More Efficient
ODblivious Transfer Extensions
with Security for Malicious

Adversaries

Gilad Asharov
Yehuda Lindell
Thomas Schneider
Michael Zohner

EUROCRYPT 2015

This lalk

This lalk

 Oblivious Transfer Extension

This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)

This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)

This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)
e Claudio’s talk (Tuesday)

This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)
e Claudio’s talk (Tuesday)
* This talk (Thursday)

This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)
e Claudio’s talk (Tuesday)
* This talk (Thursday)

e (Concrete efficiency in the malicious model

* Most efficient OT extension protocol, yet
* Optimized protocol, proofs and implementation

1-out-of-2 Oblivious Transfer

Sender Receiver

oT | .

 INPUT: Sender holds two strings (xo,x1), Receiver holds r

 OUTPUT: Sender learns nothing, Receiver learns x,

Oblivious Transfer and
Secure Computation

Oblivious Transfer and
Secure Computation

 OT is a basic ingredient in (amost) all protocols for
secure computation

Oblivious Transfer and
Secure Computation

 OT is a basic ingredient in (amost) all protocols for
secure computation

 Protocols based on Garbled Circuits (Yao):
1 OT per input
[LPO7,LPS08,PSSW09,KSS12,FN13,5S513,LR14,HKK+14,FJN14]

Oblivious Transfer and
Secure Computation

 OT is a basic ingredient in (amost) all protocols for
secure computation

 Protocols based on Garbled Circuits (Yao):
1 OT per input
[LPO7,LPS08,PSSW09,KSS12,FN13,5S513,LR14,HKK+14,FJN14]

* Protocols based on GMW:
1+ OT per AND-gate
TinyOT [NNOB12,L.0S14] MiniMac protocols [DZ13,DLT14]

How Many OT's??

How Many OT's”

e The AES circuit: Uses 219 OTs

How Many OT's”

e The AES circuit: Uses 219 OTs

(when evaluated with TinyOT)

* The PSI circuit: (or b=32,n=21) Uses 230 OTs
(when evaluated with TinyOT)

How Many OT's”

e The AES circuit: Uses 219 OTs

 The PSI circuit: (for b=32n=21%) Uses 230 OTs

* Using [PVWO08]: 350 OTs per second

How Many OT's”

e The AES circuit: Uses 219 OTs

 The PSI circuit: (for b=32n=21%) Uses 230 OTs

* Using [PVWO08]: 350 OTs per second

e 1M (220) OTs > 45 minutes(!)

How Many OT's”

e The AES circuit: Uses 219 OTs

(when evaluated with TinyOT)

* The PSI circuit: (or b=32,n=21) Uses 230 OTs
(when evaluated with TinyOT)

e Using [PVWO08]: 350 OTs per second

e 1M (220) OTs > 45 minutes(!)

CogTA
v

How Many OT's”

e The AES circuit: Uses 219 OTs

(when evaluated with TinyOT)

* The PSI circuit: (or b=32,n=21) Uses 230 OTs
(when evaluated with TinyOT)

e Using [PVWO08]: 350 OTs per second

e 1M (220) OTs > 45 minutes(!)

4 //»7 v

e 1G (239) OTs > 45000 minutes > 1 month...

CosTA
\/

OT Extensions

Small amount of base OTs
(security parameter)

(cheap) private-key crypto

OT Extensions

Small amount of base OTs
(security parameter)

(cheap) private-key crypto

Many
OTs

OT Extension and
Related Work

OT Extension and
Related Work

* |ntroduced in [Beaver96]

* |shai, Kilian, Nissim, Petrank [IKNPO3]

"Extending Oblivious Transfer Efficiently”

OT Extension and
Related Work

Introduced in [Beaver9o]

Ishai, Kilian, Nissim, Petrank [IKNPO3]}
‘Extending Oblivious Transter Efficiently”

Optimizations semi-honest: [KK13, ALSZ13]

Optimizations malicious:
[Lar14,NNOB12,HIKNO8,Nie07]

Contents

* |KNP protocol
e Our Protocol, Security

e Performance

Extending OT Efficiently!
[TKNPO3]

