More Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries

Gilad Asharov

Yehuda Lindell Thomas Schneider Michael Zohner

EUROCRYPT 2015



Oblivious Transfer Extension

- Oblivious Transfer Extension
 - Benny's talk (Sunday)

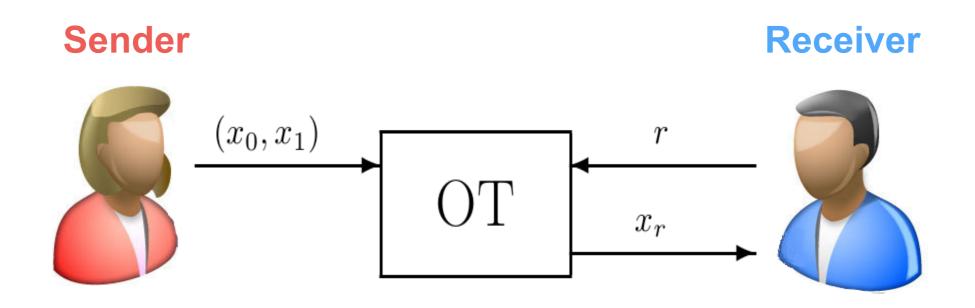
- Oblivious Transfer Extension
 - Benny's talk (Sunday)
 - Yehuda's talk (Monday)

- Oblivious Transfer Extension
 - Benny's talk (Sunday)
 - Yehuda's talk (Monday)
 - Claudio's talk (Tuesday)

- Oblivious Transfer Extension
 - Benny's talk (Sunday)
 - Yehuda's talk (Monday)
 - Claudio's talk (Tuesday)
 - This talk (Thursday)

- Oblivious Transfer Extension
 - Benny's talk (Sunday)
 - Yehuda's talk (Monday)
 - Claudio's talk (Tuesday)
 - This talk (Thursday)
- Concrete efficiency in the malicious model
 - Most efficient OT extension protocol, yet
 - Optimized protocol, proofs and implementation

1-out-of-2 Oblivious Transfer



- INPUT: Sender holds two strings (x_0, x_1) , Receiver holds r
- OUTPUT: Sender learns nothing, Receiver learns x_r,

 OT is a basic ingredient in (almost) all protocols for secure computation

- OT is a basic ingredient in (almost) all protocols for secure computation
- Protocols based on Garbled Circuits (Yao):
 1 OT per *input*

[LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14]

- OT is a basic ingredient in (almost) all protocols for secure computation
- Protocols based on Garbled Circuits (Yao):
 1 OT per *input* [LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14]
- Protocols based on GMW:
 - 1+ OT per AND-gate
 - TinyOT [NNOB12,LOS14] MiniMac protocols [DZ13,DLT14]

• The AES circuit: Uses 219 OTs

(when evaluated with TinyOT)

- The AES circuit: Uses 2¹⁹ OTs (when evaluated with TinyOT)
- The PSI circuit: (for b=32,n=216) Uses 230 OTs (when evaluated with TinyOT)

- The AES circuit: Uses 2¹⁹ OTs (when evaluated with TinyOT)
- The PSI circuit: (for b=32,n=216) Uses 230 OTs (when evaluated with TinyOT)
- Using [PVW08]: 350 OTs per second

- The AES circuit: Uses 2¹⁹ OTs (when evaluated with TinyOT)
- The PSI circuit: (for b=32,n=216) Uses 230 OTs (when evaluated with TinyOT)
- Using [PVW08]: 350 OTs per second
 - 1M (2²⁰) OTs > 45 minutes(!)

- The AES circuit: Uses 2¹⁹ OTs (when evaluated with TinyOT)
- The PSI circuit: (for b=32,n=216) Uses 230 OTs (when evaluated with TinyOT)
- Using [PVW08]: 350 OTs per second
 - 1M (2²⁰) OTs > 45 minutes(!)

- The AES circuit: Uses 2¹⁹ OTs (when evaluated with TinyOT)
- The PSI circuit: (for b=32,n=216) Uses 230 OTs (when evaluated with TinyOT)
- Using [PVW08]: 350 OTs per second
 - 1M (2²⁰) OTs > 45 minutes(!)
 - 1G (2³⁰) OTs > 45000 minutes > 1 month...

OT Extensions

Small amount of base OTs

(security parameter)

(cheap) private-key crypto

OT Extensions

(security parameter)

(cheap) private-key crypto

Many OTs

OT Extension and Related Work

OT Extension and Related Work

- Introduced in [Beaver96]
- Ishai, Kilian, Nissim, Petrank [IKNP03]
 "Extending Oblivious Transfer Efficiently"

OT Extension and Related Work

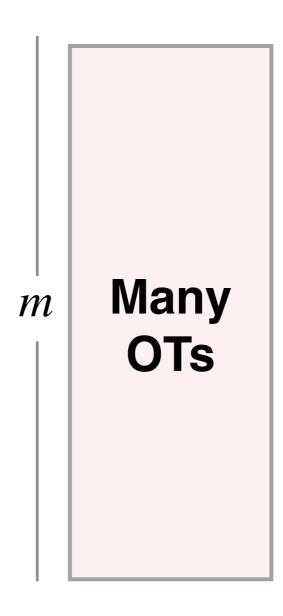
- Introduced in [Beaver96]
- Ishai, Kilian, Nissim, Petrank [IKNP03]
 "Extending Oblivious Transfer Efficiently"
- Optimizations semi-honest: [KK13, ALSZ13]
- Optimizations malicious: [Lar14,NNOB12,HIKN08,Nie07]

Contents

- IKNP protocol
- Our Protocol, Security
- Performance

Extending OT Efficiently¹ [IKNP03]

