 𝐸𝑘𝑏
1 𝑘𝑐

1

𝐸𝑘𝑐0 𝐸𝑘𝑒0 𝑘𝑔
0

𝐸𝑘𝑐0 𝐸𝑘𝑒1 𝑘𝑔
1

𝐸𝑘𝑐1 𝐸𝑘𝑒0 𝑘𝑔
1

𝐸𝑘𝑐1 𝐸𝑘𝑒1 𝑘𝑔
1

𝑘𝑔
1 𝑘𝑔

0

𝑘𝑒
1 𝑘𝑒

0

𝑘𝑐
1 𝑘𝑐

0

𝑘𝑓
1 𝑘𝑓

0

𝑘𝑑
1 𝑘𝑑

0

𝑘𝑏
1 𝑘𝑏

0 𝑘𝑎
1 𝑘𝑎

0

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 21

• How does the party computing the circuit know
that it decrypted the “correct” entry?
– A gate table has four entries in permuted order

– The keys known to the evaluator can decrypt only a
single entry, but symmetric encryption may decrypt
“correctly” even with incorrect keys

• Two possibilities (actually many…)

– Add redundant zeroes to the plaintext; only correct
keys give redundant block

– Add a bit to signal which ciphertext to decrypt

Computing a Garbled Circuit

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 22

• Option 1:

– Encryption: EK(m) = [r , FK(r)  (m||0n)]

– By the pseudo-randomness of F, the probability of obtaining 0n with
an incorrect K is negligible

• Option 2:
– For every wire, choose a random signal bit together with the keys

Computing a Garbled Circuit

u v

w

0

uk
1

uk 0

vk 1

vk

0

wk 1

wk w

v u

• Each wire has an “internal value”
bit which must be kept secret

• It also has an “external value” bit
which the evaluator can see

• External value is equal to
(internal value xor signal bit)

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 23

any drawbacks?

• The actual garbled gate

• Advantage

– Evaluator knows external values and therefore which entry to

decrypt. Computing the circuit requires just two decryptions per

gate (rather than an average of 5 if 0n is appended to plaintext)

Computing a Garbled Circuit with a
Signal Bit

u v

w

0

uk
1

uk 0

vk 1

vk

0

wk 1

wk w=1

v=0 u=1

))1||(k(EE(1,0) 0

wkk 0
v

0
u



))1||(k(EE(1,1) 0

wkk 1
v

0
u



))1||(k(EE(0,0) 0

wkk 0
v

1
u



))0||(k(EE(0,1) 1

wkk 1
v

1
u



Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 24

table
ordered
based
on
external
values

Yao’s protocol

• P1 sends to P2

– Tables encoding each circuit gate.

– The keys corresponding to P1’s input values.

• If P2 gets the keys corresponding to its input
values, it can compute the output of the circuit,
and nothing else.
– Why can’t P1 provide P2 with the keys corresponding

to both 0 and 1 for P2’s input wires?

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 25

Yao’s protocol
• For every wire i of P2’s input:

– The parties run an OT protocol

– P2’s input is her input bit (yi).

– P1’s input is ki
0,ki

1

– P2 learns ki
yi

• The OTs for all input wires can be run in
parallel.

• Afterwards P1 can compute the circuit by itself.

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 26

• Input: x and y of length n

• P1 generates a garbled circuit G(C)
– kL

0,kL
1 are the keys on wire wL

– Let w1,…,wn be the input wires of P1 and wn+1,…,w2n be the
input wires of P2

• P1 sends to P2 G(C) and the strings k1
x1,…, kn

xn

• P1 and P2 run n OTs in parallel
– P1 inputs (kn+i

0, kn+i
1)

– P2 inputs yi

• Given all keys, P2 computes G(C) and obtains C(x,y)
– P2 sends result to P1

Yao’s Protocol

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 27

The Example Circuit
(input wires P1= d,a; P2 = b,e)

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 1

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 0

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

OT

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 28

• Need to formally prove that given 4
encryptions of a garbled gate and only 2 keys

– Nothing is learned beyond one output

• Actually, in order to simulate the protocol, we
need something stronger

• Notation:

– Double encryption:

– Oracles:

Double-Encryption Security

))((EE m),k,(kE
vu kkvu m

),,k,(E v 

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 29

),,(kE u 

Double-Encryption Security

Enabling A to access these oracles gives it more power

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 30

The encryption is secure if the adversary cannot identify which one of the
two triples as encrypted

• P1’s view consists only of the messages it
receives in the oblivious transfers

• In the OT-hybrid model, P1 receives no
messages in the oblivious transfers

• Simulation:

– Generate an empty transcript

Proof of Security – P1 is Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 31

• More difficult case

– Need to construct a fake garbled circuit G(C) that
looks indistinguishable to G(C)

– Simulated view contains keys to input wires and
G(C)

– G(C) together with the keys computes f(x,y)

– But the simulator does not know x, so cannot
generate a real garbled circuit

Proof of Security – P2 is Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 32

• The simulator

– Given y and z = f(x,y), construct a fake garbled
circuit G(C) that always outputs z

• Do this by choosing wire keys as usual, but encrypting
the same output key in all ciphertexts, e.g.