1Semi-honest

KNP - laea

m | Many
OTs

expensive

KNP - laea

m

Few OTs of long
strings

KNP - laea

m

Few OTs of long
strings

m | Many
OTs

KNP - Implementation

k OTs

+
m | Many

OTs
long

messages

m

In Practice ALS5/13)

k

I Few Short

OTs
5 _

Implementation: see SCAPI

m| Many
OTs

KNP

0 _.1 |
AR

KNP

S = (85--e55,)

k... k"

Base OTs

KNP

0 Iy m r
{xj 9xj}j:1 | r:(’ﬂv-"»rm)

S = (S19°°°9S£)

k,... k"

Base OTs {k'Kk}

u',..u w=Gk)®GCk)Or

Q T

KNP

§ 3

S = (85--e55,)

Base OTs k) k)}
K',....k KK
lll,...,llg u =Gk H®GKk)®r
>
Q T
y, =x, ®H(q,) 0 .1
v =x' @ H(q, ®s) YisJ;

When Moving to Malicious

When Moving to Malicious

* The protocol is already secure with respect to malicious
|

When Moving to Malicious

* The protocol is already secure with respect to malicious
Sender!

* Malicious may send inconsistent r with each u
message

When Moving to Malicious

* The protocol is already secure with respect to malicious
Sender!

* Malicious may send inconsistent r with each u
message

e Learns bits of s

When Moving to Malicious

* The protocol is already secure with respect to malicious
Sender!

* Malicious may send inconsistent r with each u
message

e Learns bits of s

REMEMBER: if learns s,
it gets ALL Sender’s inputs!

When Moving to Malicious

* The protocol is already secure with respect to malicious
Sender!

* Malicious may send inconsistent r with each u
message

e Learns bits of s

REMEMBER: if learns s,
it gets ALL Sender’s inputs!

* We add consistency check of r

When Moving to Malicious

* The protocol is already secure with respect to malicious
Sender!

* Malicious may send inconsistent r with each u
message

e Learns bits of s

REMEMBER: if learns s,
it gets ALL Sender’s inputs!

* We add consistency check of r
e Sender checks that uses the same r with each u

The Protocol

& 3

Base OTs

i 0 1
alou W=GEK)HOGK)@r

Q) T

v, =x; ®H(q,) 0 _.1
Y =x' ® H(q, ®s) yj ’yj

The Protocol

& 3

Base OTs

i 0 1
alou W=GEK)HOGK)@r

Q) T

Consistency Check of r

y; =x; ®H(q;)

YisY;

y}zx}@H(qj@s)

The Consistency
Checks

Consistency Check

u' =Gk)®GK)Dr
u =Gk)DGK!)Dr

Consistency Check

© G B u=t &t or
® ®r uw =t &t @r
J J

Consistency Check

I 0 1
OGN Dr D u=t ot or
DG(k))Or W=t &t ®r

|l |l

Consistency Check

i 0 1
D Dr @HZti@ti@l‘

PGk ®r uw =t Ot Or

udu =t &, Ot Dt

|l |l

Consistency Check

l 0 1
D Dr @ u =ti@ti@l‘
PGk ®r uw =t Ot Or

udu =t &, Ot Dt

W @u et et 7= tet "

|l |l

Consistency Check

l 0 1
© K B 6_>u=tl.€9tl.€ar

@ Dr uj:t(]).@t‘li@r

udu =t &, Ot Dt

' @u et et 7= tet "

Hu ®uw ®t' ®t/) ?2= Ht " &t ")

Consistency Check

h =H(t ®t)) &
W= H(t" ®t') \
B = Ht @) For every palr

(1)
h.=H(t ®t))

Consistency Check

| h'Y=H(t) ®t)) %
~ h'=H(t) ®t))
B = Ht @) For every pair

(1,])
h.=H(t ®t))

ul ll {hlojo’hm th hll}

i,] > 71,] °

Consistency Check

h =H(t ®t)) %
h=H(t, ®t)) '
B = Ht @) For every pair

(1,])
h.=H(t ®t))

1 14 00 701 7,10 7.1,
u ’ooo’u {hl,J 9hi,j 9hi,j ’hl,]}l,]

