5th Bar-llan Winter School on Cryptography
Advances in Practical Multiparty Computation

“Tiny OT” — Part 2

A New (4 years old) Approach to
Practical Active-Secure
Two-Party Computation

Claudio Orlandi, Aarhus University

| -
D
(q0)
()
)]
O
Q
)
(0]
)
| -
|_

gul1ssad0.4dald

aseyd auljuQ

f(x,y)

TinyOT authenticated bits

* [X]=((x,ky,m,), (xg ks, mg))s.t.
— mg =k, +x; A, (symmetric for m,)
— A, Agis the same for all wires.
— MACs, keys are k-bit strings.

* Very similar to Oblivious Transfer
— Sender has two messages u,u,
— Receiver has a bit b and learns u,

— Set u,=k, u,=k+A, b=x
then u,=k+xA4

Two probems:

 Efficiency: OT requires public key primitives,
inherently efficient

The Crypto Toolbox

—

I WANT TO Stronger assumption
BELIEVE

Weaker assumption

<€

OTP >> SKE >> PKE >> FHE >> Obfuscation

More efficient Less efficient

<€

Two probems:

 Efficiency: OT requires public key primitives,
inherently efficient

e Security: If we authenticated more than one
bit, how do we make sure Bob uses the same
value A?

e Two birds with one stone! Next hour:
Active secure OT extension!

“1z]=[x]+[y]”

“z=Open(B,[z])”

Authenticated Bits

OoT

y
m, =k, +yA
<€
Z=X+Y
m,=m+m,

OoT

Z,m

(ky, k+A)
<€

(k, k,+4)
<€

k, =k, +k,

m, =k +zA

Authenticated Bits

- X (<er kX+A)

f m, =k, + xA ot

<€
y : iky, ky+A)

m, =k, +yA oT

<€
74 — ” Z =X+ y ~
[z]=[x]+[y] m, = my+ m, k, = k+ k,
Z,m

“z=0Open(d :
Bob learns y (and therefore x)!
(should only learn XOR) m, =k, +z A .

Part 2: Active Secure OT Extension

* Warmup: OT properties

* Recap: Passive Secure OT Extension

 Active Secure OT Extension

M

~—

OT

’

Receiver Sender

b ‘ - XorX

1-2 OT

Xy

* X, = Xq T b(xqy+x,)
* x, = (1+b) x5 + b x,

|

Receiver Sender

OT = AND

b ~ (a,a+c)
1-2 OT

ab +c

b

=

i

Receiver

b >

Stretching OT

k-bit strings

m,=prg(ky)tu,

1-2 OT

(U, U1)=(prg(ko)+my), prglk;)+m;))

Sender

— MgoM,

poly(k)-bit
strings

Random OT = OT

m_=r. + X,

c,r

ROT

SN

:(Xo, x7)=((rg + mg), (ry + m,))

Random OT = OT

Clrc ROT rolr] >

m_=r. + X,

(R)OT is symmetric

S0/51 ROT b,y =sy,

Foul'y

No communication!

Exercise: check that it
works

Part 2: Active Secure OT Extension

* Warmup: OT properties

* Recap: Passive Secure OT Extension

 Active Secure OT Extension

OT Extension
* OT pro(v/b)ably requires public-key primitivies
— OT extension = hybrid encryption
— Start from k “real” OTs

— Turn them into poly(k) OTs using only few
symmetric primitives per OT

18

OT Extension, Pictorially
1
XO
- k {
b

k \)
f

n=poly(k)

1-2 OTs

n Remember:
OT stretching

Condition for OT extension

Problem for active security!

OT Extension, Pictorially
- R
-
: k | |
1 |
1-2 OTS n=poly(k)
|]

f

n

21

OT Extension, Pictorially

(b &) =b;-TIj

OT Extension, Turn your head!

>
U %Y
< — o-< @
n
S

o

OT Extension, Pictorially

1-2 OTs

—_

24

poly(k)

n

OT Extension, Pictorially
- R
-
: k | |
1 |
1-2 OTS n=poly(k)
|]

f

n

25

Defining Y,

26

OT Extension, Pictorially

[N

1-2 OTs

_

poly(k)

n

Finishing Up
* Problem: (Y,, Y,) not random!