IKNP - Idea



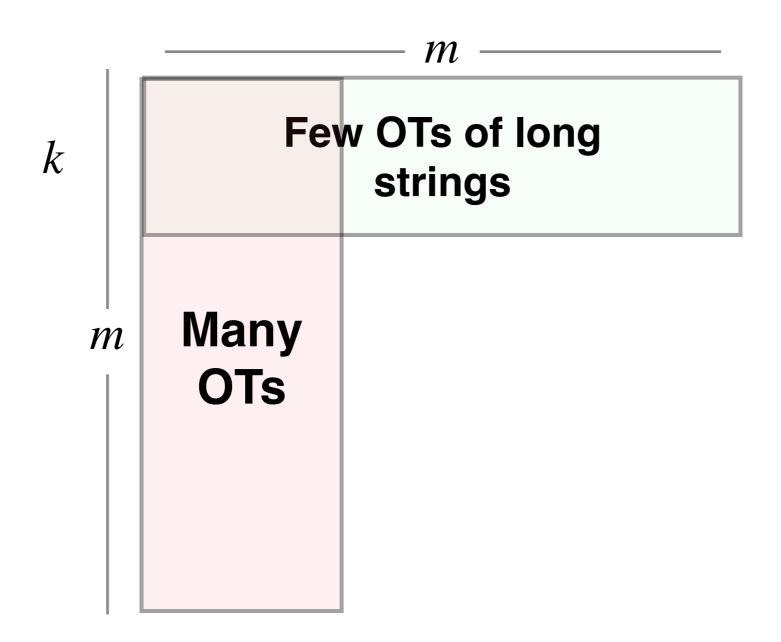
expensive

IKNP - Idea

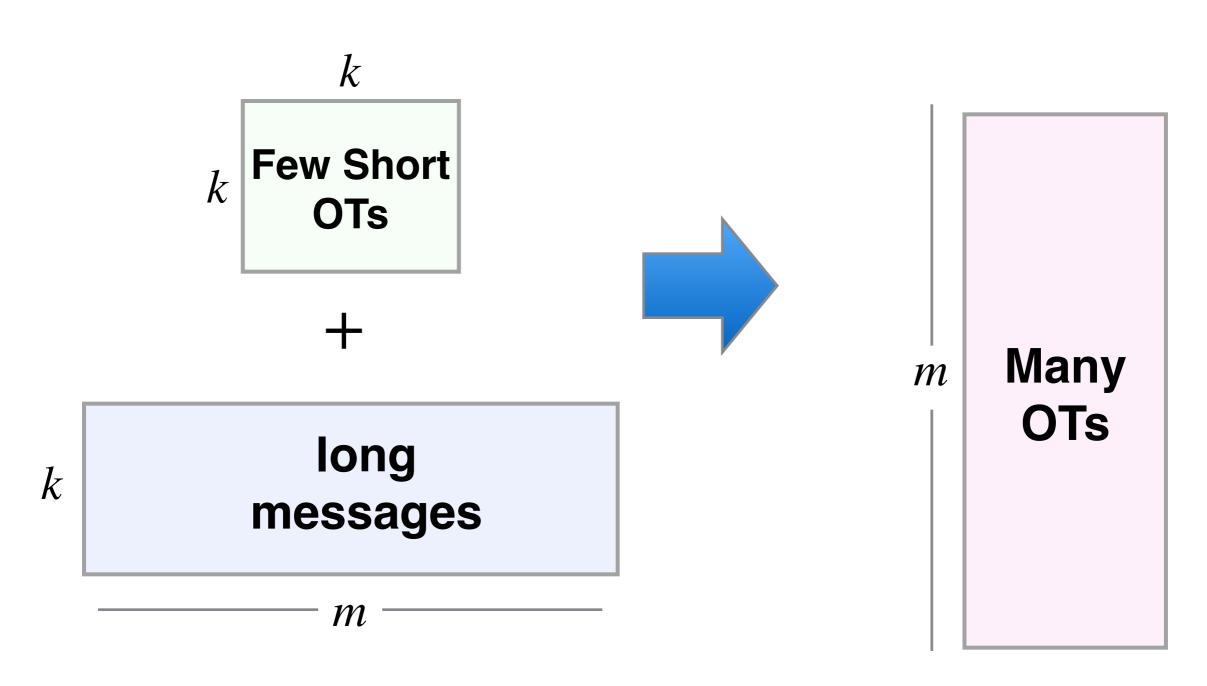
——— *m* ———

Few OTs of long strings

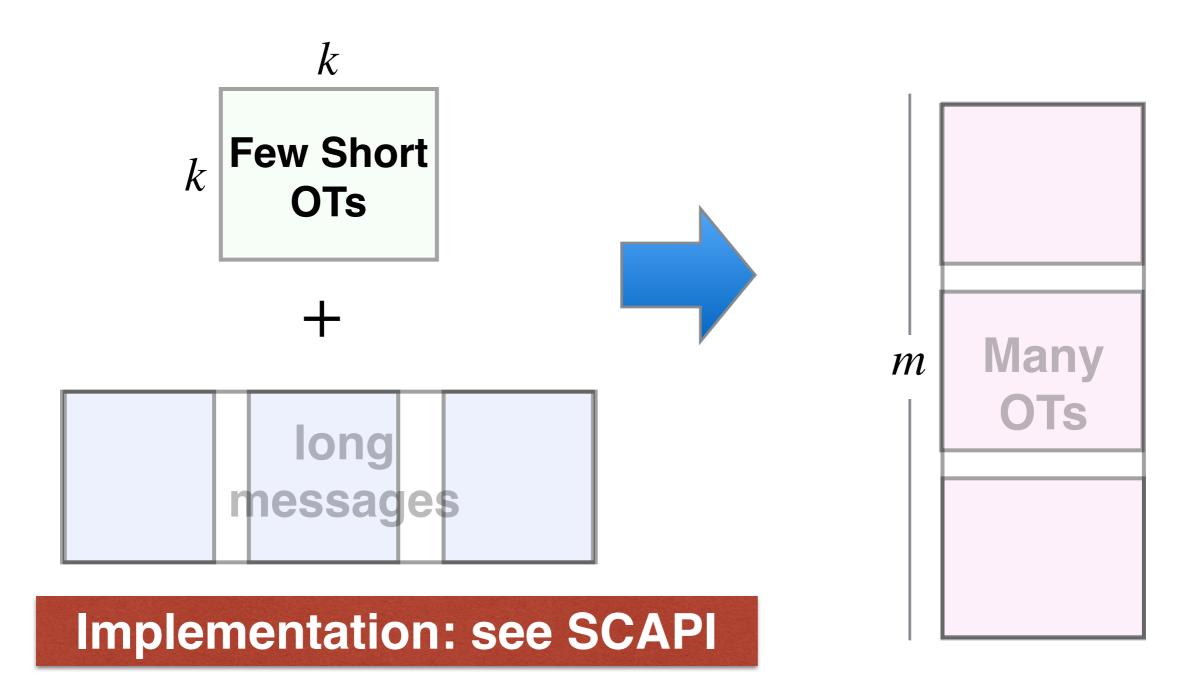
IKNP - Idea



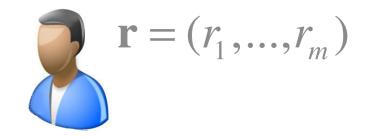
IKNP - Implementation



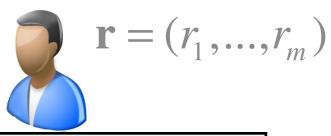
In Practice [ALSZ13]



$$\{x_j^0, x_j^1\}_{j=1}^m$$



$$\{x_j^0, x_j^1\}_{j=1}^m$$



$$\mathbf{s} = (s_1,...,s_{\ell})$$

 $\mathbf{k}_1^{s_1},...,\mathbf{k}_{\ell}^{s_{\ell}}$

Base OTs

$$\left\{\mathbf{k}_{i}^{0},\mathbf{k}_{i}^{1}\right\}_{i=1}^{\ell}$$

$$\{x_j^0, x_j^1\}_{j=1}^m$$

$$\mathbf{r}=(r_1,\ldots,r_m)$$

$$\mathbf{s} = (s_1,...,s_{\ell})$$
 $\mathbf{k}_1^{s_1},...,\mathbf{k}_{\ell}^{s_{\ell}}$

Base OTs

$$\left\{\mathbf{k}_{i}^{0},\mathbf{k}_{i}^{1}\right\}_{i=1}^{\ell}$$

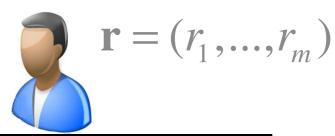
$$\mathbf{u}^{1},...,\mathbf{u}^{\ell}$$

$$\mathbf{u}^1,...,\mathbf{u}^\ell$$
 $\mathbf{u}^i = G(\mathbf{k}_i^0) \oplus G(\mathbf{k}_i^1) \oplus \mathbf{r}$

T

Г

$$\{x_j^0, x_j^1\}_{j=1}^m$$



$$\mathbf{s} = (s_1, ..., s_{\ell})$$
 $\mathbf{k}_1^{s_1}, ..., \mathbf{k}_{\ell}^{s_{\ell}}$

Base OTs

$$\left\{\mathbf{k}_{i}^{0},\mathbf{k}_{i}^{1}\right\}_{i=1}^{\ell}$$

$$\mathbf{u}^1,...,\mathbf{u}^\ell$$

$$\mathbf{u}^1,...,\mathbf{u}^\ell$$
 $\mathbf{u}^i = G(\mathbf{k}_i^0) \oplus G(\mathbf{k}_i^1) \oplus \mathbf{r}$

$$y_j^0 = x_j^0 \oplus H(\mathbf{q}_j)$$
$$y_j^1 = x_j^1 \oplus H(\mathbf{q}_j \oplus \mathbf{s})$$

$$y_j^0, y_j^1$$

The protocol is already secure with respect to malicious
 Sender!

