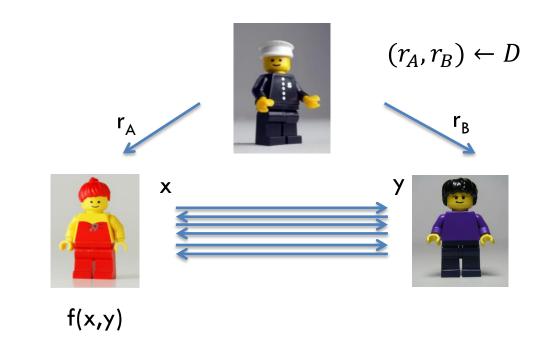
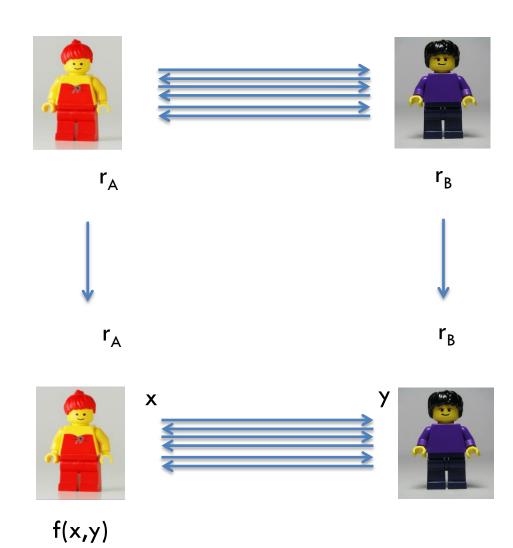
5th Bar-Ilan Winter School on Cryptography Advances in Practical Multiparty Computation

"Tiny OT" — Part 2

A New (4 years old) Approach to Practical Active-Secure Two-Party Computation

Claudio Orlandi, Aarhus University





TinyOT authenticated bits

- $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B)) \text{ s.t.}$
 - $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
 - $-\Delta_A \Delta_B$ is the same for all wires.
 - MACs, keys are k-bit strings.

- Very similar to Oblivious Transfer
 - Sender has two messages u_0, u_1
 - Receiver has a bit \boldsymbol{b} and learns $\boldsymbol{u_b}$
 - Set $u_0 = k$, $u_1 = k + \Delta$, b = xthen $u_b = k + x\Delta$

Two probems:

• *Efficiency:* OT requires public key primitives, inherently efficient

The Crypto Toolbox

Weaker assumption

Stronger assumption

OTP >> SKE >> PKE >> FHE >> Obfuscation

Less efficient

Two probems:

 Efficiency: OT requires public key primitives, inherently efficient

 Security: If we authenticated more than one bit, how do we make sure Bob uses the same value Δ?

Two birds with one stone! Next hour:
 Active secure OT extension!

Authenticated Bits

$$m_x = k_x + x\Delta$$

(\(\)