* Solution: just hash each row
— Y, =H(Y,)
— Y’ = H(Y,)

* Using a correlation robust hash function H s.t.
1. {ay, -, a, H(ag+A), ..., H(a,+ A)}
2. {a, -, a,, by, ..., b} // (a/s,b.’s random)
are computationally indistinguishable

28

OT Extension, Pictorially

(*A)H

(°A)H

1-2 OTs

(AH

29

poly(k)

n

Recap

0. Strech k OTs from k- to poly(k)=n-bitlong strings

1. Set each pair of messages x'y,x'; s.t.
2. Turn your head (S/R swap roles)

3. The bits of ¢=I' are the new choice bits

4. The new messages are of the form yl,, y';=y,,DA
5. Break the correlation: y'l,=H(y},), y";=H(y/;)

* Not secure against active adversaries

30

Part 2: Active Secure OT Extension

* Warmup: OT properties

* Recap: Passive Secure OT Extension

 Active Secure OT Extension

Active Security

1. Set each pair of messages x'y,x'; s.t.

* How to force Bob to use same value?

e “Cut-and-choose”
— Start with =2k OTs
— Pair them at random (destroys half)
— Check if the same I was used
— abort otherwise

™
The Equality BOX

E

* Output ok if equal

* abort/reveal all if different

X Y

EQ
ok /abort ok /abort

H

.\ The Equality BOX

X Y
EQ
ok /abort ok /abort
H(x,r)
Y

Pair and check

b, . (X4, X,+1)
u,=x,+b I oT
be . (Xs, X+)
Us=Xc+bcl ot
d=b,+bs
U,+uc X, +Xc+dl
<
ok EQ ok

35

Analysis

* Ok if both honest
— u; = x; + bl
—wtu;=x+x+(b;+b)Lif; =0 =T
— Throw away OT j and keep i for later use

e Why use EQ?
— Alice needs to prove d is correct too!
— Else: corrputed Alice sendsd = 1 + b; + b;...
— ...learns two MACs with same key
— ..learns T’
— ...protocol brekas down completely

Corrupted Bob

b,

u1=<x1+blr+b1e1

bs

OoT

<€

(xy, X, +M+e,)

u5=><<5+b5l'+b5e5

OT

<€

(X5, X++e;)

bl+b5

U,+Ug

ok

EQ

>

X, +xs+dl+b e +b.e.

€

ok

37

Three cases
* Noerror:e; =¢; =0

— Bob always pass the check and learns nothing ©
e; #0,e,=0
— Bob pass the test if guess b; correctly

— 50% abort, 50% Bob learns b;

. . For simplicity
* Canceling errors: ¢; = ¢; # 0 Vie € (0,07

— Bob always pass the test

— Can be simulated by leaking bit b; ®

Simulating ®

b, . (X1, X, +T+e)
u,=x,+b I or

be . (Xs, Xc+T+e)
Us=Xc+bcl ot

d=bl+b5 R
U,+uc X, +X.+dl+de
<
ok EQ ok

39

b, . (x'y, X’ +)
u,=x,+b,l o1

b5
Us=Xc+bcl o1

d=b,+bs N
U +Uc X' +x c+dl
<
ok EQ ok

40

Three cases
* Noerror:e; =¢; =0

— Bob always pass the check and learns nothing ©
e; #0,e,=0
— Bob pass the test if guess b; correctly

— 50% abort, 50% Bob learns b;

. . For simplicity
* Canceling errors: ¢; = ¢; # 0 Vie € (0,07

— Bob always pass the test

— Can be simulated by leaking bit b; ®

2Nn—

e=0

n

B
\

No abort, no leak

Abort with pr. %5, 1 bit leaked

No abort, 1 bit leaked

How many bits does Bob learn?

* Define game:
— Choose how many e # 0. Abort = loses
— Receive b; for all i in and red
— Guess entire vector b. \Wrong guess =2 loses

* Define leak L < n + log(pr. Bob wins the game)
— Win = not abort + correct guess
— Pr(not abort) = 2#

— Pr(correct guess) = 2 #areen

e L=n-# - #green = #red

Optimal strategy

e=0

n=4/3k 2 L<k/3

— n/4

[/

— n/f2

— n/4

Finishing up...

OT Extension, Pictorially

C1/3k -
4/3 k) _{:

4/3 k -

46

OT Extension, Pictorially

4/3k

—_

|
poly(k)

n

Solutions

* OT Extension:
— Hash the leak away!

* Authenticated Bits (need linear relation)

— Universal hash...
(multiply with random matrix A)

—...or do nothing!
(MAC still secure with kK unknown bits!)

TinyOT authenticated bits

o [X]=((xy,kyymy), (x5 kg mg))s.t.
—mg =k, +x; A, (symmetric for m,)
— A, Agis the same for all wires

— MAUCs, keys are k-bit strings.

Authenticated Bits/OT Extension

1. Run (2+2p)n OTs with constant difference I
2. Cut-and-choose and throw away half OTs
3. Turn your head (OT extension)

Authenticated Bits
4. Deal with u-leaked bits with universal hash
(or don’t).
OT Extension

4. Deal with u-leaked bits with cryptographic
hash.