- The protocol is already secure with respect to malicious
 Sender!
- Malicious Receiver may send inconsistent r with each u
 message

- The protocol is already secure with respect to malicious
 Sender!
- Malicious Receiver may send inconsistent r with each u
 message
 - Learns bits of s

- The protocol is already secure with respect to malicious
 Sender!
- Malicious Receiver may send <u>inconsistent</u> r with each uⁱ message
 - Learns bits of s

REMEMBER: if **Receiver** learns **s**, it gets ALL **Sender**'s inputs!

- The protocol is already secure with respect to malicious
 Sender!
- Malicious Receiver may send <u>inconsistent</u> r with each uⁱ message
 - Learns bits of s

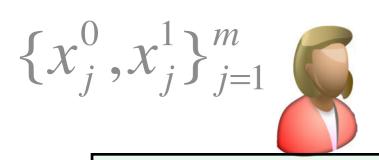
REMEMBER: if **Receiver** learns **s**, it gets ALL **Sender**'s inputs!

We add consistency check of r

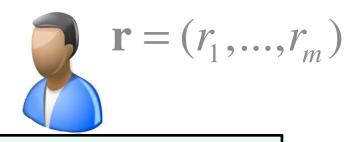
- The protocol is already secure with respect to malicious
 Sender!
- Malicious Receiver may send inconsistent r with each u
 message
 - Learns bits of s

REMEMBER: if **Receiver** learns **s**, it gets ALL **Sender**'s inputs!

- We add consistency check of r
- Sender checks that Receiver uses the same r with each uⁱ



The Protocol



$$\mathbf{u}^1,...,\mathbf{u}^\ell$$

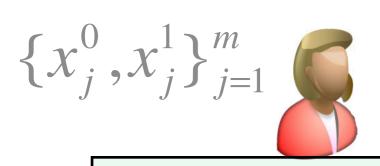
$$\mathbf{u}^i = G(\mathbf{k}_i^0) \oplus G(\mathbf{k}_i^1) \oplus \mathbf{r}$$

T

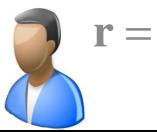
$$y_{j}^{0} = x_{j}^{0} \oplus H(\mathbf{q}_{j})$$

$$y_{j}^{1} = x_{j}^{1} \oplus H(\mathbf{q}_{j} \oplus \mathbf{s})$$

$$y_{j}^{0}, y_{j}^{1}$$



The Protocol



$$\mathbf{r}=(r_1,...,r_m)$$

Base OTs

$$\mathbf{u}^1,...,\mathbf{u}^\ell$$

$$\mathbf{u}^i = \mathbf{G}(\mathbf{k}_i^0) \oplus \mathbf{G}(\mathbf{k}_i^1) \oplus \mathbf{r}$$

Consistency Check of r

$$y_j^0 = x_j^0 \oplus H(\mathbf{q}_j)$$
$$y_j^1 = x_j^1 \oplus H(\mathbf{q}_j \oplus \mathbf{s})$$

$$y_j^0, y_j^1$$

The Consistency Checks

$$\mathbf{u}^{i} = G(\mathbf{k}_{i}^{0}) \oplus G(\mathbf{k}_{i}^{1}) \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = G(\mathbf{k}_{j}^{0}) \oplus G(\mathbf{k}_{j}^{1}) \oplus \mathbf{r}$$

$$\mathbf{u}^{i} = G(\mathbf{k}_{i}^{0}) \oplus G(\mathbf{k}_{i}^{1}) \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = G(\mathbf{k}_{j}^{0}) \oplus G(\mathbf{k}_{j}^{1}) \oplus \mathbf{r}$$

$$\mathbf{u}^i = \mathbf{t}_i^0 \oplus \mathbf{t}_i^1 \oplus \mathbf{r}$$

$$\mathbf{u}^j = \mathbf{t}^0_j \oplus \mathbf{t}^1_j \oplus \mathbf{r}$$

$$\mathbf{u}^{i} = G(\mathbf{k}_{i}^{0}) \oplus G(\mathbf{k}_{i}^{1}) \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = G(\mathbf{k}_{j}^{0}) \oplus G(\mathbf{k}_{j}^{1}) \oplus \mathbf{r}$$

$$\bigoplus \mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}$$

$$\mathbf{u}^{i} = G(\mathbf{k}_{i}^{0}) \oplus G(\mathbf{k}_{i}^{1}) \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = G(\mathbf{k}_{j}^{0}) \oplus G(\mathbf{k}_{j}^{1}) \oplus \mathbf{r}$$

$$\bigoplus \mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}$$

$$\mathbf{u}^{i} \oplus \mathbf{u}^{j} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1}$$

$$\mathbf{u}^{i} = G(\mathbf{k}_{i}^{0}) \oplus G(\mathbf{k}_{i}^{1}) \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = G(\mathbf{k}_{j}^{0}) \oplus G(\mathbf{k}_{j}^{1}) \oplus \mathbf{r}$$

$$\bigoplus \mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}$$

$$\mathbf{u}^{i} \oplus \mathbf{u}^{j} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1}$$

$$\mathbf{u}^{i} \oplus \mathbf{u}^{j} \oplus \mathbf{t}_{i}^{s_{i}} \oplus \mathbf{t}_{j}^{s_{j}} \quad ? = \quad \mathbf{t}_{i}^{1-s_{i}} \oplus \mathbf{t}_{j}^{1-s_{j}}$$

$$? = \mathbf{t}_i^{1-s_i} \oplus \mathbf{t}_j^{1-s_j}$$

$$\mathbf{u}^{i} = G(\mathbf{k}_{i}^{0}) \oplus G(\mathbf{k}_{i}^{1}) \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = G(\mathbf{k}_{j}^{0}) \oplus G(\mathbf{k}_{j}^{1}) \oplus \mathbf{r}$$

$$\bigoplus \mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}$$

$$\mathbf{u}^{i} \oplus \mathbf{u}^{j} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1}$$

$$\mathbf{u}^{i} \oplus \mathbf{u}^{j} \oplus \mathbf{t}_{i}^{s_{i}} \oplus \mathbf{t}_{j}^{s_{j}} \quad ? = \quad \mathbf{t}_{i}^{1-s_{i}} \oplus \mathbf{t}_{j}^{1-s_{j}}$$

$$? = \mathbf{t}_i^{1-s_i} \oplus \mathbf{t}_j^{1-s_j}$$

$$H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j}) \quad ? = \quad H(\mathbf{t}_i^{1-s_i} \oplus \mathbf{t}_j^{1-s_j})$$