$$k_x, k_x + \Delta$$

$$m_y = k_y + y\Delta$$

OT

OT

$$(k_y, k_y + \Delta)$$

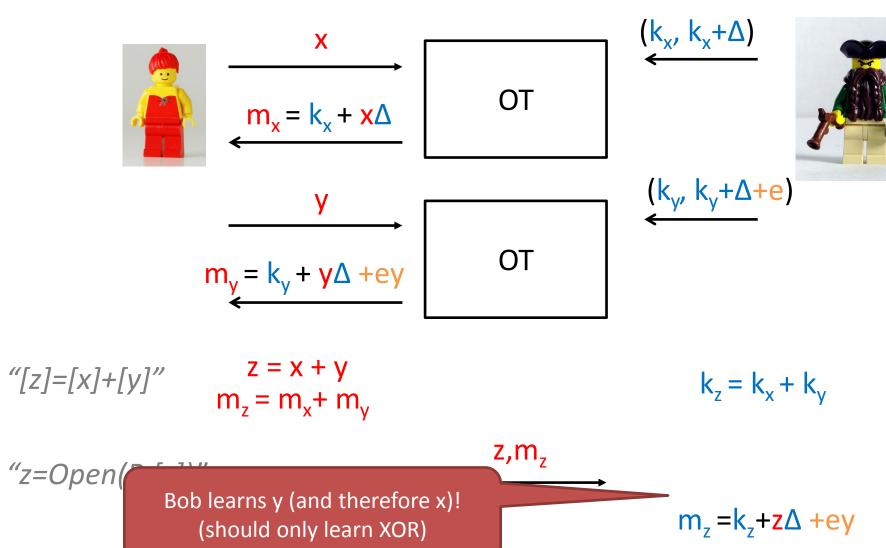
$$"[z]=[x]+[y]"$$

$$z = x + y$$
$$m_z = m_x + m_v$$

$$k_z = k_x + k_y$$

$$m_z = k_z + z\Delta$$

Authenticated Bits



Part 2: Active Secure OT Extension

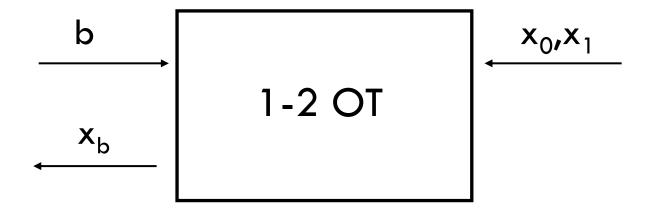
Warmup: OT properties

Recap: Passive Secure OT Extension

Active Secure OT Extension

OT

Receiver

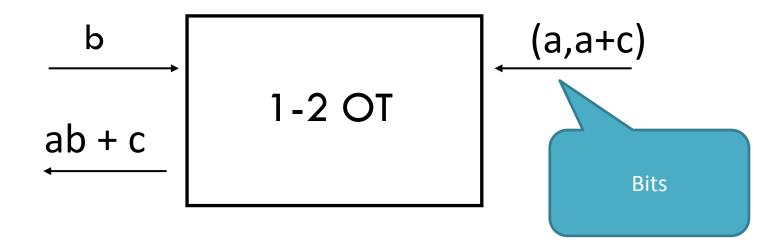


- $x_b = x_0 + b(x_0 + x_1)$
- $x_b = (1+b) x_0 + b x_1$

OT = AND

Receiver

Sender



Stretching OT

Receiver

k-bit strings

Sender

b

$$(u_{0}, u_{1}) = (prg(k_{0}) + m_{0}), prg(k_{1}) + m_{1})$$

poly(k)-bit strings

$$m_b = prg(k_b) + u_b$$

Random OT = OT

 $m_0 m_1$

$$\begin{array}{c|c} b \\ \hline \\ \hline \end{array} \qquad \begin{array}{c|c} c,r_c \\ \hline \end{array} \qquad \begin{array}{c|c} ROT \\ \hline \end{array} \qquad \begin{array}{c|c} r_0,r_1 \\ \hline \end{array}$$

$$m_b = r_c + x_b$$

$$(x_0, x_1) = ((r_0 + m_0), (r_1 + m_1))$$

Random OT = OT

 m_0, m_1

$$r_0,r_1$$
 ROT r_0,r_1

$$d = p + c$$

$$(x_{0}, x_{1}) = (r_{0+d} + m_{0}),$$

 $(r_{1+d} + m_{1}))$

$$m_b = r_c + x_b$$

Exercise: check that it works!

(R)OT is symmetric

 r_0, r_1

bits

ROT

$$c = s_0 + s_1$$
$$z = s_0$$

$$r_0 = y$$

$$r_0 = y$$

$$r_1 = b + r_0$$

$$c_r z = r_c$$

No communication!

