
Large-Scale

Secure Computation

 MPC For Parallel RAM programs

Elette Boyle

Technion

Based on join works with Kai-Min Chung and Rafael Pass

Multi-Party Computation (MPC)

 [GMW87] – Computational Setting

 [BGW88, CCD88] – Information Theoretic Setting with Secure Channels

128-bit AES

Multi-Party Computation (MPC)

 [GMW87] – Computational Setting

 [BGW88, CCD88] – Information Theoretic Setting with Secure Channels

Set intersection of

Facebook friends

This Talk: Large-Scale MPC

This Talk: Large-Scale MPC

 Lots of Data

 Lots of Parties

MPC Efficiency Metrics

Communication Memory Computation

How are these affected in the

large-scale setting?

Costs of Communication

Communication Memory Computation

• # of bits communicated

• # of sequential rounds

• …Who a party is speaking to

Nearly all protocols:

Every party speaks to every party

Communication: Locality Metric

parties:
𝑛 = 5 x5

x4

x3

x2

x1

Communication Memory Computation

[BGT13]

Communication: Locality Metric

parties:
𝑛 = 10,000

xi

[BGT13]

Communication Memory Computation

Communication: Locality Metric

Communication

Locality: Total # parties

each party communicates with throughout protocol lifetime

parties:
𝑛 = 10,000

xi

[BGT13]

Communication Memory Computation

Memory: Balancing the Burden

• Combined data size is huge!

• Want: Memory requirement per party

(his input + Space(Π)/n)

Communication Memory Computation

Computation: Going Beyond Circuits

Communication Memory Computation

f
MPC protocol

for securely

computing the

circuit

Optimizing this transformation

 yields better MPC efficiency

Computation: Going Beyond Circuits

Communication Memory Computation

f

Program

Generically:

Blow up by factor of

entire database size!

Models of Computation 101

• Circuits

• Turing Machines

• RAM Machines

• Parallel RAM

Machines

AND, OR, NOT gates

…

Communication Memory Computation

Computation: Going Beyond Circuits

Large-scale computations f leverage

random access and parallelism

• Circuit (and TM) model for f not appropriate!

Communication Memory Computation

Large-scale computations f leverage

random access and parallelism

• Circuit (and TM) model for f not appropriate!

• RAM model for f loses parallelism!

• Parallel RAM (PRAM) Model

Computation: Going Beyond Circuits

Communication Memory Computation

…

• Circuits model

• RAM model

– 2-PC [OS97, GKK+11, LO13, GGHJ+13, GHRW14, WHHSS14]

– Extensions to MPC [DMN11] don’t scale with n

• PRAM model

E.g.: Original protocols [GMW87, BGW88, CCD88,…], Scalable MPC [DI06,

DN07, DIK+08, DIK10, DKMS12, ZMS14], MPC on incomplete networks

[CGO10, CGO12], MPC based on FHE / Obfuscation [Gen09, AJL+12, MSS13,

GGHR14], Optimized MPC for practice [BNP08, KS08, LPS08, NO09, LP11,

BDOZ11, DPSZ12, NNOS12, L13, FJN+13, ALSZ13, DZ13, LR14, ZRE15,…]

Rough History of Prior MPC Work

Eg: Per-party memory

requirement ~ size of all

parties’ inputs

(nothing)

The Goal:

Efficient MPC for PRAM

n-party MPC for PRAMs Π

Computation - Comp(Π)/n

Memory - His input + Space(Π)/n

Comm Locality -

1

Time Steps - Parallel Time(Π)

Asymptotically

+ His input

Needed for

security

Theorem [BCP14,BCP15]:

n-party MPC for PRAMs Π

Computation - Õ(Comp(Π)/n)

Memory - Õ(His input + Space(Π)/n)

polylog(n) locality

based on computational

assumptions

[BGT13]

Time Steps - Õ(Parallel Time(Π))

Given a 1-time (reusable) preprocessing stage

Static corruptions, 2/3+εhonest parties, Unconditional security

Comm Locality -

Õ(1)
Õ(His input) + BC /party

Õ = polylog(n)

 Rounds

The Construction

Rough Intuition of MPC Protocols

• Step 1: Secret Share inputs across parties

 Eg: evaluations of random polynomial st p(0)=s

• Step 2: Evaluate gate-by-gate on shares

 (sometimes with communication)

