
5th Bar-Ilan Winter School on Cryptography
Advances in Practical Multiparty Computation

Claudio Orlandi, Aarhus University

“Tiny OT” – Part 2

A New (4 years old) Approach to
Practical Active-Secure
Two-Party Computation

2

(𝑟𝐴, 𝑟𝐵) ← 𝐷

rA
rB

x
y

f(x,y)

Tr
u

st
ed

 D
ea

le
r

3

rA
rB

O
n

lin
e

P
h

as
e

P
re

p
ro

ce
ss

in
g

3

rA
rB

x
y

f(x,y)

TinyOT authenticated bits
• [x] = ((xA,kA,mA) , (xB, kB, mB)) s.t.

– mB = kA + xB ∆A (symmetric for mA)

– ∆A, ∆B is the same for all wires.

– MACs, keys are k-bit strings.

• Very similar to Oblivious Transfer
– Sender has two messages u0,u1

– Receiver has a bit b and learns ub

– Set u0=k, u1=k+∆, b=x
then ub=k+x∆

Two probems:

• Efficiency: OT requires public key primitives,
inherently efficient

More efficient Less efficient

OTP >> SKE >> PKE >> FHE >> Obfuscation

The Crypto Toolbox

6

Weaker assumption Stronger assumption

Two probems:

• Efficiency: OT requires public key primitives,
inherently efficient

• Security: If we authenticated more than one
bit, how do we make sure Bob uses the same
value ∆?

• Two birds with one stone! Next hour:
 Active secure OT extension!

Authenticated Bits

8

OT

x (kx, kx+∆)

mx = kx + x∆

OT

y (ky, ky+∆)

my = ky + y∆

kz = kx + ky

mz =kz+z∆

“[z]=[x]+[y]”

“z=Open(B,[z])”

z = x + y

z,mz

mz = mx+ my

Authenticated Bits

9

OT

x (kx, kx+∆)

mx = kx + x∆

OT

y (ky, ky+∆+e)

my = ky + y∆ +ey

kz = kx + ky

mz =kz+z∆ +ey

“[z]=[x]+[y]”

“z=Open(B,[z])”

z,mz

z = x + y
mz = mx+ my

Bob learns y (and therefore x)!
(should only learn XOR)

Part 2: Active Secure OT Extension

• Warmup: OT properties

• Recap: Passive Secure OT Extension

• Active Secure OT Extension

OT

1-2 OT

b

xb

x0,x1

Receiver Sender

• xb = x0 + b(x0 +x1)

• xb = (1+b) x0 + b x1

OT = AND

1-2 OT

b

 ab + c

(a,a+c)

Receiver Sender

Bits

Stretching OT

Receiver Sender

1-2 OT

b

kb

k0,k1

(u0, u1)=(prg(k0)+m0), prg(k1)+m1))

mb=prg(kb)+ub

b

poly(k)-bit
strings

m0,m1

k-bit strings

Random OT = OT

ROT c,rc
r0,r1

(x0, x1)=((r0 + m0), (r1 + m1))
mb=rc + xb

b m0,m1

if b=c

Random OT = OT

ROT c,rc
r0,r1

b m0,m1

(x0, x1)= (r0+d+ m0),

 (r1+d + m1))

d = b + c

Exercise: check that it works!

mb=rc + xb

(R)OT is symmetric
Sender

bits

ROT s0,s1
b,y=sb

c, z=rc
r0,r1

c = s0 + s1

z = s0

No communication!

r0 = y

r1 = b + r0

Exercise: check that it
works

Part 2: Active Secure OT Extension

• Warmup: OT properties

• Recap: Passive Secure OT Extension

• Active Secure OT Extension

OT Extension

• OT pro(v/b)ably requires public-key primitivies

– OT extension ≈ hybrid encryption

– Start from k “real” OTs

– Turn them into poly(k) OTs using only few
symmetric primitives per OT

18

X0

X1

b

U

k

k

k

k

k

OT Extension, Pictorially

19

1-2 OTs

n

n=poly(k)

Remember:
OT stretching

Xb1,1

x0,1

x1,1

b1

Condition for OT extension

20

X0

X1

⊕

Γ
…
Γ

=

Problem for active security!