Exercise: check that it works

Part 2: Active Secure OT Extension

Warmup: OT properties

Recap: Passive Secure OT Extension

Active Secure OT Extension

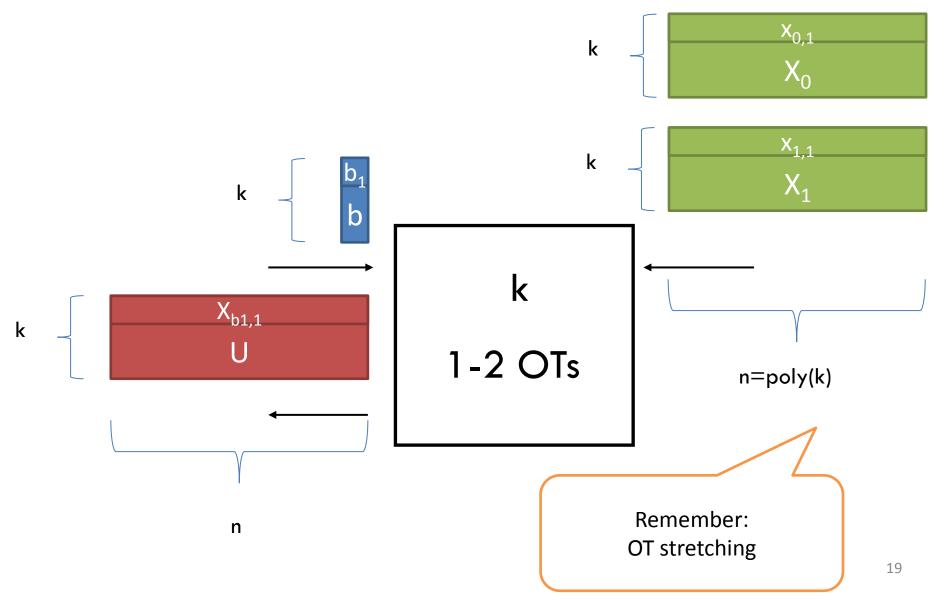
OT Extension

OT pro(v/b)ably requires public-key primitivies

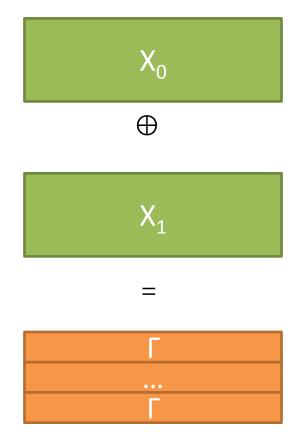
OT extension ≈ hybrid encryption

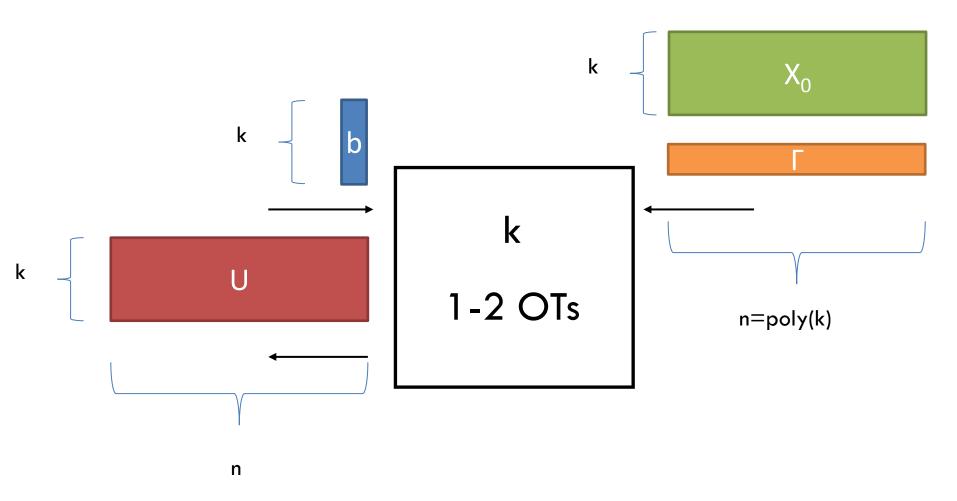
Start from k "real" OTs

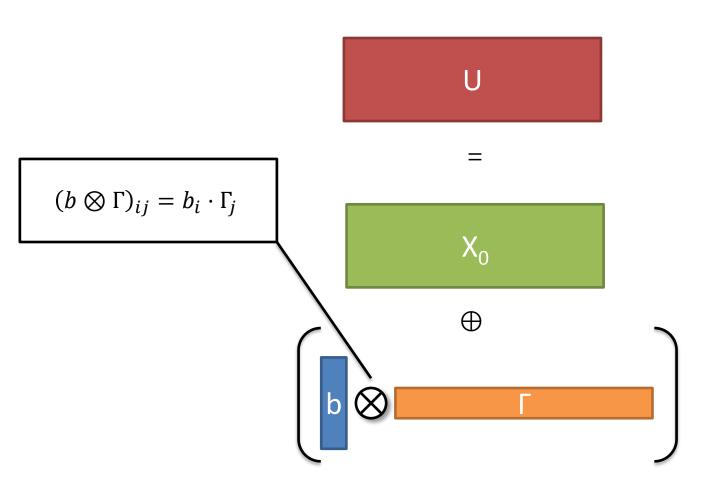
 Turn them into poly(k) OTs using only few symmetric primitives per OT



