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This Talk
• Oblivious Transfer Extension

• Benny’s talk (Sunday)
• Yehuda’s talk (Monday)
• Claudio’s talk (Tuesday)
• This talk (Thursday)

• Concrete efficiency in the malicious model
• Most efficient OT extension protocol, yet
• Optimized protocol, proofs and implementation 



1-out-of-2 Oblivious Transfer

• INPUT: Sender holds two strings (x0,x1), Receiver holds r  

• OUTPUT: Sender learns nothing, Receiver learns xr, 

ReceiverSender
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• OT is a basic ingredient in (almost) all protocols for 
secure computation

• Protocols based on Garbled Circuits (Yao): 
1 OT per input  
[LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14]

• Protocols based on GMW:  
1+ OT per AND-gate  
TinyOT [NNOB12,LOS14] MiniMac protocols [DZ13,DLT14]

Oblivious Transfer and 
Secure Computation
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How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

• Using [PVW08]: 350 OTs per second

• 1M (220) OTs > 45 minutes(!)  

• 1G (230) OTs > 45000 minutes > 1 month…
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Related Work

• Introduced in [Beaver96]

• Ishai, Kilian, Nissim, Petrank [IKNP03]  
“Extending Oblivious Transfer Efficiently”

• Optimizations semi-honest: [KK13, ALSZ13]

• Optimizations malicious: 
[Lar14,NNOB12,HIKN08,Nie07]



Contents

• IKNP protocol 

• Our Protocol, Security 

• Performance



Extending OT Efficiently1  
[IKNP03]

1Semi-honest
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IKNP - Implementation

Few Short 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k
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In Practice [ALSZ13]

Few Short 
OTs k

k

+
long  

messages

Many  
OTs

m

Implementation: see SCAPI
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• The protocol is already secure with respect to malicious 
Sender!

• Malicious Receiver may send inconsistent r with each ui 
message
• Learns bits of s

REMEMBER: if Receiver learns s,  
it gets ALL Sender’s inputs!

• We add consistency check of r
• Sender checks that Receiver uses the same r with each ui

When Moving to Malicious
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Does it really work?
• If ri     rj then:

If the verification passes for (si,sj) - 
   the verification fails for (1-si, 1-sj)  

• It can succeed only with 2-out-of-4 possibilities of (si,sj)  
With probability 1/2, we catch the adversary!

≠

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j ) 

hi, j
si ,s j ? = H (t i
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Alice checks that every pair (i,j):
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• With probability           , still k bits of s are 
completely hidden! yj

0 = x j
0 ⊕H (q j )

yj
1 = x j

1⊕H (q j ⊕ s)

Consistency Check
• Bob can still learn t bits of s, with probability 2-t 

• By guessing si, can pass verification of (i,j) for all j
• Solution - increase the size of s

1− 2−ρ

k k ρ
ℓ
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Some concrete numbers…

• Typical security parameter: 128
• Typical statistical sec. parameter: 40
• Overall number of base OTs: 168  

(Reminder: [NNOB12] uses 8/3k = 341 base OTs)
• Checks: all pairs ~ 14028
• We have to reduce the number of checks!  

(at the expense of increasing the number of base-OTs)
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How Many Checks?

• We show that random d-regular graph satisfies the 
above (for appropriate set of parameters)
• For k=128, p=40

• 168 base OTs, complete graph: 14028
• 190 base OTs, d=2, checks: 380
• 177 base OTs, d=3,  checks: 531

• Covert: probability 1/2, just random 7 checks!

The needed property:  
For any “large enough" set of bad vertices  
(> p=40 ), there exists p-matching with the good vertices
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{H (t1 ⊕ s),...,H (tℓ ⊕ s)} =
c

 Uℓ×n
s←R {0,1}

k

Correlation Robustness:

{H (t1 ⊕ s),...,H (tℓ ⊕ s)} =
c

 Uℓ×n
s

k-Min Entropy Correlation Robustness:

is taken from a source    with min entropy kχ
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Empirical Evaluation
• Benchmark: 223=8M OTs

• Local scenario (LAN):  
Two servers in the same room  
(network with low latency and high bandwidth) 
12 sec (190 base OTs, 380 checks)

• Cloud scenario (WAN):  
Two servers in different continents  
(network with high latency and low bandwidth)  
64 sec (174 base OTs, 696 checks)
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• The most efficient OT extension protocol, yet 

• Combination of theory and practice 

Thank You!