• This ensures that no matter the input, the same known
garbled values on the output wires are received

Proof of Security – P2 is Corrupted

))(k(EE 0

wkk 0
v

0
u

))(k(EE 0

wkk 1
v

0
u

))(k(EE 0

wkk 0
v

1
u

))(k(EE 0

wkk 1
v

1
u

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 33

• Simulator (continued)

– Simulation of output translation tables

• Let k,k be the keys on the ith output wire; let k be the key
encrypted in all 4 entries of the gate which outputs this wire

• If zi = 0, write [(0,k),(1,k)]

• If zi = 1, write [(0,k),(1,k)]

– Simulation of input keys phase

• Input wires associated with P1’s input: send any one of the
two keys on the wire

• Input wires associated with P2’s input: simulate output of OT
to be any one of the two keys on the wire

Proof of Security – P2 is Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 34

• Need to prove that the simulation is
indistinguishable from the real execution

• First step – modify simulator as follows
– Given circuit inputs x and y (just for the sake of the

proof), label all keys on the wires as active or inactive
• active: key is obtained on this wire upon inputs (x,y)

• inactive: key is not obtained on wire upon inputs (x,y)

– Make sure that the single key encrypted in each gate
is the active one

• This simulation is identical to the previous one

Proof of Security – P2 is Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 35

• Proven by a hybrid argument
– Consider a garbled circuit GL(C) for which:

• The first L gates are generated as in the (alternative)
simulation

• The rest of the gates are generated honestly

• Claim: GL-1(C) is indistinguishable from GL(C)
• Proof:

– Difference is in Lth gate
– Intuition: use indistinguishability of encryptions to say

that cannot distinguish real garbled gate from one
where the same active key is encrypted in all entries

Proof of Security – P2 is Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 36

• Observation – Lth gate
– The encryption under both active keys is identical in

both cases

– The difference is encryptions where one or both of the
keys are inactive keys
• Must show that these three encryptions are indistinguishable

from the encryptions in real execution

• The problem
– The inactive keys in this gate may appear in other gates

as well
• We needed the oracles to generate these other encryptions…

Proof of Security – P2 Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 37

The Example Circuit
(input wires P1= d,a; P2 = b,e)

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 1

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 0

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 38

Simulator’s Circuit (Output 01)

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 0

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

))(k(EE 0

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 39

In each gate, all table
entries are identical

Inactive Keys
Assuming input is (da=01,be=10), output is (fg=01)

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 0

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

))(k(EE 0

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 40

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 0

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

))(k(EE 0

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

Inactive Keys
Assuming input is (da=01,be=10), output is (fg=01)

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 41

Modify Simulator
(Encrypt Active Keys Only)

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 0

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

Note
change in
encrypted

key

))(k(EE 1

ckk 1
b

1
a

))(k(EE 1

ckk 1
b

0
a

))(k(EE 1

ckk 0
b

0
a

))(k(EE 1

ckk 0
b

1
a

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 42

Hybrid on OR Gate – Simulated OR

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

))(k(EE 1

ckk 1
b

1
a

))(k(EE 1

ckk 1
b

0
a

))(k(EE 1

ckk 0
b

0
a

))(k(EE 1

ckk 0
b

1
a

SIM

REAL SIM

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 43

Hybrid on OR Gate – Real OR

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 0

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

))(k(EE 1

ckk 1
b

1
a

))(k(EE 1

ckk 1
b

0
a

))(k(EE 1

ckk 0
b

0
a

))(k(EE 1

ckk 0
b

1
a

SIM

REAL REAL

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 44

• In the simulated OR case, the inactive key kc
0

encrypts the key kg
1

• In the real OR case, the inactive key kc
0

encrypts the key kg
0

• Indistinguishability follows from the
indistingushability of encryptions under the
inactive key kc

