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Secure Computation 

• [STEP 1] Compile     to  

– Boolean Circuits, Arithmetic Circuits, ORAM 

• [STEP 2] Generic Approaches 

– Yao based, GMW based, Information Theoretic 

based 

• How to determine which approach 

– Depends on size, latency, bandwidth, etc 

• Sometimes specific approaches are better 

– PSI (great primitive, several applications) 

f



THIS TALK 
A New Algorithmic Approach for Designing 

Secure Computation Protocols 



SECURE COMPUTATION OF MEDIAN 

Aggarwal, Mishra, Pinkas (Eurocrypt `04, JOC `10)  

A finds median 

 of SA, call it mA 

 

B finds median 

 of SB, call it mB 

mA < mB 

A deletes x є SA 

 s.t. x < mA. 

B deletes xєSB 

 s.t. x ≥ mB. 

A deletes x є SA 

 s.t. x ≥ mA. 

B deletes x є SB 

 s.t. x < mB. 

YES 

NO 

Secure comparison 

(e.g. a small circuit) 
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WALK THROUGH 

A B 

mA>mB 

mA<mB 

mA<mB 

mA>mB 

mA<mB 

Median 

found!! 

8 9 16 1 

5 12 9 8 

10 7 9 8 

7 10 

16 16 1 1 
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PROVING Semi-honest SECURITY 

A B 

mA>mB 

mA<mB 

mA<mB 

mA>mB 

mA<mB 

8 9 16 1 

5 12 9 8 

10 7 9 8 

7 10 

16 16 1 1 

median 

Slides borrowed from Benny Pinkas 

What functionality 

do we need to 

compute securely? 

MILLIONAIRE 



WHAT ELSE CAN WE 

COMPUTE USING 

MILLIONAIRE? 

• Convex Hull 

• Minimum Spanning Tree [BS05] 

• Unit Job Scheduling 

• Single Source All Destination Shortest Paths 

[BS05] 

• Set Cover / Vertex Cover / Max Cover* 



RESULTS 

(communication complexity) 

Algorithm Our Work (O) Circuit (Ω) ORAM (Ω) 

Convex Hull Ol I log(I)l I log3(I)l 

MST Vl (Vα(V))2l Vα(V) log3(V)l 

Unit Job Scheduling Ol I2l I log3(I)l 

Single Src ADSP Vl E2l E log3(E)l 

Cover Problems Ol Is
2l Is log3(Is)l 

I - input size 

O - output size 

l - integer representation 

α() - Inverse Ackerman fn. 

V - #Vertices 

E - #Edges 



WHAT PARADIGM 

ABSTRACTS THESE 

ALGORITHMS? 

• Convex Hull 

• Minimum Spanning Tree 

• Unit Job Scheduling 

• Single Source All Destination Shortest 

Paths 

• Set Cover / Vertex Cover / Max Cover* 



Greedy Algorithms 

• Iteratively find the (local) optimal choice 
and hope for the best 

• Leads to optimal in many problems 

– Convex Hull: Jarvis March 

– MST: Kruskal, Prim’s algorithm 

– Job Scheduling (many variants) 

– Shortest Path: Dijkstra 

– Set Cover: Submodular Function 
Approximation 



Our Greedy-Millionaire Framework 

A function     is secure greedy compatible if there exists a 
function F such that: 

 

1. UNIQUE SOLUTION 
Given inputs U and V of Alice and Bob                  is unique 

 

2. UNIQUE ORDER – If                                     , then 
 

 

 

3. LOCAL UPDATABILITY 

f

f (U,V )

f (U,V ) = c1,...,cl( )

F( ,̂UÈV ) = c1  and F(c£i,UÈV ) = ci+1

F(c£i,UÈV ) = LT F(c£i,U),F(c£i,V )( )



Secure Greedy-Millionaire Algorithm 



Secure Greedy-Millionaire Algorithm 

CORRECTNESS: 

f (U,V ) = c1,...,cl( )
F( ,̂UÈV ) = c1  and F(c£i,UÈV ) = ci+1

F(c£i,UÈV ) = LT F(c£i,U),F(c£i,V )( )



Secure Greedy-Millionaire Algorithm 

SIMULATION: 

Input U  and Output c1,...,cl( )
Unique Solution and Unique Order

           - output of iteration i is ci



Matroid Set Systems 

A set system (S,I) where S is a finite set, and I a 
nonempty family of subsets of S is a matroid if 

 

Hereditary Property: 

 If B  I and A  B, then A  I. 

Exchange Property: 

 If A,B  I and |A| < |B|, then  

 there exists x in B \ A such that A{x} is in I 

 

Weighted Matroid: a weight function w : S     R+ 

 

THEOREM: The greedy algorithm finds maximal 
independent set with minimum cost. 



Examples of Matroids 

 

Example 1: Let M be a matrix.  

