
More Efficient  
Oblivious Transfer Extensions

with Security for Malicious
Adversaries

Gilad Asharov
Yehuda Lindell

Thomas Schneider
Michael Zohner

EUROCRYPT 2015

This Talk

This Talk
• Oblivious Transfer Extension

This Talk
• Oblivious Transfer Extension

• Benny’s talk (Sunday)

This Talk
• Oblivious Transfer Extension

• Benny’s talk (Sunday)
• Yehuda’s talk (Monday)

This Talk
• Oblivious Transfer Extension

• Benny’s talk (Sunday)
• Yehuda’s talk (Monday)
• Claudio’s talk (Tuesday)

This Talk
• Oblivious Transfer Extension

• Benny’s talk (Sunday)
• Yehuda’s talk (Monday)
• Claudio’s talk (Tuesday)
• This talk (Thursday)

This Talk
• Oblivious Transfer Extension

• Benny’s talk (Sunday)
• Yehuda’s talk (Monday)
• Claudio’s talk (Tuesday)
• This talk (Thursday)

• Concrete efficiency in the malicious model
• Most efficient OT extension protocol, yet
• Optimized protocol, proofs and implementation

1-out-of-2 Oblivious Transfer

• INPUT: Sender holds two strings (x0,x1), Receiver holds r

• OUTPUT: Sender learns nothing, Receiver learns xr,

ReceiverSender

Oblivious Transfer and
Secure Computation

• OT is a basic ingredient in (almost) all protocols for
secure computation

Oblivious Transfer and
Secure Computation

• OT is a basic ingredient in (almost) all protocols for
secure computation

• Protocols based on Garbled Circuits (Yao): 
1 OT per input  
[LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14]

Oblivious Transfer and
Secure Computation

• OT is a basic ingredient in (almost) all protocols for
secure computation

• Protocols based on Garbled Circuits (Yao): 
1 OT per input  
[LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14]

• Protocols based on GMW:  
1+ OT per AND-gate  
TinyOT [NNOB12,LOS14] MiniMac protocols [DZ13,DLT14]

Oblivious Transfer and
Secure Computation

How Many OT’s?

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

• Using [PVW08]: 350 OTs per second

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

• Using [PVW08]: 350 OTs per second

• 1M (220) OTs > 45 minutes(!)

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

• Using [PVW08]: 350 OTs per second

• 1M (220) OTs > 45 minutes(!)

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

• Using [PVW08]: 350 OTs per second

• 1M (220) OTs > 45 minutes(!)

• 1G (230) OTs > 45000 minutes > 1 month…

OT Extensions

+
(cheap) private-key crypto

Small amount of base OTs
(security parameter)

Many
OTs

OT Extensions

+
(cheap) private-key crypto

Small amount of base OTs
(security parameter)

OT Extension and
Related Work

OT Extension and
Related Work

• Introduced in [Beaver96]

• Ishai, Kilian, Nissim, Petrank [IKNP03]  
“Extending Oblivious Transfer Efficiently”

OT Extension and
Related Work

• Introduced in [Beaver96]

• Ishai, Kilian, Nissim, Petrank [IKNP03]  
“Extending Oblivious Transfer Efficiently”

• Optimizations semi-honest: [KK13, ALSZ13]

• Optimizations malicious:
[Lar14,NNOB12,HIKN08,Nie07]

Contents

• IKNP protocol

• Our Protocol, Security

• Performance

Extending OT Efficiently1  
[IKNP03]

1Semi-honest

IKNP - Idea

m Many  
OTs

expensive

IKNP - Idea

Few OTs of long
stringsk

m

IKNP - Idea

Few OTs of long
stringsk

m

m Many  
OTs

IKNP - Implementation

Few Short 
OTs k

k

m Many  
OTs

m

long  
messages

+

k

In Practice [ALSZ13]

Few Short 
OTs k

k

+
long  

messages

Many  
OTs

m

Implementation: see SCAPI

IKNP
{x j

0, x j
1} j=1

m r = (r1,...,rm)

IKNP
{x j

0, x j
1} j=1

m r = (r1,...,rm)