Alice checks that every pair (i,)):

h TV ?=H@u @u @t &t))

l,]

B =H(t @t))

Does it really work™

BT =Hu @u @t ®t))
B = H(t @)

Does it really work™

 Our goal: in case r'# 1, catch the adversary

b =Hu Ou &t &t))

l,]

B = H(t @t)

Does it really work™

 Our goal: in case r'# 1, catch the adversary
u=t @t ®r'
u =t et dr’

b =Hu Ou &t &t))

l,]

B = H(t @t)

Does it really work™

 Our goal: in case r'# 1, catch the adversary
u=t @t ®r'
u =t et dr’

» But sends (i7.h" k7 ,h7) such that:

h0,0 :H(t?@t(])) hl’l :H(u’@uj@ti@ti)
hO,l :H(t?@ti) hl’o :H(ul@u]@t}@t?)

h U =H(u' ®u’ Ot ®t)

l,]

B = H(t @t)

Does it really work™

 Our goal: in case r'# 1, catch the adversary
u=t @t ®r'
u =t et dr’

» But sends (i7.h" k7 ,h7) such that:

h0,0 :H(t?@t(])) hl’l :H(u’@u’@ti@ti)
hO,l :H(t?®ti) hl’o :H(ul@uj@t}®t?)

BT =Hu @u ot &) X if s=0 Passes

l,]

' T=H(t ©t)) J/ it si=1 Gets caught

Does it really work™

checks that every pair (i,)):
h "V ?=H(u' ®u Ot ®t)

l,]

h' 7 ?=H(t; @t)

Does it really work™

checks that every pair (i,)):
h "V ?=H(u' ®u Ot ®t)

l,]

h' 7 ?=H(t; @t)

Does it really work™

e |fr #rithen:

checks that every pair (i,)):
h "V ?=H(u' ®u Ot ®t)

»J

h' 7 ?=H(t; @t)

Does it really work™

o |[fr # rthen:
If the verification passes for (si,s/) -
the verification fails for (1-si, 1-s/)

checks that every pair (i,)):
h T I=Hu' @u &t ®t))

l,]

h' 7 ?=H(t; @t)

Does it really work™

o |[fr # rthen:
If the verification passes for (si,s/) -
the verification fails for (1-si, 1-s/)

* |t can succeed only with 2-out-of-4 possibilities of (si,s/)
With probability 1/2, we catch the adversary!

checks that every pair (i,)):
h T I=Hu' @u &t ®t))

l,]

h' 7 ?=H(t; @t)

Consistency Check

Consistency Check

can still learn t bits of s, with probability 2

* By guessing si, can pass verification of (i,]) for all |

Consistency Check

 Bob can still learn t bits of s, with probability 2
* By guessing s, can pass verification of (i,]) for all |

e Solution - increase the size of s

2 - L2 K

4

Consistency Check

 Bob can still learn t bits of s, with probability 2
* By guessing s, can pass verification of (i,]) for all |

e Solution - increase the size of s

2 - L2 K

/
* With probability 1—2-», still k bits of s are
completely hidden! Y =x"®H(q,)

y}zx}@H(qur)s)

Some concrete numbers...

Some concrete numbers...

* Jypical security parameter: 1283
* lypical statistical sec. parameter: 40

* QOverall number of base OTs: 168
(Reminder: [NNOB12] uses 8/3k = 341 base OTs)

Some concrete numbers...

* Jypical security parameter: 1283
* lypical statistical sec. parameter: 40

* QOverall number of base OTs: 168
(Reminder: [NNOB12] uses 8/3k = 341 base OTs)

 Checks: all pairs ~ 14028

 \We have to reduce the number of checks!
(at the expense of increasing the number of base-OTs)

How many checks do we
really need?

How many checks do we
really need?

=
X

Ay

"A

I

S

DS

-<“~
P

4

V.

R
LD
\!I

////
<L/
.
¢!

\
A:‘

X\

~

&
(X
2

=
2

R
§,
Y

How many checks do we
really need?

