5th Bar-llan Winter School on Cryptography
Advances in Practical Multiparty Computation

“Tiny OT” — Part 3

A New (4 years old) Approach to
Practical Active-Secure
Two-Party Computation

Claudio Orlandi, Aarhus University

TinyOT authenticated bits

o [X]=((x,k,my,), (x5 kg, mg))s.t.
— mg =k, + x5 A, (symmetric for m,)
— A, Agis the same for all wires.

(Maybe adversary

— MACs, keys are k-bit strings. knows a few bits of A)

* Similarity with Oblivious Transfer
— Sender has two messages u, u,
— Receiver has a bit b and learns u,
— Set uy,=k, u,=k+4A, b=x then u,=k+xA

Recap

1. Output Gates:

2.

Exchange shares and MACs
Abort if MAC does not verify

Input Gates:

Get a random [r] from trusted dealer
r < Open(A,[r])

Alice sends Bob d=x-r,

Compute [x]=[r]+d

Recap

1. Addition Gates:

— Use linearity of representation to compute
[z]=[x]+[y]
2. Multiplication gates:
— Get arandom triple [a][b][c] with c=ab from TD.
— e <Open([a]+[x]), d & Open([b]+[y])
— Compute [z] = [c] + a[y] + b[x] - ed

b

Circuit Evaluation
(Online phase)

"

3) [z] €Mul([x],[y]):
— Get [a],[b],[c] with c=ab from trusted dealer <}:| E

— e:Open([a]+[X])
— d=0Open([b]+[y])

— Compute [z] = [c] + e[y] + d[X] - ed
ab+ (ay+xy) + (bx+xy) - (ab+ay+bx+xy)

Coming up...

* Given authenticated bits, produce
authenticated multiplication triples!

The problem

* Input: (random) [x], [v], [r], [s], ...

 Output: [z] s.t. [z=xy]

=X Ya T XpYg T XgYpt XgYp

—

How to authenticate
local product?

* Remember

\

How to authenticate
cross product?

— [X] =((xp, k,ym,), (x5 kg mpg))s.t.
— mg =k, +x3 A, (symmetric for m,)

— A, Agis the same for all wires.
— MACs, keys are k-bit strings.

Part 3:
From “Auth. Bits” to “Auth. Triples”

* Authenticated local-products (dAND)

* Authenticated cross-products (aOT)

e “LEGO” bucketing

Authenticate local products

Input: [x], [y], [r]; Alice private input: x,y

Output: [z] s.t. z=xy

First Attempt: (like Input)
—r € Open(A,[r])

— Alice sends Bob d =r + xy

— [z]=[xy]+r

Corrupted Alice, whatife#0?

Authenticate local products

A is the same for all wires.
x]=((x...m),(..,k,..))s.t. m, =k +xA
yl=((y...m,), (..k,..)) szt m, =k, +y A

z]=((z..m,)),(..,k,..))s.t m,=k,+zA
When x=0

(m, =k, m,=k) iffz=0
When x =1

(my=k +A, m+m =k +k)iffz=y

Authenticate local products

* Bob knows

U, = (k,, k,) and

U, =(k, + 4, k, +k)
* Alice knows

U, if xy =z

neither ifxy#z

* How can Alice prove she knows U, without
revealing x?

M

U, B=H(U,)+H(U,) Uo, Uy

if(x=0) A=H(U,)
else A=C+H(U,)

A =H(U,)

M

.\ Proof of 1-out-of-2 strings

U, B=H(U,)+H(U,)+e U, U,

if(x=0) A = H(U,)
else A=C+H(U)

A =H(U,) + xe

Proof of 1-out-of-2 strings

U, B=H(U,)+H(U,)+e
if(x=0) A =H(U,) Ife#0
else A=C+H(U,) w.p. % abort with probability %

w.p. % continue and Bob learns x

A H(U,) + xe

> €

ok/abort EQ ok/abort

<€ >

Combine local multiplications

° IﬂpUt: (randOm) [X]_]I [yl]) :21]1 [Xz]) [y2]l [22]

e Qutput: [a], [b], [c]

. [a] = [xq] + [x,]

. [b] =1yl

. d= Open([y1]+[y2])

. el =1[z,] + [z,] + d[x,]

A W N -

Part 3:
From “Auth. Bits” to “Auth. Triples”

* Authenticated local-products (adAND)

* Authenticated cross-products (aOT)

e “LEGO” bucketing

The problem

* Input: (random) [x], [v], [r], [s], ...

 Output: [z] s.t. [z=xy]

=X Ya T XpYg T XgYpt XgYp

—

How to authenticate
local product?

* Remember

\

How to authenticate
cross product?