Base OTs {ki
0,ki

1}i=1
ℓ

s = (s1,..., sℓ)
k1
s1 ,...,kℓ

sℓ

ui = G(ki
0)⊕G(ki

1)⊕ r

IKNP
{x j

0, x j
1} j=1

m r = (r1,...,rm)

u1,...,uℓ
TQ *

Base OTs {ki
0,ki

1}i=1
ℓ

s = (s1,..., sℓ)
k1
s1 ,...,kℓ

sℓ

ui = G(ki
0)⊕G(ki

1)⊕ r

IKNP
{x j

0, x j
1} j=1

m r = (r1,...,rm)

u1,...,uℓ
TQ *

yj
0, yj

1yj
0 = x j

0 ⊕H (q j)

yj
1 = x j

1⊕H (q j ⊕ s)*

Base OTs {ki
0,ki

1}i=1
ℓ

s = (s1,..., sℓ)
k1
s1 ,...,kℓ

sℓ

When Moving to Malicious

• The protocol is already secure with respect to malicious
Sender!

When Moving to Malicious

• The protocol is already secure with respect to malicious
Sender!

• Malicious Receiver may send inconsistent r with each ui
message

When Moving to Malicious

• The protocol is already secure with respect to malicious
Sender!

• Malicious Receiver may send inconsistent r with each ui
message
• Learns bits of s

When Moving to Malicious

• The protocol is already secure with respect to malicious
Sender!

• Malicious Receiver may send inconsistent r with each ui
message
• Learns bits of s

REMEMBER: if Receiver learns s,  
it gets ALL Sender’s inputs!

When Moving to Malicious

• The protocol is already secure with respect to malicious
Sender!

• Malicious Receiver may send inconsistent r with each ui
message
• Learns bits of s

REMEMBER: if Receiver learns s,  
it gets ALL Sender’s inputs!

• We add consistency check of r

When Moving to Malicious

• The protocol is already secure with respect to malicious
Sender!

• Malicious Receiver may send inconsistent r with each ui
message
• Learns bits of s

REMEMBER: if Receiver learns s,  
it gets ALL Sender’s inputs!

• We add consistency check of r
• Sender checks that Receiver uses the same r with each ui

When Moving to Malicious

The Protocol{x j
0, x j

1} j=1
m r = (r1,...,rm)

Base OTs

T
ui = G(ki

0)⊕G(ki
1)⊕ ru1,...,uℓ

Q

yj
0, yj

1yj
0 = x j

0 ⊕H (q j)

yj
1 = x j

1⊕H (q j ⊕ s)

The Protocol{x j
0, x j

1} j=1
m r = (r1,...,rm)

Base OTs

T
ui = G(ki

0)⊕G(ki
1)⊕ ru1,...,uℓ

Q

yj
0, yj

1yj
0 = x j

0 ⊕H (q j)

yj
1 = x j

1⊕H (q j ⊕ s)

Consistency Check of r

The Consistency
Checks

Consistency Check
ui = G(ki

0)⊕G(ki
1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check
ui = t i

0 ⊕ t i
1⊕ r

u j = t j
0 ⊕ t j

1 ⊕ r
ui = G(ki

0)⊕G(ki
1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check
ui = t i

0 ⊕ t i
1⊕ r

u j = t j
0 ⊕ t j

1 ⊕ r
⊕ui = G(ki

0)⊕G(ki
1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check

ui ⊕u j = t i
0 ⊕ t i

1⊕ t j
0 ⊕ t j

1

ui = t i
0 ⊕ t i

1⊕ r

u j = t j
0 ⊕ t j

1 ⊕ r
⊕ui = G(ki

0)⊕G(ki
1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check

ui ⊕u j = t i
0 ⊕ t i

1⊕ t j
0 ⊕ t j

1

ui = t i
0 ⊕ t i

1⊕ r

u j = t j
0 ⊕ t j

1 ⊕ r
⊕

ui ⊕u j ⊕ t i
si ⊕ t j

s j ? = t i
1−si ⊕ t j

1−s j

ui = G(ki
0)⊕G(ki

1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check

ui ⊕u j = t i
0 ⊕ t i

1⊕ t j
0 ⊕ t j

1

ui = t i
0 ⊕ t i

1⊕ r

u j = t j
0 ⊕ t j

1 ⊕ r
⊕

ui ⊕u j ⊕ t i
si ⊕ t j

s j ? = t i
1−si ⊕ t j

1−s j

H(ui ⊕u j ⊕ t i
si ⊕ t j

s j) ? = H(t i
1−si ⊕ t j

1−s j)