0

What’s the Difference

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 45

• Follows from the indistingushability of
encryptions under the inactive key kc

0

• The good news
– Key kc

0 is not encrypted anywhere (as data) because
prior gates are simulated

• The bad news
– The key kc

0 needs to be used to construct the real AND
gate for the hybrid

• The solution
– The special double-encryption CPA game

Proving Indistinguishability

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 46

The problem: inactive key used in
another gate

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 1

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

    1

f

0

f k1,,k0,     1

g

0

g k1,,k0,

))(k(EE 1

ckk 1
b

1
a

))(k(EE 1

ckk 1
b

0
a

))(k(EE 1

ckk 0
b

0
a

))(k(EE 1

ckk 0
b

1
a

SIM

REAL SIM

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 47

• k0,k1 (i.e., kc
1,ke

0) are active keys

• k0,k1 (i.e, kc
0,ke

1) are inactive keys

– Can use oracle to generate the REAL AND gate

Double-Encryption Security

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 48

• Since each gate-replacement is
indistinguishable, using a hybrid argument we
have that the distributions are
indistinguishable (see paper for details)

• QED

Proof of Security – P2 is Corrupted

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 49

• 2-4 rounds (depending on OT and if one party
or both parties receive output)

• |y| oblivious transfers

• 8|C| symmetric encryptions to generate
circuit and 2|C| to compute it (using the
signal bit)

• For a circuit of 33,000 gates, about 528 Kbytes
with 128bit AES encryption

Efficiency

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 50

• Assume that the OT is secure for malicious adv:
– A corrupted P1 cannot learn anything (it receives no

messages in the protocol, in the hybrid-OT model)

• Thus, we have privacy

– We can prove full security for the case of a corrupted P2

• This can be useful, but…
– This does not ensure that the parties compute the

required functionality

– E.g., consider P1 that builds circuit so that if P2’s first bit is
0, the circuit doesn’t decrypt

• If P1 can detect this in the real world, privacy is lost

– Proving full security against a malicious P1 is hard

Malicious Adversaries

Secure Computation and Efficiency
Bar-Ilan University, Israel, 2015 51

The BMR Protocol

52

• Beaver-Micali-Rogaway

• A multi-party version of Yao’s protocol

• Works in O(1) communication rounds, regardless
of the depth of the Boolean circuit. (The GMW,BGW,
CCD protocol have O(d) rounds)

– D. Beaver, S. Micali and P. Rogaway, “The round
complexity of secure protocols”, 1990.

– A. Ben-David, N. Nisan and B. Pinkas, “FairplayMP – A
System for Secure Multi-Party Computation”, 2010.

The BMR protocol

53

• Two random seeds (aka keys, garbled values)
are set for every wire of the Boolean circuit:

– Each seed is a concatenation of seeds generated
by all players and secretly shared among them.

• The parties securely compute together a 4x1
table for every gate (in parallel):

– Given a 0/1 seed to each of the two input wires,
the table reveals the seed of the resulting value of
the output wire.

The BMR protocol: the basic idea

54

Encoding Gates

• Wire a has seeds sa,1
0,sa,1

1,…, sa,n
0, sa,n

1 of parties
P1,…,Pn.

• Every wire has similar seeds.

• Each wire has a secret bit . If a=0 then sa,i
0

corresponds to an internal value of 0 and sa,i
1

corresponds to an internal value of 1. Otherwise sa,i
0

corresponds to 1 and sa,i
1 to 0.

• The  values are random and shared between
the parties, so no one knows to which internal
value the 0 seeds correspond.

55

c

a b

AND

Encoding Gates

• Suppose that a=0, b=1 and c=0.

• The seeds sa,1
0,…, sa,n

0 and sb,1
0,…, sb,n

0

– Correspond to internal values of a=0, b=1, and
consequently to c=0.

– Since c=0 they will encrypt the corresponding seeds
of wire c, sc,1

0,…, sc,n
0

• Can similarly decide which seed of wire c
must be encrypted by each combination
of the seeds of wires a,b.

56

c

a b

AND

Encoding Gates

• For each gate, the table encrypting the outputs of the
gate is a function of

– a=0, b=1, c=0 (these values are shared by the
parties)

– The seeds sa,1
0, sa,1

1,..., sa,n
0, sa,n

1, sb,1
0, sb,1

1,..., sb,n
0, sb,n

1,
and sc,1

0, sc,1
1,..., sc,n

0, sc,n
1

– Gate type (AND, OR, etc.)

• The size of this function is independent of the
circuit size

• The parties can run a secure computation to
compute the table (using, e.g., GMW etc.)

57

c

a b

• Offline: The parties securely compute together a
4x1 table for every gate (in parallel for all gates):

– This is essentially a secure computation of the table

– All tables are computed in parallel. Therefore overall
O(1) rounds.

– This is the main bottleneck of the BMR protocol
(FairplayMP optimizes this computation).

• Online: Given the tables and the seeds of the
input values, compute the circuit as in Yao.

The BMR protocol

58

• Can compute any functionality securely in
presence of semi-honest adversaries.

• The Yao and BMR protocols are efficient, for
circuits that are not too large.

• Obtaining security against malicious
adversaries is hard.

Summary

60