— [X] =((xp, k,ym,), (x5 kg mpg))s.t.
— mg =k, +x3 A, (symmetric for m,)

— A, Agis the same for all wires.
— MACs, keys are k-bit strings.

&
Use auth. bit to do OT

e Alice knows x
* X]=((x,..,m), (.., k,.))st. m =k +xA

c,= H(k) +u,
c,=H(k+A)+u,

u=c,+Hm,) -

Y | ot | o

Authenticated cross-products

Input: [x], [y], [z], [r];
Alice has private input: x,r

Bob has private input: v, z

Output: [s]

S.1.

S=XYy+2

M
.\ Authenticated cross-products| 4

X T S=XV+Z +Z; Ve
> x]-ot |7

d=r+s

[s]=[r]+d

S=Xy+2Z

+Z,
) x]-ot |

What if e £ 0?
d=r+s+e

>

[s]=[r]+d + e

s, U

z, U,

X, r

[x]-OT

v+z, U,,,

€

d=r+s+e

If ez20
Alice learns

only one
U value
not both!

1+s+e

[s]=[r]+d +e

[s]-OT

U, U,

€

(U, U,)

S, US ytz, Uy+z
< [x]-OT e
X,r V,Z
d=r+s
>
[s]=[r]+d
U1+s Ull UO
< [S]-OT e

(U, U,)

z+e, U,

5+f(X,€), US y+Zte, Uy+z
[x]-OT [
V,Z
d=r+s+[(xe)
Leads to
o [s+/(x¢)J=[r]+d
result!
U,+e, Uyte
[S]-OT e
' A/, U + Y]
Solution: make sure J(s,€), Ugt](s,€)) Bob

that cheating leads to learns s!

aborts w.p. %

z, U

S, US ytz, Uy+z
[x]-OT [e
V,Z
d=r+s X
Step 1: e
check U, U, [s[=[rT+
w/EQ
(cheating leads Ui U,+e, Uyt+e
to aborts [s]-OT [e
W.p. %)
(Uptf(s,e), Ustf(s,e)) (Uptf(s,e), Utf(s,e))
> €
ok/abort EQ ok/abort
<€ >

S y Us ytzte, Uy+z
< [x]-OT e
X,r V,Z
d=r+s
>
[s J=[r]+d
Ui, U, U,
< [S]-OT e
(Up Uy (Up Uy
cq €
ok/abort EQ ok/abort
<€ >

o
<€

Abort if
X Im.zk +sA

[x]-OT

Step 2:
Transfer MAC
w/bit U

(cheating leads

to aborts
w.p. %)

d=r+t
>
[s]=[r]+d
1+s Ul/ UO
[s]-OT e
(Uy U;) (Up Uy)
> €
ok/abort EQ ok/abort
>

<€

s, m, U, y+z, m+m,+e U,
< [x]-OT e
Abort if
P Imgzgk +sA | 4ot
[s]=[r]+d
Ui, U,+¢, U,
< [s]-OT e
(Uy U,y (Uyte, Ugte)
cq €
ok/abort EQ ok/abort
<€ >

Combine local multiplications
° InPUt: [X]_]l [y]_]l [21]1 [S]_]I[XZ]I [yz]; [22]1 [Sz]

* Output: [a], [b], [c], [t]

. [al =[x+ [x;]

. [b] =1y,l, [c] = [z,] + [2,]
. d= Open([y1]+[y2:)
- [t] = [z4] + [z,] + dx,]

A W N -

Part 3:
From “Auth. Bits” to “Auth. Triples”

* Authenticated local-products (adAND)

* Authenticated cross-products (aOT)

 “LEGO” bucketing

Finishing Up

* We can compute local-products and cross-
products where if one party cheats

— W.p. % protocol aborts

— W.p. % protocol continues
and cheating party learns 1 bit

* |If protocol continues
=» There are at most o leaked bits (w.p. 29)
=>» Let M #multiplication gates
=>» Typically M >>0

“LEGO” bucketing

* Bucket size B, M buckets
— overhead, # of multiplications

* Total work BM, randomly assign in buckets
— #tof generated triples

* Secureif 21 “good” in each bucket
— using combiners presented before

e Stat. Sec. 27?2 with bucket size B =

o

logz N
— Larger circuits = more efficiency!

Tiny OT - Recap

* Preprocessing
— Generate authenticated bits (OT extension)

— Exploit duality authenticated bit/OT to perform
local multiplications and cross multiplications
efficiently (but with some limited leakage)

— Randomly assign in small buckets (e.g., B=4)
— Combine to get rid of leakage
* Online phase
— Use precomputed triples to evaluate any circuit.