ui = G(ki
0)⊕G(ki

1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check
hi, j
0,0 = H (t i

0 ⊕ t j
0)

hi, j
0,1 = H (t i

0 ⊕ t j
1)

hi, j
1,0 = H (t i

1⊕ t j
0)

hi, j
1,1 = H (t i

1⊕ t j
1)

For every pair
(i,j)

Consistency Check
hi, j
0,0 = H (t i

0 ⊕ t j
0)

hi, j
0,1 = H (t i

0 ⊕ t j
1)

hi, j
1,0 = H (t i

1⊕ t j
0)

hi, j
1,1 = H (t i

1⊕ t j
1)

For every pair
(i,j)

u1,...,uℓ {hi, j0,0 ,hi, j0,1,hi, j1,0 ,hi, j1,1}i, j

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Consistency Check
hi, j
0,0 = H (t i

0 ⊕ t j
0)

hi, j
0,1 = H (t i

0 ⊕ t j
1)

hi, j
1,0 = H (t i

1⊕ t j
0)

hi, j
1,1 = H (t i

1⊕ t j
1)

For every pair
(i,j)

u1,...,uℓ {hi, j0,0 ,hi, j0,1,hi, j1,0 ,hi, j1,1}i, j

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

• Our goal: in case ri rj , catch the adversary  
 

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

≠

• Our goal: in case ri rj , catch the adversary  
 

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

ui = t i
0 ⊕ t i

1⊕ ri

u j = t j
0 ⊕ t j

1 ⊕ r j

≠

• Our goal: in case ri rj , catch the adversary  
 

• But Receiver sends such that:

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

ui = t i
0 ⊕ t i

1⊕ ri

u j = t j
0 ⊕ t j

1 ⊕ r j

(hi, j
0,0 ,hi, j

0,1,hi, j
1,0 ,hi, j

1,1)

h0,0 = H (t i
0 ⊕ t j

0) h1,1 = H (ui ⊕u j ⊕ t j
1 ⊕ t j

1)

h0,1 = H (t i
0 ⊕ t j

1) h1,0 = H (ui ⊕u j ⊕ t i
1 ⊕ t j

0)

≠

• Our goal: in case ri rj , catch the adversary  
 

• But Receiver sends such that:

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

ui = t i
0 ⊕ t i

1⊕ ri

u j = t j
0 ⊕ t j

1 ⊕ r j

(hi, j
0,0 ,hi, j

0,1,hi, j
1,0 ,hi, j

1,1)

h0,0 = H (t i
0 ⊕ t j

0) h1,1 = H (ui ⊕u j ⊕ t j
1 ⊕ t j

1)

h0,1 = H (t i
0 ⊕ t j

1) h1,0 = H (ui ⊕u j ⊕ t i
1 ⊕ t j

0)

≠

if si=0 Passes  
 if si=1 Gets caught

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Does it really work?

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Does it really work?
• If ri rj then:≠

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Does it really work?
• If ri rj then:

If the verification passes for (si,sj) - 
 the verification fails for (1-si, 1-sj)  

≠

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Does it really work?
• If ri rj then:

If the verification passes for (si,sj) - 
 the verification fails for (1-si, 1-sj)  

• It can succeed only with 2-out-of-4 possibilities of (si,sj)  
With probability 1/2, we catch the adversary!

