RETHINKING ALGORITHMS FOR
SECURE COMPUTATION
A Greedy Approach

Muthu Venkitasubramaniam
(Joint work with abhi shelat)

Secure Computation

[STEP 1] Compile f to
— Boolean Circuits, Arithmetic Circuits, ORAM

ISTEP 2] Generic Approaches

— Yao based, GMW based, Information Theoretic
based

How to determine which approach
— Depends on size, latency, bandwidth, etc

Sometimes specific approaches are better
— PSI (great primitive, several applications)

THIS TALK

A New Algorithmic Approach for Designing
Secure Computation Protocols

i N
BEER

~

T—

SECURE COMPUTATION OF MEDIAN
Aggarwal, Mishra, Pinkas (Eurocrypt 04, JOC 10)

Adeletes x e S,
S.t. X < m,. |
KA finds median\ B deletes xeS,
of S,, call itm S.t. X = mj.
A A k /
B finds median s ~
_of Sg, callit mg Adeletes xe S,
S.t. X 2 m,.
B deletes x € Sy
S.t. X < mg.
(e.g. a small circuit) - /

Slides borrowed from Benny Pinkas

WALK THROUGH

A 16 1 B 16
8 9 16
8 9 12
_ 0 10
7 Median 10
found!!

é

Slides borrowed from Benny Pinkas

PROVING Semi-honest SECURITY

1 median - o 16 1 B 16
. 1r 1 []
1 8 9 16
|| ||
5 |8 9 12

do we need to

1 * What functionality

Slides borrowed from Benny Pinkas

WHAT ELSE CAN WE
COMPUTE USING
MILLIONAIRE?

« Convex Hull
* Minimum Spanning Tree [BS05]
* Unit Job Scheduling

» Single Source All Destination Shortest Paths
[BSO05]

 Set Cover / Vertex Cover / Max Cover*

RESULTS
(communication complexity)

Algorithm Our Work (O) Circuit (Q) ORAM (Q)
Convex Hull O/ | log(1)/ | log3(1)/
MST VI (Va(V)) Va(V) log3(V)/
Unit Job Scheduling O/ 12¢ | log3(1)/
Single Src ADSP \V// E2/ E log3(E)/
Cover Problems O/ 2/ | log(l)/
| - Input size a()- Inverse Ackerman fn.
O - output size V - #Vertices

¢ - Integer representation E - #Edges

WHAT PARADIGM
ABSTRACTS THESE
ALGORITHMS?

ortest
Paths

« Set Cover / Vertex Cover /| MaXxCover*

Greedy Algorithms

* |teratively find the (local) optimal choice
and hope for the best

* Leads to optimal in many problems
— Convex Hull: Jarvis March
— MST: Kruskal, Prim’s algorithm
— Job Scheduling (many variants)
— Shortest Path: Dijkstra

— Set Cover: Submodular Function
Approximation

Our Greedy-Millionaire Framework

A function f is secure greedy compatible if there exists a
function F such that:

1. UNIQUE SOLUTION
Given inputs U and V of Alice and Bob f(U, V') iis unique

2. UNIQUE ORDER - If f(U,¥7)=(cy,..., ;). then
F",UEV)=¢, and F(c,,UEV)=c,,

3. LOCAL UPDATABILITY

Fleg, UE V)= LT (F(cg, U), Flcg, V)

Secure Greedy-Millionaire Algorithm

(LGENERIC ITERATIVE SECURE COMPUTATION
Alice Input: Distinct elements U = {uq,...,un}
Bob Input: Distinct elements V = {vq,...,04}
Output:

1. Alice initializes (ug,kq) + F(L, U) and Bob initializes (v, k) + F(_L, V).
2. Repeat for ¢(|U|, |V]) times:
(a) Alice and Bob execute the secure protocol ¢; < LT¢((ug,ka), (v, kp)).
(b) Alice updates (ug, ka) < F(c<j, U) and Bob updates (v, k) < F(c<j, V).

GENERALIZED COMPARE
Alice Input: Tuple (u,x) with k-bit integer key x
Bob Input: Tuple (v, y) k-bit integer key y

LT; Output: Return u if x > y and v otherwise

Secure Greedy-Millionaire Algorithm

(GENERIC ITERATIVE SECURE COMPUTATION
Alice Input: Distinct elements U = {uq,...,un}

Bob Input: Distinct elements V = {vq,...,04}
Output:

1. Alice initializes (ug,kq) + F(L, U) and Bob initializes (v, k) + F(_L, V).
2. Repeat for ¢(|U|, |V]) times:
(a) Alice and Bob execute the secure protocol ¢; < LT¢((ug,ka), (v, kp)).
(b) Alice updates (ug, ka) < F(c<j, U) and Bob updates (v, k) < F(c<j, V).

CORRECTNESS:
FUV)=(cpemncy)
F",UEV)=¢, and F(c,,UEV)=c,,
F(C£i’ UE V) —LT(F(CEZ-, U)1F(C£i’ V))

Secure Greedy-Millionaire Algorithm

(GENERIC ITERATIVE SECURE COMPUTATION
Alice Input: Distinct elements U = {uq,...,un}

Bob Input: Distinct elements V = {vq,...,04}
Output:

1. Alice initializes (ug,kq) + F(L, U) and Bob initializes (v, k) + F(_L, V).
2. Repeat for ¢(|U|, |V]) times:
(a) Alice and Bob execute the secure protocol ¢; < LT¢((ug,ka), (v, kp)).
(b) Alice updates (ug, ka) < F(c<j, U) and Bob updates (v, k) < F(c<j, V).