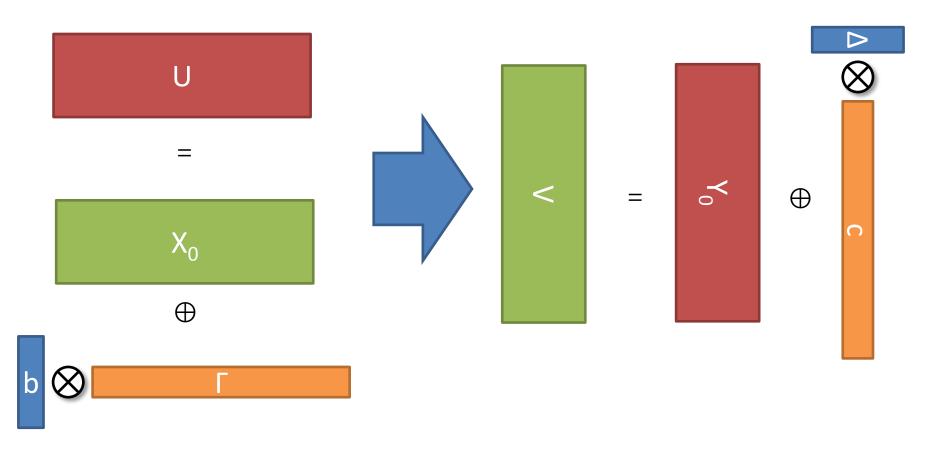
Condition for OT extension

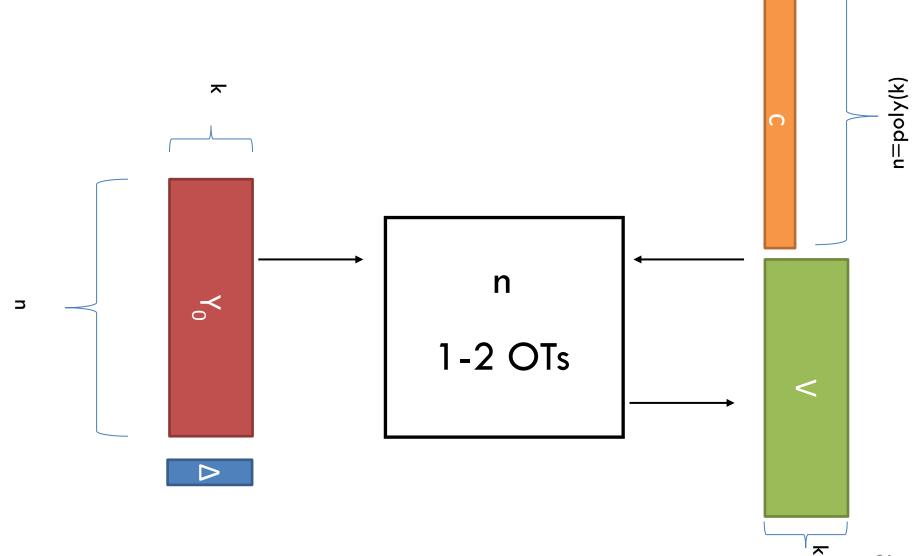


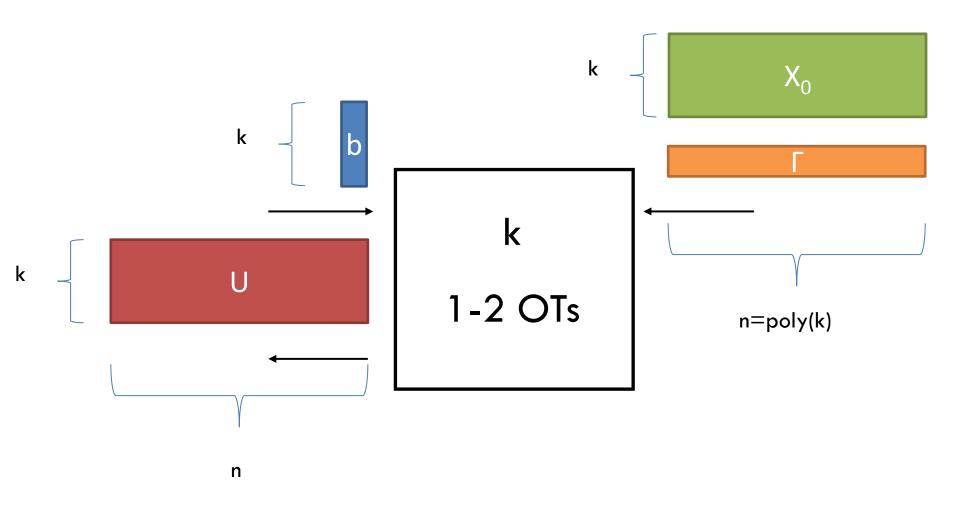




