
Additively Homomorphic UC Commitments
With Optimal Amortized Overhead

Ignacio Cascudo, Ivan Damgård,

Bernardo David, Irene Giacomelli,
Jesper Buus Nielsen, Roberto Trifiletti

Aarhus University

Structure

1. Introduction

2. A general framework

3. Achieving additive homomorphism

4. Efficiency

5. Follow-up work and Open Questions

Commitment Schemes

Universal Composability

• Protocols remain secure in parallel concurrent
executions and arbitrary composition.

• Commitments require setup assumptions [CF01].

• Commitments are complete [CLOS02].

Extractability, Simulator can open
if Committer is corrupt

Equivocability: Simulator can change its
mind if Reciever is corrupt.

Related Works

• DDH based fast UC commitments: static security
[Lindell11,BCPV13], adaptive security [DN02,
DG03].
– Use a Common Reference String (CRS).
– High asymptotic communication and computational

complexity.

• UC commitments (with optimal rate): [GIKW14]
(see also [DDGN14]).
– Use Oblivious Transfer as a setup assumption.
– Require PRGs and Codes that are also good Linear

Secret Sharing schemes.

What do we do in theory?

• Optimal communication
• Additively Homomorphic
• Optimal computation
• Can use any good code, no need for it to be both

a good code and a good secret sharing scheme.

How do we do it?

What do we do in practice?

• Online Phase:

 2 Encodings: 1.5 μs

 [Lindell11,BCPV13] -> 22 exponentiations: 8250 μs

• Practical scheme runs 5500 times faster

Practical Trade Offs…

• No additive homomorphism.

• Then setup phase cost:
 796 OTs

 8756 exponentiations using [PVW08]

 398 [Lindell11,BCPV13] commitments

Building Blocks

• Error correcting codes:

– Linear-time encodable codes
[GI01,GI02,GI03,GI05,Spi96,DI14].

• UC Oblivious Transfer:

– Any UC Oblivious Transfer protocol, e.g. [PVW08]

• Pseudorandom Generator:

– Linear-time PRG, e.g. [VZ12]

Oblivious Transfer

Encoding Scheme

ECC

s1[1]

s2[1]

s1[2]

s2[2] …

s1[n]

s2[n]

s2[1]

s2[2] …

s2[n]

Randomness:

s1[1]

s1[2] …

s1[n]

c[1]

c[2] …

c[n]

ECC
Codeword:

ENC : M

M

General Framework

• Setup phase:
– Independent from the inputs

– Constant number of OTs for unbounded number of
commitments.

– Constant communication complexity.

• Commitment/Open Phases:
– Linear communication complexity (in size of string

committed to).

– Only require a PRG and the encoding scheme.

– Non interactive.

Setup Phase

Random
Seeds:

…

Random
Choices:

Received
Seeds:

c1

c2

cn

k1

k2

k3

k4 …

k2n-1

k2n

k1+c1

k3+c2

k2n-

1+cn

…

Sender Receiver

Commit Phase (Sender) j’th com.

ENC

s1[1]

s2[1]

s1[2]

s2[2] …

s1[n]

s2[n]

P1[j]

P2[j]

P3[j]

P4[j] …

P2n-1[j]

P2n[j]

C1

C2

C3

C4 …

C2n-1

C2n

PRG k1

k2

k3

k4

k2n-1

k2n

PRG

PRG

PRG

PRG

PRG

P1

P2

P3

P4 …

P2n-1

P2n

…

Once and for all,
Generate one-time pads:

Encode messages and encrypt with single entries of
one-time pads:

M

Open Phase (Receiver)

s1[1]

s2[1]

s1[2]

s2[2] …

s1[n]

Opening
Message:

M

PRG

PRG

PRG

P1+c1

P3+c2

P2n-1+cn

Once and for all,
generate one-time pads:

k1+c1

k3+c2

K2n-1+cn

…

s2[n]

C1

C2

C3

C4 …

Cn-1

Cn

?

s1[1]

s2[1]

s1[2]

s2[2]

s1[n]

s2[n]

…

P1+c1[j
]

P3+c2[j]

Pn-1+cn[j]

…

…

Check known shares:

Open Phase (Receiver)

s1[1]

s2[1]

s1[2]

s2[2] …

s1[n]

s2[1]

s2[2] …

s2[n]

s1[1]

s1[2] …

s1[n]

c’[1]

c’[2] …

c’[n]

Reconstruct ECC codeword: Encode M and check that
codewords match:

?

c[1]

c[2]

c[n]

s2[n]

Additive Homomorphism

• The encoding scheme can be seen as a LSSS.

• Use the encoding scheme to build a VSS
scheme using techniques of [DDGN14] and
then use MPC in the head.

• For this to work, we need to additively secret
share each code-word entry into 3 additive
shares.

• Made MPC in the head work for a non-
threshold multiparty protocol.

Asymptotic Efficiency

m=k+n(t-1)

• Computational complexity: O(k)

• Communication complexity: O(k)

• Round optimal (non interactive)

Concrete Efficiency

• Underlying ECC: BCH [796,256,>=121]

• On average, encoding takes 0.75 μs and exponentiations on
256 bits field take 375 μs.

• Our basic scheme is faster than previous schemes even in the
ROM.

Open Problems

• Can we get optimal rate?

• Can we get additive homomorphism in this
construction without VSS?

• YES! Follow-up work [Nielsen et al. 15]: check
that committer uses (almost) a code word by
checking random linear combinations.

• Very small overhead, natural idea but non-
trivial to prove.

Usage with garbling schemes

• Several schemes seem to need efficient
homomorphic commitments

• No need for UC OT in set-up phase in this
context, can use the OT’s already available.

• Seems to be the garbler’s best friend 

https://eprint.iacr.org/2014/829