$$? = H(\mathbf{t}_i^{1-s_i} \oplus \mathbf{t}_j^{1-s_j})$$

$$h_{i,j}^{0,0} = H(\mathbf{t}_i^0 \oplus \mathbf{t}_j^0)$$

$$h_{i,j}^{0,1} = H(\mathbf{t}_i^0 \oplus \mathbf{t}_j^1)$$

$$h_{i,j}^{1,0} = H(\mathbf{t}_i^1 \oplus \mathbf{t}_j^0)$$

$$h_{i,j}^{1,1} = H(\mathbf{t}_i^1 \oplus \mathbf{t}_j^1)$$

$$h_{i,j}^{0,0} = H(\mathbf{t}_{i}^{0} \oplus \mathbf{t}_{j}^{0})$$

$$h_{i,j}^{0,1} = H(\mathbf{t}_{i}^{0} \oplus \mathbf{t}_{j}^{1})$$

$$h_{i,j}^{1,0} = H(\mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{0})$$

$$h_{i,j}^{1,1} = H(\mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{1})$$

$$\mathbf{u}^{1},...,\mathbf{u}^{\ell} \{h_{i,j}^{0,0},h_{i,j}^{0,1},h_{i,j}^{1,0},h_{i,j}^{1,1}\}_{i,j}$$

$$h_{i,j}^{0,0} = H(\mathbf{t}_{i}^{0} \oplus \mathbf{t}_{j}^{0})$$

$$h_{i,j}^{0,1} = H(\mathbf{t}_{i}^{0} \oplus \mathbf{t}_{j}^{1})$$

$$h_{i,j}^{1,0} = H(\mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{0})$$

$$h_{i,j}^{1,1} = H(\mathbf{t}_{i}^{1} \oplus \mathbf{t}_{j}^{1})$$

$$\mathbf{u}^{1},...,\mathbf{u}^{\ell} \{h_{i,j}^{0,0},h_{i,j}^{0,1},h_{i,j}^{1,0},h_{i,j}^{1,1}\}_{i,j}$$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

• Our goal: in case $\mathbf{r}^i \neq \mathbf{r}^j$, catch the adversary

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$
$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

• Our goal: in case $\mathbf{r}^i \neq \mathbf{r}^j$, catch the adversary

$$\mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}^{i}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}^{j}$$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$
$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

• Our goal: in case $\mathbf{r}^i \neq \mathbf{r}^j$, catch the adversary

$$\mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}^{i}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}^{j}$$

• But Receiver sends $(h_{i,j}^{0,0}, h_{i,j}^{0,1}, h_{i,j}^{1,0}, h_{i,j}^{1,1})$ such that:

$$h^{0,0} = H(\mathbf{t}_i^0 \oplus \mathbf{t}_j^0) \quad h^{1,1} = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_j^1 \oplus \mathbf{t}_j^1)$$
$$h^{0,1} = H(\mathbf{t}_i^0 \oplus \mathbf{t}_j^1) \quad h^{1,0} = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^1 \oplus \mathbf{t}_j^0)$$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

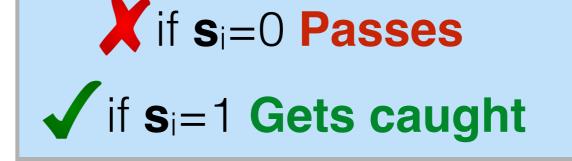
• Our goal: in case $\mathbf{r}^i \neq \mathbf{r}^j$, catch the adversary

$$\mathbf{u}^{i} = \mathbf{t}_{i}^{0} \oplus \mathbf{t}_{i}^{1} \oplus \mathbf{r}^{i}$$
$$\mathbf{u}^{j} = \mathbf{t}_{j}^{0} \oplus \mathbf{t}_{j}^{1} \oplus \mathbf{r}^{j}$$

• But Receiver sends $(h_{i,j}^{0,0}, h_{i,j}^{0,1}, h_{i,j}^{1,0}, h_{i,j}^{1,1})$ such that:

$$h^{0,0} = H(\mathbf{t}_i^0 \oplus \mathbf{t}_j^0) \quad h^{1,1} = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_j^1 \oplus \mathbf{t}_j^1)$$
$$h^{0,1} = H(\mathbf{t}_i^0 \oplus \mathbf{t}_j^1) \quad h^{1,0} = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^1 \oplus \mathbf{t}_j^0)$$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$
$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$



$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

• If $\mathbf{r}^i \neq \mathbf{r}^j$ then:

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

• If $\mathbf{r}^i \neq \mathbf{r}^j$ then: If the verification **passes** for (s^i, s^j) the verification **fails** for $(1-s^i, 1-s^j)$

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

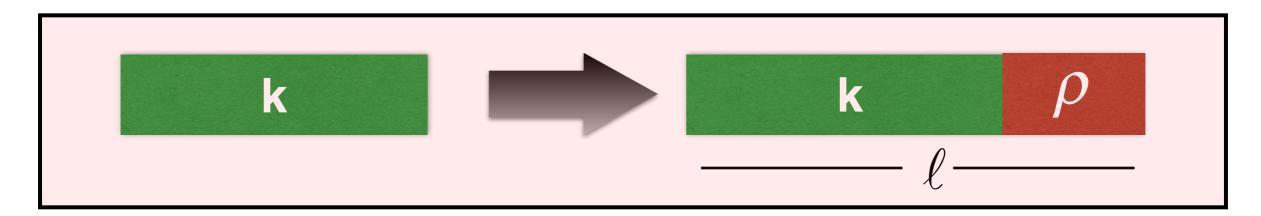
- If $\mathbf{r}^i \neq \mathbf{r}^j$ then: If the verification **passes** for (s^i, s^j) the verification **fails** for $(1-s^i, 1-s^j)$
- It can succeed only with 2-out-of-4 possibilities of (s^i, s^j) With probability 1/2, we catch the adversary!

$$h_{i,j}^{1-s_i,1-s_j}? = H(\mathbf{u}^i \oplus \mathbf{u}^j \oplus \mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

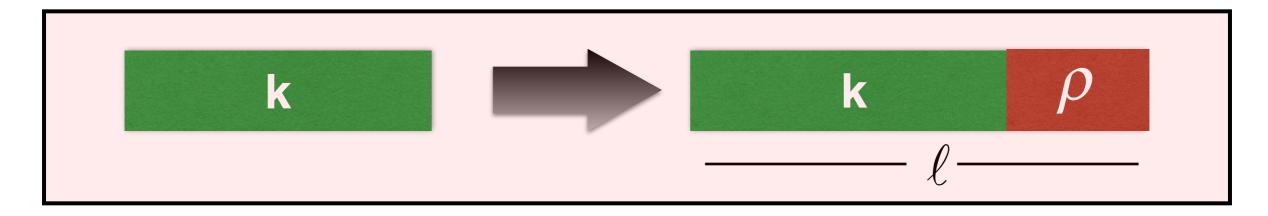
$$h_{i,j}^{s_i,s_j}? = H(\mathbf{t}_i^{s_i} \oplus \mathbf{t}_j^{s_j})$$

- Bob can still learn t bits of s, with probability 2^{-t}
 - By guessing s_i, can pass verification of (i,j) for all j

- Bob can still learn t bits of s, with probability 2^{-t}
 - By guessing s_i, can pass verification of (i,j) for all j
- Solution increase the size of s



- Bob can still learn t bits of s, with probability 2^{-t}
 - By guessing s_i, can pass verification of (i,j) for all j
- Solution increase the size of s