-
\/
/
%‘,
AN

§

D

;’

' S
>

N

N\
[2

[/

X K

X%
i

e
R
Y
(X))
N
—\\

v

>
B
Al
\/

How many checks do we
really need?

/ \\\\
VoS \

O 2%, \ r

\ X/
S NAVES!

%

S

i

Ay

’(
N

</ \

/> >'}§

(X
[
72

<N\

_A

%

\
V)
"\\‘

Y

2
N

How many checks do we
really need?

I

How many checks do we
really need?

I

The needed property:
For any “large enough’ set of bad vertices
(> p=40), there exists p-matching with the good vertices

I

How many checks do we
really need?

How many checks do we
really need?

How many checks do we
really need?

How Many Checks”

The needed property:
For any “large enough” set of bad vertices
(> p=40), there exists p-matching with the good vertices

How Many Checks”

The needed property:
For any “large enough” set of bad vertices
(> p=40), there exists p-matching with the good vertices

« We show that random d-regular graph satisfies the
above (for appropriate set of parameters)

How Many Checks”

The needed property:
For any “large enough” set of bad vertices
(> p=40), there exists p-matching with the good vertices

« We show that random d-regular graph satisfies the
above (for appropriate set of parameters)

e For k=128, p=40
168 base OTs, complete graph: 14028
e 190 base OTs, d=2, checks: 380
e 177 base OTs, d=3, checks: 531

How Many Checks”

The needed property:
For any “large enough” set of bad vertices
(> p=40), there exists p-matching with the good vertices

« We show that random d-regular graph satisfies the
above (for appropriate set of parameters)

e For k=128, p=40
168 base OTs, complete graph: 14028
e 190 base OTs, d=2, checks: 380
e 177 base OTs, d=3, checks: 531

o Covert: probability 1/2, just random 7 checks!

Instantiation of H

Correlation Robustness:

{H(fl @S),...,H(l} ®S)} ; Uéxn
S . {0,1}"

Instantiation of H

Correlation Robustness:

(H(1,®s),...,H(t,®s)} = U
s «—, {0,1}"

IXn

k-Min Entropy Correlation Robustness:

(H(1,®s),...,H(t,®s)} = U

/Xn

S is taken from a source A with min entropy k

Performance

Empirical evaluation

Empirical evaluation

e Benchmark: 223=8M OTs

Empirical evaluation

e Benchmark: 223=8M OTs

* Local scenario (LAN):

Two servers in the same room
(network with low latency and high bandwidth)

12 sec (190 base OTs, 380 checks)

Empirical evaluation

e Benchmark: 223=8M OTs

* Local scenario (LAN):

Two servers in the same room
(network with low latency and high bandwidth)

12 sec (190 base OTs, 380 checks)

 Cloud scenario (WAN):
Two servers in different continents
(network with high latency and low bandwidth)

64 sec (174 base OTs, 696 checks)

Comparison - LAN Setting

1000

F[INNOB12] (active) —— {123 s} 5 /.
| This work (active) ------- {87 s} g
' This work (covert) ~--- {80 s}
[IKNPO3] (passive) } '
100 o = <
@
® o
£ 10¢ ;
c o
2
1 _ ;

0.1 ii_i_ii_ii_i_i_LLi_LLLLi_i_,
510 5T 512,513 514 515,516 517 518 519 520 52T 522 523 124 125 526 27 528 529
Number of OTs

Comparison - WAN setting

1000 - | | | ! | | | | | | | | | | |

-[INNOB12] (active) —— {840 s} | | | | | | S

' This work (active) ------ {465} : S

 This work (covert) ---- {369s} | | S ey

[IKNPO3] (passive) A

100F | |
®
) i

£ 10} 3
- [5
- I :
o [:

1 = ! l E

0.1 A T S S S SN SO SN S N S S S S S
510 511 512 513 514 515 516 517 518 519 520 52T 522 523 524 525 526
Number of OTs

Conclusions

e More efficient OT extension - more efficient
protocols for MPC

* The most efficient OT extension protocol, yet

 Combination of theory and practice

Conclusions

e More efficient OT extension - more efficient
porotocols for MPC

* The most efficient OT extension protocol, yet

 Combination of theory and practice

Thank You!

