Additively Homomorphic UC Commitments
With Optimal Amortized Overhead

lgnacio Cascudo, lvan Damgard,
Bernardo David, Irene Giacomelli,
Jesper Buus Nielsen, Roberto Trifiletti

Aarhus University

Structure

Introduction

. A general framework

. Achieving additive homomorphism
Efficiency

Follow-up work and Open Questions

Commitment Schemes

Universal Composability

* Protocols remain secure in parallel concurrent
executions and arbitrary composition.

* Commitments require setup assumptions [CFO1].
e Commitments are complete [CLOS02].

Extractability, Simulator can open
if Committer is corrupt

Commit

Equivocability: Simulator can change its
mind if Reciever is corrupt.

ALICE BOB

Related Works

 DDH based fast UC commitments: static security
Lindell11,BCPV13], adaptive security [DNO2,
DGO3].

— Use a Common Reference String (CRS).
— High asymptotic communication and computational
complexity.

 UC commitments (with optimal rate): [GIKW14]
(see also [DDGN14])).

— Use Oblivious Transfer as a setup assumption.

— Require PRGs and Codes that are also good Linear
Secret Sharing schemes.

Optimal communication
Additively Homomorphic
Optimal computation ﬂ%

Can use any good code, no need for it to be bo
a good code and a good secret sharing scheme.

A a |
ﬂ/// N

How do we do it?

ECC + PRG + OT

What do we do in practice?

* Online Phase:
BCH [796,256,>=121] + PRG

2 Encodings: 1.5 us
[Lindell11,BCPV13] -> 22 exponentiations: 8250 pus
|l

 Practical scheme runs 5500 times faster

Practical Trade Offs...

* No additive homomorphism.

 Then setup phase cost:
796 OTs

8756 exponentiations using [PVWO0S8]
398 [Lindell11,BCPV13] commitments

Building Blocks

* Error correcting codes:

— Linear-time encodable codes
[G101,Gl102,G103,GI05,Spi96,DI14].

* UC Oblivious Transfer:
— Any UC Oblivious Transfer protocol, e.g. [PVWO08]

e Pseudorandom Generator:
— Linear-time PRG, e.g. [VZ12]

Oblivious Transfer

T T o
E Juhs 0,1} ; @
"

\"‘
Q Alice . ; Bob
1-2 or (Cat)
R

Ouzput

Does not learn ¢ Learns either s, OR s, ‘

Encoding Scheme

[
OBl
ECC

Codeword: Randomness:

General Framework

e Setup phase:
— Independent from the inputs

— Constant number of OTs for unbounded number of
commitments.

— Constant communication complexity.

 Commitment/Open Phases:

— Linear communication complexity (in size of string
committed to).

— Only require a PRG and the encoding scheme.
— Non interactive.

Setup Phase

Sender Receiver

Random Random Received
Seeds: Choices: Seeds:

1-2 0T

1-2 0T

1-2 0T

00 6666
Ul

Commit Phase (Sender) j'th com.

Once and for all,

Generate one-time pads:

]
O-E-
]
.
]

&k
-l

Encode messages and encrypt with single entries of
one-time pads:

e Qpen Phase (Receiver)

Message:

Once and for all, Check known shares:
generate one-time pads:

——]
eamd PRG Eamd Piici
_ _
—> IHCH —> I
(]

amm—]
—> I:)Zn-1+cn

Open Phase (Receiver)

Reconstruct ECC codeword: Encode M and check that
codewords match:

Additive Homomorphism

The encoding scheme can be seen as a LSSS.

Use the encoding scheme to build a VSS
scheme using techniques of [DDGN14] and
then use MPC in the head.

For this to work, we need to additively secret
share each code-word entry into 3 additive
shares.

Made MPC in the head work for a non-
threshold multiparty protocol.

Asymptotic Efficiency

 Computational complexity: O(k)

 Communication complexity: O(k)

 Round optimal (non interactive)

Communication :
. Round Computational
Scheme Complexity Complexity Complexity
(in field elements)
Commit Open Total Commit Open Commit Open Total
Flg 4 2mnt 2mnt dn(t—1) dn(t—1)
(homomorphic)| » +k m =+ k+m 1 1 — + 2 Enc. 1 Enc. — + 3 Enc.

Flg°. 2 nt m m + nt 1 1 1 Enc. 1 Enc. 2 Enc.
(basic)

m=k+n(t-1)

Concrete Efficiency

* Underlying ECC: BCH [796,256,>=121]

* On average, encoding takes 0.75 us and exponentiations on
256 bits field take 375 ps.

Communication Round Computational
Scheme Complexity (in bits) | Complexity Complexity
Commit Open Total |Commit Open Commit Open Total
[BCPV13] (Fig. 6) 1024 2048 3072 1 5 |10Exp. 12 Exp. 22 Exp.
[Linl1] (Protocol 2) | 1024 2560 3584 1 3 | 5Exp. 18 Exp. 231 Exp.
Fig. 4 34733 1848 36580 1 1 [27Enc. 1Enc. 28 Enc.
(homomorphic, t = 3)
Fig. 2
. 1592 1052 2644 1 1 1 Enc. 1Enc. 2Enc.
(basic, t = 2)

* Qur basic scheme is faster than previous schemes even in the

ROM.

Open Problems

Can we get optimal rate?

Can we get additive homomorphism in this
construction without VSS?

YES! Follow-up work [Nielsen et al. 15]: check
that committer uses (almost) a code word by
checking random linear combinations.

Very small overhead, natural idea but non-
trivial to prove.

Usage with garbling schemes

e Several schemes seem to need efficient
homomorphic commitments

* No need for UC OT in set-up phase in this
context, can use the OT’s already available.

* Seems to be the garbler’s best friend ©

THANK YOU!

READ THE FULL PAPER:

https://eprint.iacr.org/2014/829