OT Extension, Pictorially

21

k

1-2 OTs

X0

b

U

k

k

k

n

n=poly(k)

Γ

OT Extension, Pictorially

U

=

X0

b

⊕

Γ

𝑏 ⊗ Γ 𝑖𝑗 = 𝑏𝑖 ⋅ Γ𝑗

OT Extension, Turn your head!

U

=

X0

⊕

V

Y
0

 ⊕ =

b Γ

∆

c

OT Extension, Pictorially

24

V

k

∆

Y
0

k

n
n=

p
o
ly

(k
)

c

n

1-2 OTs

OT Extension, Pictorially

25

k

1-2 OTs

X0

b

U

k

k

k

n

n=poly(k)

Γ

Defining Y1

26

Y
0

∆

Y
1

∆
 ∆

⊕ =

∆

OT Extension, Pictorially

27

V

k

Y
0

k

n

n=
p

o
ly

(k
)

c

n

1-2 OTs

Y
1

Y
c1

,1

Y
0

,1

Y
1

,1

c
1

Finishing Up

• Problem: (Y0, Y1) not random!

• Solution: just hash each row
– Y’0 = H(Y0)
– Y’1 = H(Y1)

• Using a correlation robust hash function H s.t.
1. {a0, …, an, H(a0+ ∆), …, H(an+ ∆)}
2. {a0, …, an, b0, …, bn} // (ai’s,bi’s random)

 are computationally indistinguishable

28

OT Extension, Pictorially

29

H
(V

)

k
’

H
(Y

1)
k’

n

n

1-2 OTs

H
(Y

0)

n=
p

o
ly

(k
)

c

Recap

0. Strech k OTs from k- to poly(k)=n-bitlong strings

1. Set each pair of messages xi
0,xi

1 s.t., xi
0 ⊕ xi

1 = Γ

2. Turn your head (S/R swap roles)

3. The bits of c=Γ are the new choice bits

4. The new messages are of the form yj
0, yj

1=yj
0⊕∆

5. Break the correlation: y’j
0=H(yj

0), y’j
1=H(yj

1)

• Not secure against active adversaries
30

Part 2: Active Secure OT Extension

• Warmup: OT properties

• Recap: Passive Secure OT Extension

• Active Secure OT Extension

Active Security

1. Set each pair of messages xi
0,xi

1 s.t., xi
0 ⊕ xi

1 = Γ

32

• How to force Bob to use same value?

• “Cut-and-choose”

– Start with ≈2k OTs

– Pair them at random (destroys half)

– Check if the same Γ was used

– abort otherwise

The Equality BOX

• Output ok if equal

• abort/reveal all if different

EQ

x

ok/abort

y

ok/abort

The Equality BOX

EQ

x

ok/abort

y

ok/abort

H(x,r)

 x,r

y

Pair and check

35

OT

b1
(x1, x1+Γ)

u1=x1+b1Γ

OT

b5
(x5, x5+Γ)

u5=x5+b5Γ

d=b1+b5

EQ

u1+u5

ok

 x1+x5+dΓ

ok

Analysis

• Ok if both honest
– 𝑢𝑖 = 𝑥𝑖 + 𝑏𝑖Γi

– 𝑢𝑖 + 𝑢𝑖 = 𝑥𝑖 + 𝑥𝑗 + 𝑏𝑖 + 𝑏𝑗 Γ if Γ𝑖 = Γ𝑗 = Γ
– Throw away OT j and keep i for later use

• Why use EQ?

– Alice needs to prove 𝑑 is correct too!