Let S be the set of rows of M and  

I = { A | A  S, A is linearly independent } 

 

Example 2: Let G = (V,E) be an undirected 
graph. Choose S = E and  

I = { A | H = (V,A) is an induced subgraph of 
G such that H is a forest } 

 



Greedy Algorithm for Matroids 

Greedy ALGORITHM ((S,I),w) 
1. Set A to be empty 

2. For each x in S taken in monotonically decreasing order 
do 
– If A{x} in I then set A = A{x}  

3. Return A 

 

Matroids are secure-greedy-compatible if 
• UNIQUE SOLUTION and UNIQUE ORDER: Assume 

weights are distinct 

• LOCAL UPDATABILITY: If membership in I can be done 
locally 



CAN WE ACHIEVE MALICIOUS 

SECURITY? 

• Unfortunately NOT because we iteratively 

reveal answer 

– Adversary can adaptively abort in the middle 

of the computation 



SECURE MEDIAN COMPUTATION 

A B 

mA>mB 

mA<mB 

mA<mB 

mA>mB 

mA<mB 

8 9 16 1 

5 12 9 8 

10 7 9 8 

7 10 

16 16 1 1 

median 
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PROVING MALICIOUS SECURITY 



CAN WE ACHIEVE MALICIOUS 

SECURITY? 

• Unfortunately NOT because we iteratively 

reveal answer 

– Adversary can adaptively abort in the middle 

of the computation 

NEXT BEST THING: Covert Security 



Covert Security 

Definition (Informal): [Aumann-Lindell`10] A 

protocol  π is said to compute f in the presence of 

covert adversaries with ε–deterrence if for every 

PPT Bob and distinguisher D there exists 

negligible function μ() such that 

Pr[Alice outputs “Bob is corrupt”] 
   ≥ ε (Distinguishing gap) – μ(k) 

IDEA: After output is revealed, prove that in each 

step, the greedy update was correctly done 



Achieving Covert Security 

• Adaptively select inputs 

– Use commitments 

 

• Failure to follow greedy update 

– Use inputs output of order 

– Missing inputs, i.e. use only a subset of inputs 
committed 

 

• IDEA: Use signatures and consistency 
checks 



Secure Greedy Covert Protocol – 

High-Level 
• Input Commitment Phase: Using an extractable 

commitment Alice and Bob commit to their inputs. 
– Alice and Bob additional share verification keys for a 

signature scheme 

 

• Secure Computation Phase: As before iteratively 
reveal answers. Additionally outputs are signed by 
both parties. 

 

• Consistency Check Phase: A short protocol that 
shows each input committed in the first phase used 
correctly 

 

 



Consistency Checks 

For every input commitment prove that the 

value contained is either 

– In the output, or 

– Not part of the optimal solution 

 

 
Convex Hull: Show that a particular point is not on 

the hull. 



Consistency Checks - Matroids 

Let (S,I) be a weighted matroid set system. 

Question: How do you show that particular 

element is not part of minimum cost maximal 

independent set? 

 

 
MST: Show that a particular edge does not 

decrease cost of tree 

Show that in the cycle 

this edge is of  

maximum cost 
10 

5 

8 



Consistency Checks - Matroids 

Let (S,I) be a weighted matroid set system. 

Question: How do you show that particular 

element is not part of minimum cost maximal 

independent set? 

 

 
Matroid: Show that a particular element does not decrease 

cost of independent set. 

Show that in the fundamental 

cycle this element is of 

maximum cost 
10 

5 

8 

3 Proof Length: O(|B|) per input 
B 

C 



Efficient Consistency Check - MST 

• Naïve approach: Cost O(|V|) proof length per 
edge 

• Improve to O(log n) per edge 

• IDEA: UNION-FIND data structure 

– Using the pointer data structure: FIND operations 
cost O(log n) and Union operations cost O(1) 

– Use signatures to get union and find operations 
attested 

• If we use Tarjan’s Union-Find, we can 
improve to O(α(n)) where α is the inverse 
ackerman function.  

 



RESULTS FOR COVERT 

SECURITY 

Algorithm Our Work (O) 

COVERT 

Circuit (Ω) 

MALICIOUS 

Convex Hull Ol+Il I log(I)l 

MST V log(V)l (Vα(V))2l 

Unit Job Scheduling Ol+Il I2l 

Single Src ADSP Vl+El E2l 

I - input size 

O - output size 

l - integer representation 

α() - Inverse Ackerman fn. 

V - #Vertices 

E - #Edges 



CONCLUSION 

• Leverage techniques from algorithms to 
improve secure computation 

• Secure computation using only 
comparison operations 

• OPEN PROBLEM 1: What about other 
primitives?  

• OPEN PROBLEM 2: What about other 
paradigms?  

– Dynamic Programming 

– Randomized Algorithms 

 