• With probability $1-2^{-\rho}$, still k bits of **s** are completely hidden! $y_j^0 = x_j^0 \oplus H(\mathbf{q}_j)$ $y_j^1 = x_i^1 \oplus H(\mathbf{q}_i \oplus \mathbf{s})$

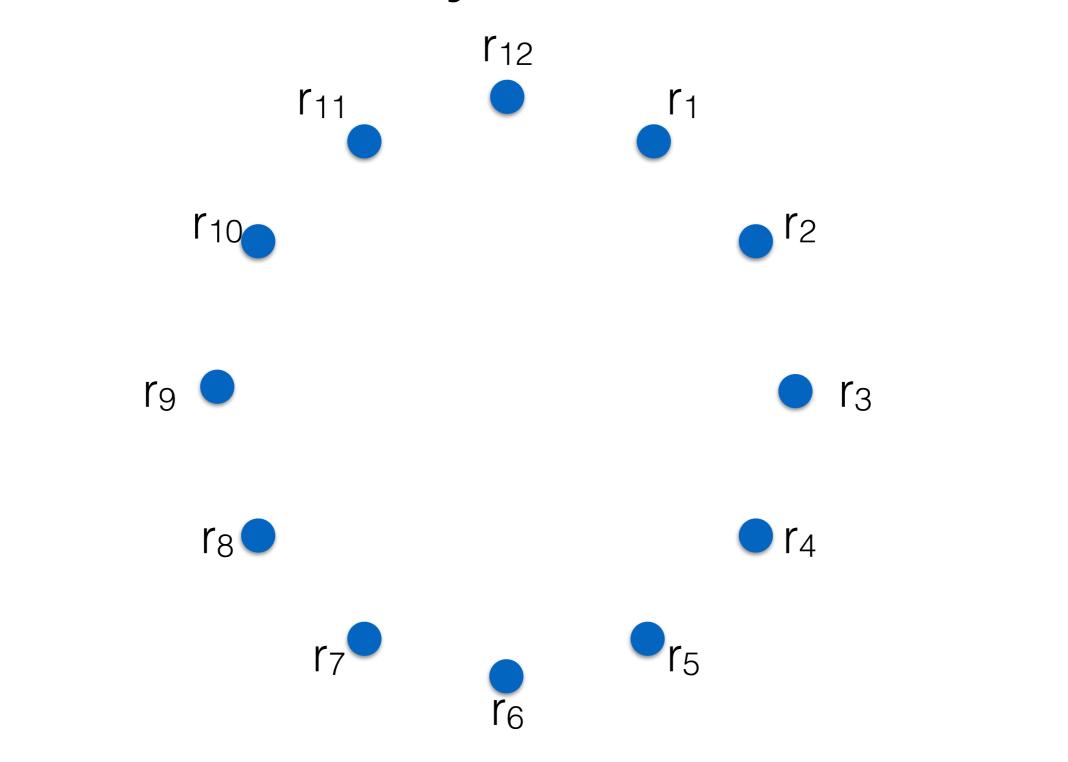
Some concrete numbers...

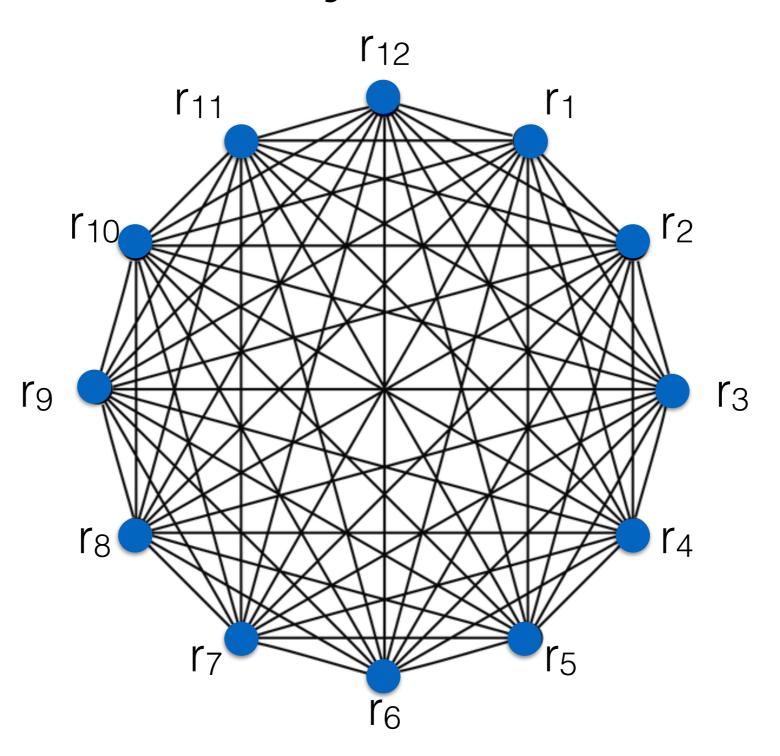
Some concrete numbers...

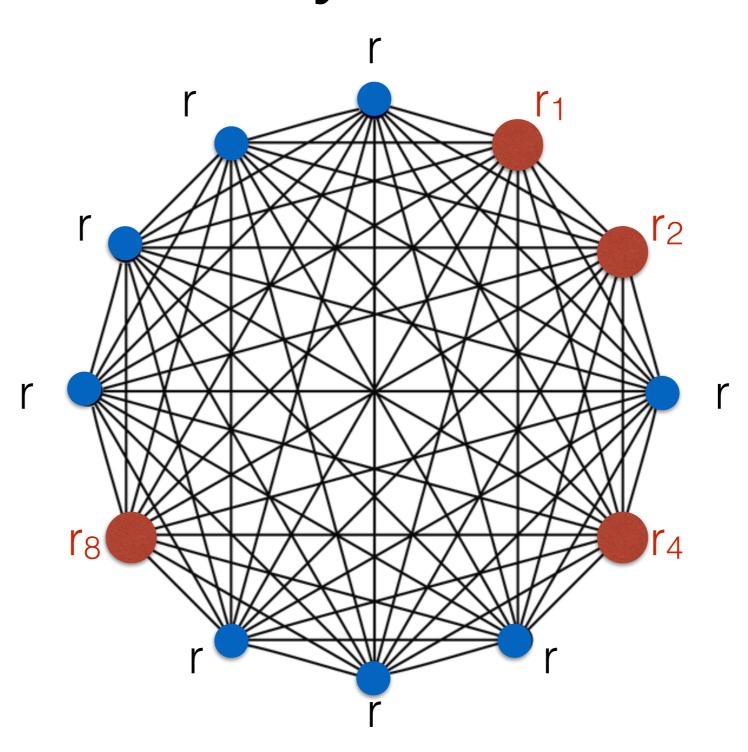
- Typical security parameter: 128
- Typical statistical sec. parameter: 40
- Overall number of base OTs: 168
 (Reminder: [NNOB12] uses 8/3k = 341 base OTs)