SIMULATION:
Input U and Output(c,, ..., ;)

Unique Solution and Unique Order
- output of Iteration i IS c,

Matroid Set Systems

A set system (S,l) where S is a finite set, and | a
nonempty family of subsets of S is a matroid if

Hereditary Property:
If Beland AcB, thenA e l.
Exchange Property:
If A,B € | and |A| < |B|, then
there exists x in B \ A such that Au{x}isin |

Weighted Matroid: a weight functionw : S = R*

THEOREM: The greedy algorithm finds maximal
Independent set with minimum cost.

Examples of Matroids

Example 1: Let M be a matrix.
Let S be the set of rows of M and
|={A|Ac S, Ais linearly independent }

Example 2: Let G = (V,E) be an undirected
graph. Choose S = E and

|={A|H=(V,A) Iis an iInduced subgraph of
G such that H Is a forest }

Greedy Algorithm for Matroids

Greedy ALGORITHM ((S,1),w)

1. Set Ato be empty

2. Foreach x in S taken in monotonically decreasing order
do

— IFAU{X} in | then set A = Au{x}
3. Return A

Matroids are secure-greedy-compatible if

« UNIQUE SOLUTION and UNIQUE ORDER: Assume
weights are distinct

« LOCAL UPDATABILITY: If membership in | can be done
locally

CAN WE ACHIEVE MALICIOUS
SECURITY?

« Unfortunately NOT because we iteratively
reveal answer

— Adversary can adaptively abort in the middle
of the computation

SECURE MEDIAN COMPUTATION

median A

1

Slides borrowed from Benny Pinkas

PROVING MALICIOUS SECURITY

YES NO

CAN WE ACHIEVE MALICIOUS
SECURITY?

« Unfortunately NOT because we iteratively
reveal answer

— Adversary can adaptively abort in the middle
of the computation

NEXT BEST THING: Covert Security

Covert Security

Definition (Informal): [Aumann-Lindell 10] A
protocol 1T is said to compute f in the presence of
covert adversaries with e—deterrence Iif for every
PPT Bob and distinguisher D there exists
negligible function p() such that

Pr[Alice outputs “Bob is corrupt’]
= ¢ (Distinguishing gap) — p(k)

IDEA: After output Is revealed, prove that in each
step, the greedy update was correctly done

Achieving Covert Security

« Adaptively select inputs
— Use commitments

 Falilure to follow greedy update
— Use inputs output of order

— Missing inputs, I1.e. use only a subset of inputs
committed

* IDEA: Use sighatures and consistency
checks

Secure Greedy Covert Protocol —
High-Level

 Input Commitment Phase: Using an extractable
commitment Alice and Bob commit to their inputs.

— Alice and Bob additional share verification keys for a
signhature scheme

« Secure Computation Phase: As before iteratively
reveal answers. Additionally outputs are signed by
both parties.

« Consistency Check Phase: A short protocol that
shows each input committed in the first phase used
correctly

Consistency Checks

For every input commitment prove that the
value contained Is either

— In the output, or
— Not part of the optimal solution

Convex Hull: Show that a particular point is not on
the hull.

Consistency Checks - Matroids

Let (S,]) be a weighted matroid set system.

Question: How do you show that particular
element Is not part of minimum cost maximal

Independent set?

MST: Show that a particular edge does not
decrease cost of tree
Show that in the cycle
this edge is of
maximum cost

Consistency Checks - Matroids

Let (S,]) be a weighted matroid set system.

Question: How do you show that particular
element Is not part of minimum cost maximal
Independent set?

Matroid: Show that a particular element does not decrease
cost of independent set.

Show that in the fundamental
cycle this element is of
maximum cost

Proof Length: O(|B]) per input

Efficient Consistency Check - MST

Nailve approach: Cost O(|V|) proof length per
edge
Improve to O(log n) per edge

IDEA: UNION-FIND data structure

— Using the pointer data structure: FIND operations
cost O(log n) and Union operations cost O(1)

— Use signatures to get union and find operations
attested

If we use Tarjan’s Union-Find, we can

Improve to O(a(n)) where a Is the inverse

ackerman function.

RESULTS FOR COVERT

SECURITY
Algorithm Our Work (O) Circuit (Q)
COVERT MALICIOUS
Convex Hull ORIV | log(l)/
MST Viog(V)! (Vu(V))%/
Unit Job Scheduling oYMV 12/
Single Src ADSP V/E/ E2/

| - Input size
O - output size

a()- Inverse Ackerman fn.
V - #Vertices

¢ - Integer representation E - #Edges

CONCLUSION

Leverage techniques from algorithms to
Improve secure computation

Secure computation using only
comparison operations

OPEN PROBLEM 1: What about other
primitives?

OPEN PROBLEM 2: What about other
paradigms?

— Dynamic Programming

— Randomized Algorithms

