More Efficient
ODblivious Transfer Extensions
with Security for Malicious

Adversaries

Gilad Asharov
Yehuda Lindell
Thomas Schneider
Michael Zohner

EUROCRYPT 2015




This lalk



This lalk

 Oblivious Transfer Extension



This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)



This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)



This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)
e Claudio’s talk (Tuesday)




This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)
e Claudio’s talk (Tuesday)
* This talk (Thursday)




This lalk

 Oblivious Transfer Extension

 Benny’s talk (Sunday)
* Yehuda’s talk (Monday)
e Claudio’s talk (Tuesday)
* This talk (Thursday)

e (Concrete efficiency in the malicious model

* Most efficient OT extension protocol, yet
* Optimized protocol, proofs and implementation



1-out-of-2 Oblivious Transfer

Sender Receiver

oT | .

 INPUT: Sender holds two strings (xo,x1), Receiver holds r

 OUTPUT: Sender learns nothing, Receiver learns x,
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Oblivious Transfer and
Secure Computation

 OT is a basic ingredient in (amost) all protocols for
secure computation

 Protocols based on Garbled Circuits (Yao):
1 OT per input
[LPO7,LPS08,PSSW09,KSS12,FN13,5S513,LR14,HKK+14,FJN14]

* Protocols based on GMW:
1+ OT per AND-gate
TinyOT [NNOB12,L.0S14] MiniMac protocols [DZ13,DLT14]
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How Many OT's”

e The AES circuit: Uses 219 OTs

(when evaluated with TinyOT)

* The PSI circuit: (or b=32,n=21) Uses 230 OTs
(when evaluated with TinyOT)

e Using [PVWO08]: 350 OTs per second

e 1M (220) OTs > 45 minutes(!)

4 //»7 v

e 1G (239) OTs > 45000 minutes > 1 month...

CosTA
\/
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(security parameter)

(cheap) private-key crypto

Many
OTs
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OT Extension and
Related Work

Introduced in [Beaver9o]

Ishai, Kilian, Nissim, Petrank [IKNPO3]}
‘Extending Oblivious Transter Efficiently”

Optimizations semi-honest: [KK13, ALSZ13]

Optimizations malicious:
[Lar14,NNOB12,HIKNO8,Nie07]



Contents

* |KNP protocol
e Our Protocol, Security

e Performance



Extending OT Efficiently!
[TKNPO3]

1Semi-honest
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KNP - Implementation

k OTs

+
m | Many

OTs
long

messages
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In Practice ALS5/13)

k

I Few Short

OTs
5 _

Implementation: see SCAPI

m| Many
OTs
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When Moving to Malicious

* The protocol is already secure with respect to malicious
Sender!

* Malicious may send inconsistent r with each u
message

e Learns bits of s

REMEMBER: if learns s,
it gets ALL Sender’s inputs!

* We add consistency check of r
e Sender checks that uses the same r with each u
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Base OTs
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 Our goal: in case r'# 1, catch the adversary
u=t @t ®r'
u =t et dr’

» But sends (i7.h" k7 ,h7) such that:

h0,0 :H(t?@t(])) hl’l :H(u’@u’@ti@ti)
hO,l :H(t?®ti) hl’o :H(ul@uj@t}®t?)

BT =Hu @u ot &) X if s=0 Passes

l,]

' T=H(t ©t)) J/ it si=1 Gets caught
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Does it really work™

o |[fr # rthen:
If the verification passes for (si,s/) -
the verification fails for (1-si, 1-s/)

* |t can succeed only with 2-out-of-4 possibilities of (si,s/)
With probability 1/2, we catch the adversary!

checks that every pair (i,)):
h T I=Hu' @u &t ®t))

l,]

h' 7 ?=H(t; @t)
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Consistency Check

 Bob can still learn t bits of s, with probability 2
* By guessing s, can pass verification of (i,]) for all |

e Solution - increase the size of s

2 - L2 K

/
* With probability 1—2-», still k bits of s are
completely hidden! Y =x"®H(q,)

y}zx}@H(qur)s)
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Some concrete numbers...

* Jypical security parameter: 1283
* lypical statistical sec. parameter: 40

* QOverall number of base OTs: 168
(Reminder: [NNOB12] uses 8/3k = 341 base OTs)

 Checks: all pairs ~ 14028

 \We have to reduce the number of checks!
(at the expense of increasing the number of base-OTs)
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How Many Checks”

The needed property:
For any “large enough” set of bad vertices
(> p=40 ), there exists p-matching with the good vertices

« We show that random d-regular graph satisfies the
above (for appropriate set of parameters)

e For k=128, p=40
168 base OTs, complete graph: 14028
e 190 base OTs, d=2, checks: 380
e 177 base OTs, d=3, checks: 531

o Covert: probability 1/2, just random 7 checks!
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Instantiation of H

Correlation Robustness:

(H(1,®s),...,H(t,®s)} = U
s «—, {0,1}"

IXn

k-Min Entropy Correlation Robustness:

(H(1,®s),...,H(t,®s)} = U

/Xn

S is taken from a source A with min entropy k



Performance



Empirical evaluation



Empirical evaluation

e Benchmark: 223=8M OTs



Empirical evaluation

e Benchmark: 223=8M OTs

* Local scenario (LAN):

Two servers in the same room
(network with low latency and high bandwidth)

12 sec (190 base OTs, 380 checks)




Empirical evaluation

e Benchmark: 223=8M OTs

* Local scenario (LAN):

Two servers in the same room
(network with low latency and high bandwidth)

12 sec (190 base OTs, 380 checks)

 Cloud scenario (WAN):
Two servers in different continents
(network with high latency and low bandwidth)

64 sec (174 base OTs, 696 checks)
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Comparison - WAN setting
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* The most efficient OT extension protocol, yet
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Thank You!



