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Commitment Schemes 



Universal Composability 

• Protocols remain secure in parallel concurrent 
executions and arbitrary composition. 
 
 
 
 
 
 

• Commitments require setup assumptions [CF01]. 

• Commitments are complete [CLOS02]. 

 



Extractability, Simulator can open 
if Committer is corrupt 



Equivocability: Simulator can change its 
mind if Reciever is corrupt. 



Related Works 

• DDH based fast UC commitments: static security 
[Lindell11,BCPV13], adaptive security [DN02, 
DG03]. 
– Use a Common Reference String (CRS). 
– High asymptotic communication and computational 

complexity. 

• UC commitments (with optimal rate): [GIKW14] 
(see also [DDGN14]).  
– Use Oblivious Transfer as a setup assumption. 
– Require PRGs and Codes that are also good Linear 

Secret Sharing schemes. 



What do we do in theory? 

• Optimal communication 
• Additively Homomorphic 
• Optimal computation 
• Can use any good code, no need for it to be both 

a good code and a good secret sharing scheme.  
 

How do we do it? 



What do we do in practice? 

• Online Phase: 

 

 

      2 Encodings: 1.5 μs 

 

  [Lindell11,BCPV13] -> 22 exponentiations: 8250 μs 

 

• Practical scheme runs 5500 times faster 

 

 

 



Practical Trade Offs… 

• No additive homomorphism. 

 

 

 

• Then setup phase cost: 
       796 OTs 

  8756 exponentiations using [PVW08] 

  398 [Lindell11,BCPV13] commitments 



Building Blocks 

• Error correcting codes: 

– Linear-time encodable codes 
[GI01,GI02,GI03,GI05,Spi96,DI14]. 

• UC Oblivious Transfer: 

– Any UC Oblivious Transfer protocol, e.g. [PVW08] 

• Pseudorandom Generator: 

– Linear-time PRG, e.g. [VZ12]  

 



Oblivious Transfer 



Encoding Scheme 
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General Framework 

• Setup phase:  
– Independent from the inputs 

– Constant number of OTs for unbounded number of 
commitments. 

– Constant communication complexity. 

• Commitment/Open Phases: 
– Linear communication complexity (in size of string 

committed to). 

– Only require a PRG and the encoding scheme. 

– Non interactive. 



Setup Phase 

Random 
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Random 
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Sender Receiver 



Commit Phase (Sender) j’th com. 
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Once and for all, 
Generate one-time pads: 

Encode messages and encrypt with single entries of 
one-time pads: 

M 



Open Phase (Receiver) 
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Check known shares: 



Open Phase (Receiver) 
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Additive Homomorphism 

• The encoding scheme can be seen as a LSSS. 

• Use the encoding scheme to build a VSS 
scheme using techniques of [DDGN14] and 
then use MPC in the head. 

• For this to work, we need to additively secret 
share each code-word entry into 3 additive 
shares. 

• Made MPC in the head work for a non-
threshold multiparty protocol. 



Asymptotic Efficiency 

m=k+n(t-1) 

• Computational complexity: O(k) 

• Communication complexity: O(k) 

• Round optimal (non interactive) 

 



Concrete Efficiency 

• Underlying ECC: BCH [796,256,>=121] 

• On average, encoding takes 0.75 μs and exponentiations on 
256 bits field take 375 μs. 

 
 
 
 

 

 

 

• Our basic scheme is faster than previous schemes even in the 
ROM. 



Open Problems 

• Can we get optimal rate? 

• Can we get additive homomorphism in this 
construction without VSS?  

• YES! Follow-up work [Nielsen et al. 15]: check 
that committer uses (almost) a code word by 
checking random linear combinations.  

• Very small overhead, natural idea but non-
trivial to prove. 



Usage with garbling schemes 

• Several schemes seem to need efficient 
homomorphic commitments 

• No need for UC OT in set-up phase in this 
context, can use the OT’s already available. 

• Seems to be the garbler’s best friend  



https://eprint.iacr.org/2014/829 