– Else: corrputed Alice sends d = 1 + 𝑏𝑖 + 𝑏𝑗…
– …learns two MACs with same key
– …learns Γ
– …protocol brekas down completely

Corrupted Bob

37

OT

b1
(x1, x1+Γ+e1)

u1=x1+b1Γ+b1e1

OT

b5
(x5, x5+Γ+e5)

u5=x5+b5Γ+b5e5

d=b1+b5

EQ

u1+u5

ok

 x1+x5+dΓ+b1e1+b5e5

ok

Three cases

• No error: 𝑒𝑖 = 𝑒𝑗 = 0

– Bob always pass the check and learns nothing 

• One error: 𝑒𝑖 ≠ 0, 𝑒𝑗 = 0

– Bob pass the test if guess 𝑏𝑖 correctly

– 50% abort, 50% Bob learns 𝑏𝑖 

• Canceling errors: 𝑒𝑖 = 𝑒𝑗 ≠ 0

– Bob always pass the test

– Can be simulated by leaking bit 𝑏𝑖 

For simplicity
∀ 𝑖 𝑒𝑖 ∈ {0, 𝑒∗}

Simulating 

39

OT

b1
(x1, x1+Γ+e)

u1=x1+b1Γ

OT

b5
(x5, x5+Γ+e)

u5=x5+b5Γ

d=b1+b5

EQ

u1+u5

ok

 x1+x5+dΓ+de

ok

Simulating 

40

OT

b1
(x’1, x’1+Γ)

u1=x1+b1Γ

OT

b5
(x’5, x’5+Γ)

u5=x5+b5Γ

d=b1+b5

EQ

u1+u5

ok

 x’1+x’5+dΓ

ok

Where x’i = xi + bie

Three cases

• No error: 𝑒𝑖 = 𝑒𝑗 = 0

– Bob always pass the check and learns nothing 

• One error: 𝑒𝑖 ≠ 0, 𝑒𝑗 = 0

– Bob pass the test if guess 𝑏𝑖 correctly

– 50% abort, 50% Bob learns 𝑏𝑖 

• Canceling errors: 𝑒𝑖 = 𝑒𝑗 ≠ 0

– Bob always pass the test

– Can be simulated by leaking bit 𝑏𝑖 

For simplicity
∀ 𝑖 𝑒𝑖 ∈ {0, 𝑒∗}

e=0

e=e*

0+0=0

e+0≠0

e+e=0

No abort, no leak

Abort with pr. ½, 1 bit leaked

No abort, 1 bit leaked

2n

n

How many bits does Bob learn?
• Define game:

– Choose how many e ≠ 0. Abort  loses

– Receive bi for all i in yellow and red

– Guess entire vector b. Wrong guess  loses

• Define leak L < n + log(pr. Bob wins the game)
– Win = not abort + correct guess

– Pr(not abort) = 2-#yellow

– Pr(correct guess) = 2-#green

• L = n - #yellow - #green = #red

e=0

e=e*

0+0=0

e+0≠0

e+e=0

2n

n/4

n/2

n/4

Optimal strategy

n = 4/3k  L < k/3

Finishing up…

OT Extension, Pictorially

46

k

1-2 OTs

X0

b

U

4/3 k

 k

4/3 k

n

n=poly(k)

Γ

b

b

 1/3k

4/3 k

OT Extension, Pictorially

47

V

4/3 k

∆

Y
0

4/3k

n
n=

p
o
ly

(k
)

c

n

1-2 OTs

∆
∆ Leak!

Solutions

• OT Extension:
–Hash the leak away!

• Authenticated Bits (need linear relation)
–Universal hash…

(multiply with random matrix A)

–…or do nothing!
(MAC still secure with k unknown bits!)

TinyOT authenticated bits

• [x] = ((xA,kA,mA) , (xB, kB, mB)) s.t.
– mB = kA + xB ∆A (symmetric for mA)

– ∆A, ∆B is the same for all wires
 (where the adversary knows at most L bit).

– MACs, keys are k-bit strings.

Authenticated Bits/OT Extension

1. Run (2+2µ)n OTs with constant difference Γ

2. Cut-and-choose and throw away half OTs

3. Turn your head (OT extension)

Authenticated Bits

4. Deal with µ-leaked bits with universal hash

 (or don’t).

OT Extension

4. Deal with µ-leaked bits with cryptographic
hash.