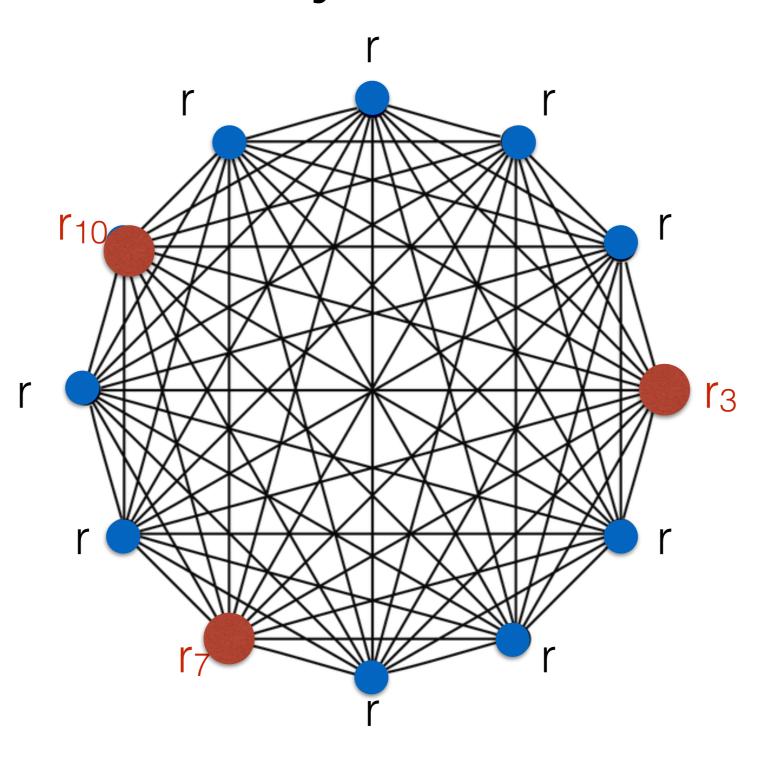
Some concrete numbers...

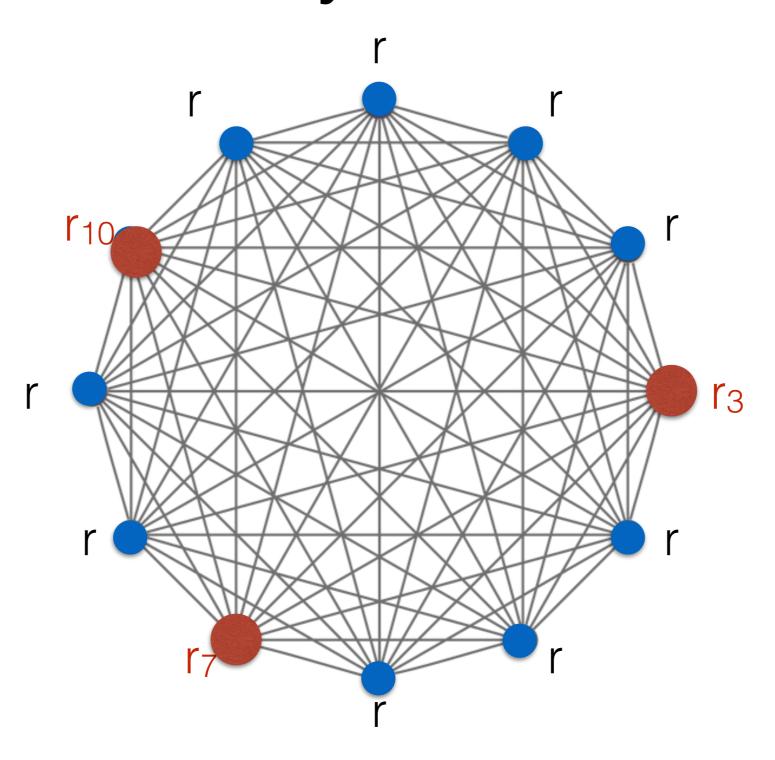
- Typical security parameter: 128
- Typical statistical sec. parameter: 40
- Overall number of base OTs: 168
 (Reminder: [NNOB12] uses 8/3k = 341 base OTs)
- Checks: all pairs ~ 14028
- We have to reduce the number of checks!
 (at the expense of increasing the number of base-OTs)