à la [GMW87,BGW88]

p(i)=Party i’s share
p(0)=secret

[Sha79]

Problem 1: Everyone talks to everyone

Problem 2: Everyone stores all inputs

Problem 3: Computation ~ Circuit Size

For Large Data, Many Parties…

Consider a Simpler Problem:

Large Data, Few Parties

• Step 1: Secret Share inputs across parties

 Eg: evaluations of random polynomial st p(0)=s

• Step 2: Evaluate gate-by-gate on shares

 (sometimes with communication)

p(i)=Party i’s share
p(0)=secret

[Sha79]

Problem 1: Everyone talks to everyone

Problem 2: Everyone stores all inputs

Problem 3: Computation ~ Circuit Size

• Step 1: Secret Share inputs across parties

 Eg: evaluations of random polynomial st p(0)=s

• Step 2: Evaluate gate-by-gate on shares

 (sometimes with communication)

p(i)=Party i’s share
p(0)=secret

[Sha79]

Problem 1: Everyone talks to everyone

Problem 2: Everyone stores all inputs

Problem 3: Computation ~ Circuit Size

These are ok!

Wanted:

Comp ~ |PRAM|

Consider a Simpler Problem:

Large Data, Few Parties

How PRAM Works

…

value value

CPU1

CPU2

CPUm

Shared Memory Database

…

state

address

state

address
…

value value

state

address

state

address

PRAM Π

…

MPC for PRAM: First Idea

…

value value

CPU1

CPU2

CPUm

Shared Memory Database

…

state

address

state

address
…

value value

state

address

state

address

PRAM Π

…

Emulate CPU steps

via MPCs for circuits
[LO96,DMN11]

• Step 1: Secret Share inputs across parties

• Step 2: Emulate PRAM CPU steps via small-scale MPCs

MPC for PRAM: First Idea
à la [LO06, DMN11]

…

state

state

address
mem value

address
mem value

… state state

address

value

address

value

BUT: If mem accesses of Π ~

independent of inputs, then secure!

state2 state1

state3

state4

state5

address

address

address

address

address

Parties only see addresses & shares of secrets!

Addresses may leak information!

Memory Access Patterns

May Leak Information!

Access mem 4

Access mem 6

Stop

Toy Example: Binary Search for 100

x4 <100

x6 =100
Reveals:

Access mem 4

Access mem 6

Stop

Toy Example: Binary Search for 100

x4 <100

x6 =100
Reveals:

 “Oblivious” = memory access patterns appear

 independent of data

Wanted:
PRAM Oblivious PRAM

Oblivious Program Compilers

 History:

– Turing Machines: log(M) overhead [PF 79]

– RAM programs: polylog(M) overhead [Gol86,Ost90,

GO96, Ajt10, DMN11, SCSL11, CP13, GGHJ+13, SDSF+13]

– PRAM: polylog(M) overhead [BCP14]

M = memory size

Program

from class C

Oblivious Program

from class C

Core Problem:

Supporting Parallel Accesses!

Reveals lookup collision!

Can’t afford for

CPUs to take turns!

Storing multiple copies

causes consistency issues!

New Protocol:

(Few-Party) MPC for PRAM

• Step 1: Secret Share inputs across parties

• Step 2: PRAM Oblivious PRAM

• Step 3: Emulate OPRAM via small-scale MPCs

…

And for Large Data

and Many Parties…

• Step 1: Secret Share inputs across parties

• Step 2: PRAM Oblivious PRAM

• Step 3: Emulate OPRAM via small-scale MPCs

…

Computation ~ |PRAM|

 Problem 1: Everyone talks to everyone

 Problem 2: Everyone stores all inputs

For another

time…

… while load balancing!

Teaser of Additional Techniques

Load-Balancing via Job Passing

Load-Balanced Routing over

Expander Graphs

Distributed OPRAM

Electing Committees

Future Directions

• “OPRAM is the new ORAM”

• Pushing Large-Scale MPC toward Practicality

Leveraging computational assumptions?

Improving broadcast with locality?

MPC for MapReduce? Asynchronous models?

Adaptive security?

Honest minority? Targeted protocols?

- me