≠

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Consistency Check

Consistency Check
• Bob can still learn t bits of s, with probability 2-t

• By guessing si, can pass verification of (i,j) for all j

Consistency Check
• Bob can still learn t bits of s, with probability 2-t

• By guessing si, can pass verification of (i,j) for all j
• Solution - increase the size of s

k k ρ
ℓ

• With probability , still k bits of s are
completely hidden! yj

0 = x j
0 ⊕H (q j)

yj
1 = x j

1⊕H (q j ⊕ s)

Consistency Check
• Bob can still learn t bits of s, with probability 2-t

• By guessing si, can pass verification of (i,j) for all j
• Solution - increase the size of s

1− 2−ρ

k k ρ
ℓ

Some concrete numbers…

Some concrete numbers…

• Typical security parameter: 128
• Typical statistical sec. parameter: 40
• Overall number of base OTs: 168  

(Reminder: [NNOB12] uses 8/3k = 341 base OTs)

Some concrete numbers…

• Typical security parameter: 128
• Typical statistical sec. parameter: 40
• Overall number of base OTs: 168  

(Reminder: [NNOB12] uses 8/3k = 341 base OTs)
• Checks: all pairs ~ 14028
• We have to reduce the number of checks!  

(at the expense of increasing the number of base-OTs)

How many checks do we
really need?

r1
r12

r2

r3

r4

r5
r6

r7

r8

r9

r10

r11

How many checks do we
really need?

r1
r12

r2

r3

r4

r5
r6

r7

r8

r9

r10

r11

How many checks do we
really need?

r1
r

r2

r

r4

r
r

r

r8

r

r

r

How many checks do we
really need?

r
r

r

r

r
r

r7

r

r

r10

r

r3

How many checks do we
really need?

r
r

r

r

r
r

r7

r

r

r10

r

r3

How many checks do we
really need?

r
r

r

r

r
r

r7

r

r

r10

r

r3

r
r

r

r

r
r

r7

r

r

r10

r

r3

The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

How many checks do we
really need?

r1
r12

r2

r3

r4

r5
r6

r7

r8

r9

r10

r11

How many checks do we
really need?

r1
r

r2

r

r4

r
r

r

r

r

r

r

How many checks do we
really need?

r1
r

r2

r

r4

r
r

r

r

r

r

r

How Many Checks?
The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

How Many Checks?

• We show that random d-regular graph satisfies the
above (for appropriate set of parameters)

The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

How Many Checks?

• We show that random d-regular graph satisfies the
above (for appropriate set of parameters)
• For k=128, p=40

• 168 base OTs, complete graph: 14028
• 190 base OTs, d=2, checks: 380
• 177 base OTs, d=3, checks: 531

The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

How Many Checks?

• We show that random d-regular graph satisfies the
above (for appropriate set of parameters)
• For k=128, p=40

• 168 base OTs, complete graph: 14028
• 190 base OTs, d=2, checks: 380
• 177 base OTs, d=3, checks: 531

• Covert: probability 1/2, just random 7 checks!

The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

Instantiation of H

{H (t1 ⊕ s),...,H (tℓ ⊕ s)} =
c

 Uℓ×n
s←R {0,1}

k

Correlation Robustness:

Instantiation of H

{H (t1 ⊕ s),...,H (tℓ ⊕ s)} =
c

 Uℓ×n
s←R {0,1}

k

Correlation Robustness:

{H (t1 ⊕ s),...,H (tℓ ⊕ s)} =
c

 Uℓ×n
s

k-Min Entropy Correlation Robustness:

is taken from a source with min entropy kχ

Performance

Empirical Evaluation

Empirical Evaluation
• Benchmark: 223=8M OTs

Empirical Evaluation
• Benchmark: 223=8M OTs

• Local scenario (LAN):  
Two servers in the same room  
(network with low latency and high bandwidth) 
12 sec (190 base OTs, 380 checks)

Empirical Evaluation
• Benchmark: 223=8M OTs

• Local scenario (LAN):  
Two servers in the same room  
(network with low latency and high bandwidth) 
12 sec (190 base OTs, 380 checks)

• Cloud scenario (WAN):  
Two servers in different continents  
(network with high latency and low bandwidth)  
64 sec (174 base OTs, 696 checks)

Comparison - LAN Setting

Comparison - WAN setting

Conclusions

• More efficient OT extension - more efficient
protocols for MPC

• The most efficient OT extension protocol, yet

• Combination of theory and practice

Conclusions

• More efficient OT extension - more efficient
protocols for MPC

• The most efficient OT extension protocol, yet

• Combination of theory and practice

Thank You!