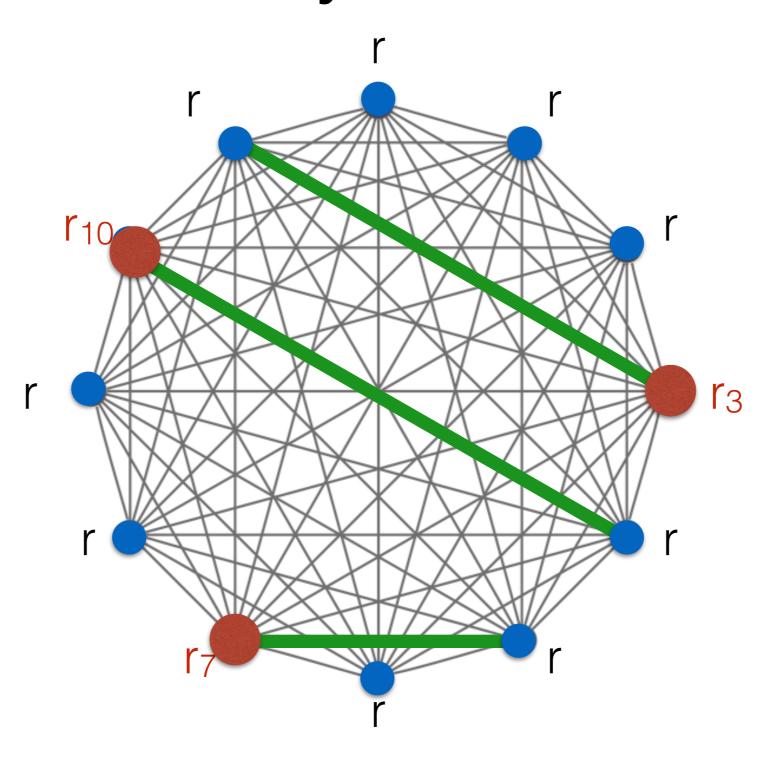






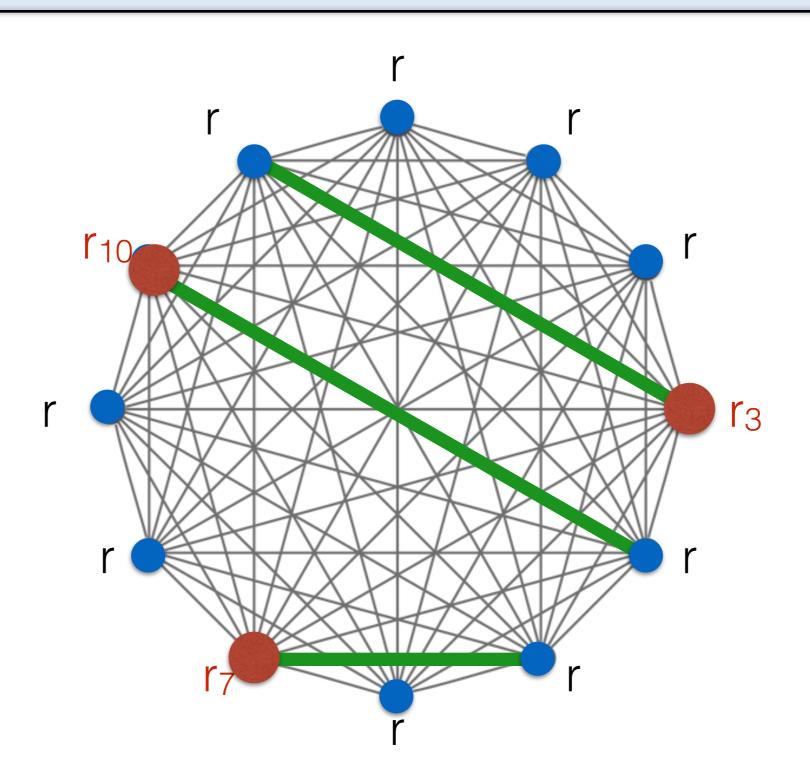


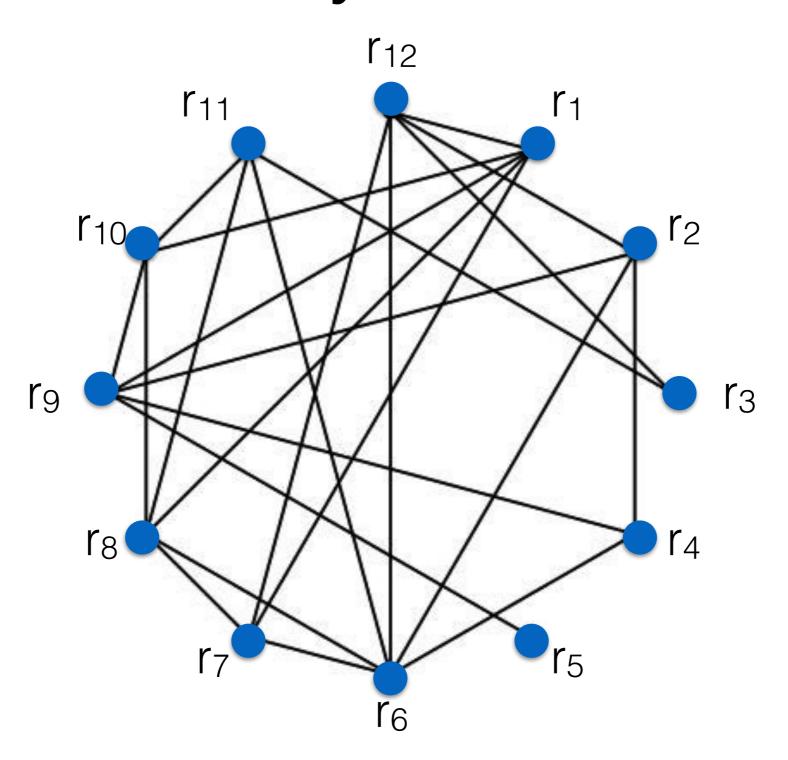


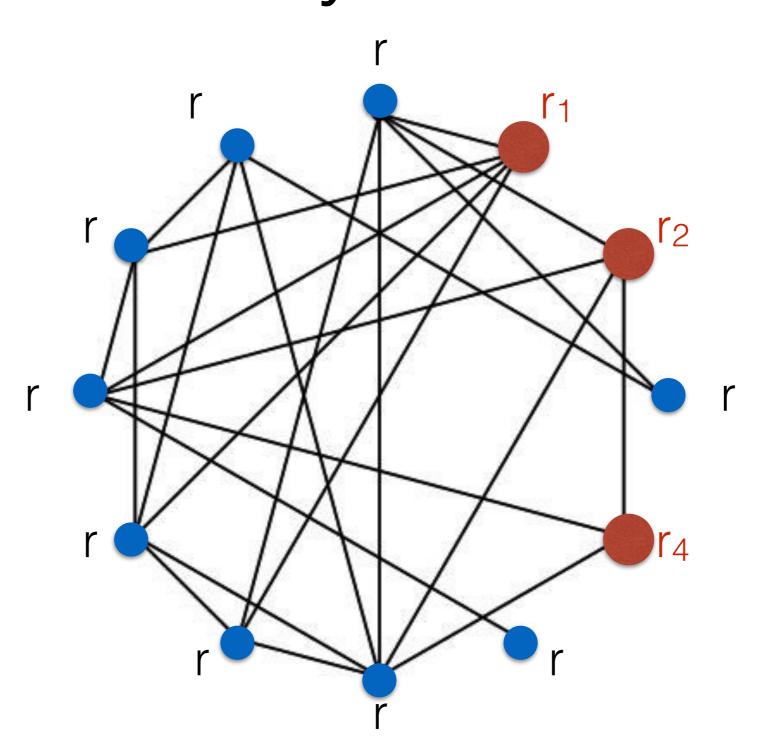


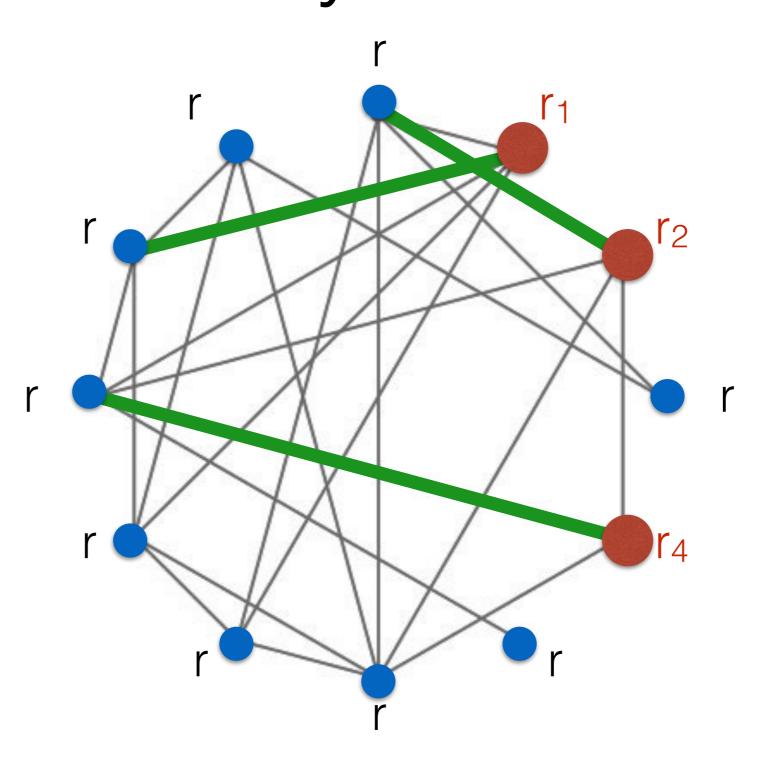
The needed property:

For any "large enough" set of **bad** vertices (> p=40), there exists p-matching with the good vertices









The needed property:

For any "large enough" set of **bad** vertices (> p=40), there exists p-matching with the good vertices

The needed property:

For any "large enough" set of **bad** vertices (> p=40), there exists p-matching with the good vertices

 We show that random d-regular graph satisfies the above (for appropriate set of parameters)

The needed property:

For any "large enough" set of **bad** vertices (> p=40), there exists p-matching with the good vertices

- We show that random d-regular graph satisfies the above (for appropriate set of parameters)
 - For k=128, p=40
 - 168 base OTs, complete graph: 14028
 - 190 base OTs, d=2, checks: 380
 - 177 base OTs, d=3, checks: 531

The needed property:

For any "large enough" set of **bad** vertices (> p=40), there exists p-matching with the good vertices

- We show that random d-regular graph satisfies the above (for appropriate set of parameters)
 - For k=128, p=40
 - 168 base OTs, complete graph: 14028
 - 190 base OTs, d=2, checks: 380
 - 177 base OTs, d=3, checks: 531
- Covert: probability 1/2, just random 7 checks!

Instantiation of H

Correlation Robustness:

$$\{H(t_1 \oplus \mathbf{s}), ..., H(t_\ell \oplus \mathbf{s})\} = U_{\ell \times n}$$

$$\mathbf{s} \leftarrow_R \{0,1\}^k$$

Instantiation of H

Correlation Robustness:

$$\{H(t_1 \oplus \mathbf{s}), ..., H(t_\ell \oplus \mathbf{s})\} \stackrel{\iota}{=} U_{\ell \times n}$$

$$\mathbf{s} \leftarrow_R \{0,1\}^k$$

k-Min Entropy Correlation Robustness:

$$\{H(t_1 \oplus \mathbf{s}), ..., H(t_\ell \oplus \mathbf{s})\} = U_{\ell \times n}$$

 ${f S}$ is taken from a source ${\cal X}$ with min entropy k

Performance

• Benchmark: 2²³=8M OTs

• Benchmark: 2²³=8M OTs

Local scenario (LAN):

Two servers in the same room

(network with low latency and high bandwidth)

12 sec (190 base OTs, 380 checks)

- Benchmark: 2²³=8M OTs
- Local scenario (LAN):

Two servers in the same room

(network with low latency and high bandwidth)

12 sec (190 base OTs, 380 checks)

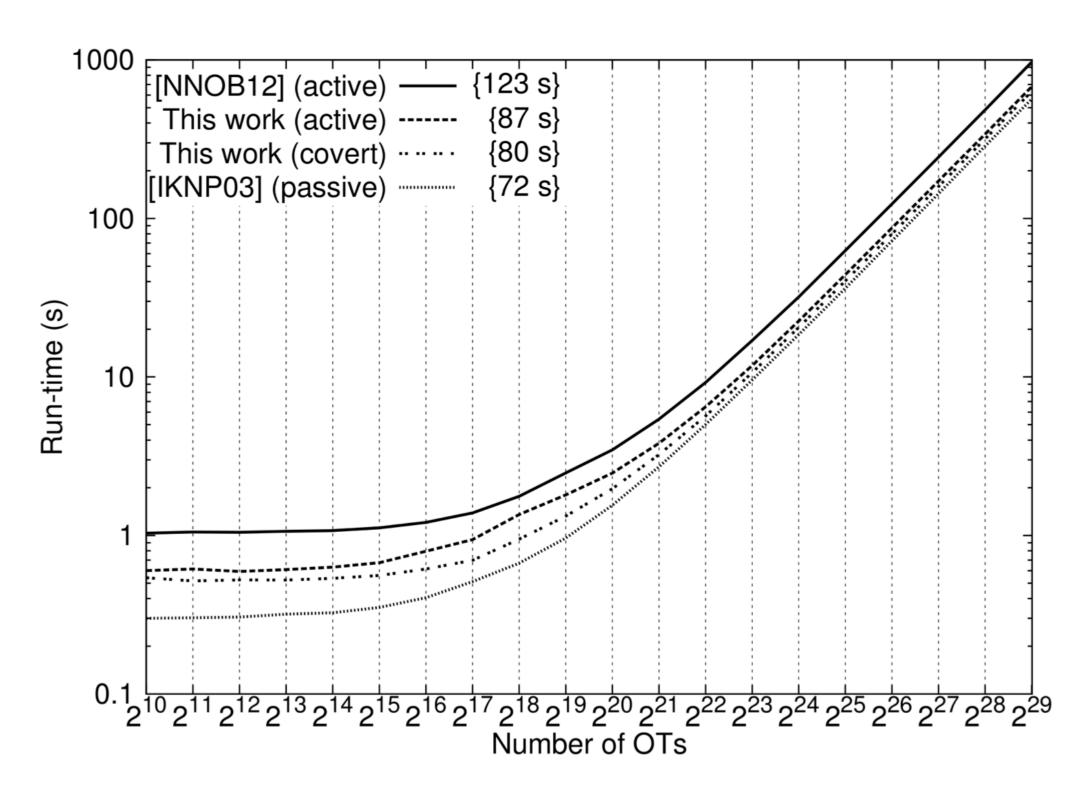
Cloud scenario (WAN):

Two servers in different continents

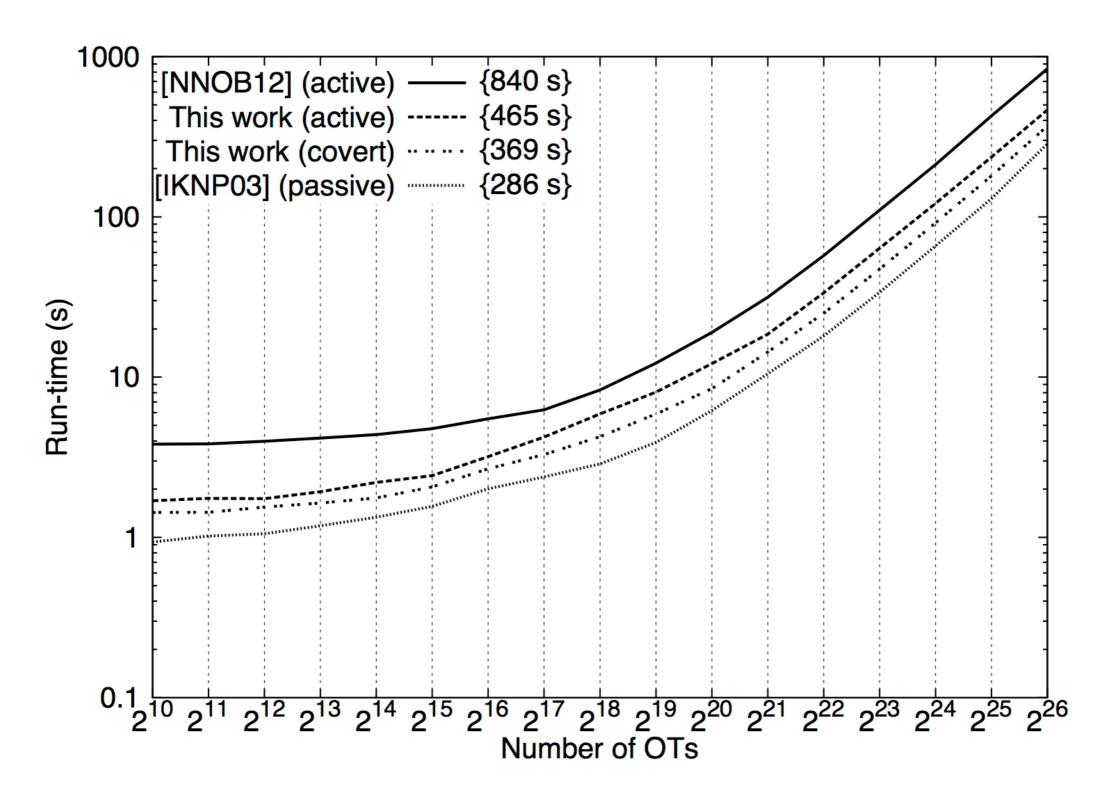
(network with high latency and low bandwidth)

64 sec (174 base OTs, 696 checks)

Comparison - LAN Setting



Comparison - WAN setting



Conclusions

- More efficient OT extension more efficient protocols for MPC
- The most efficient OT extension protocol, yet
- Combination of theory and practice

Conclusions

- More efficient OT extension more efficient protocols for MPC
- The most efficient OT extension protocol, yet
- Combination of theory and practice

Thank You!