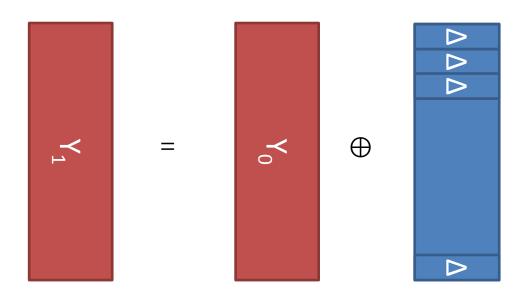
OT Extension, Turn your head!

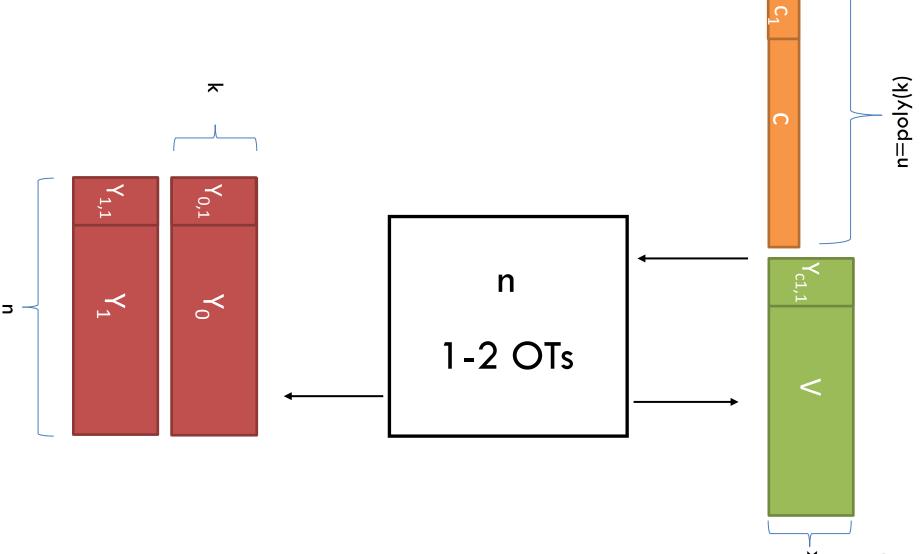






Defining Y₁

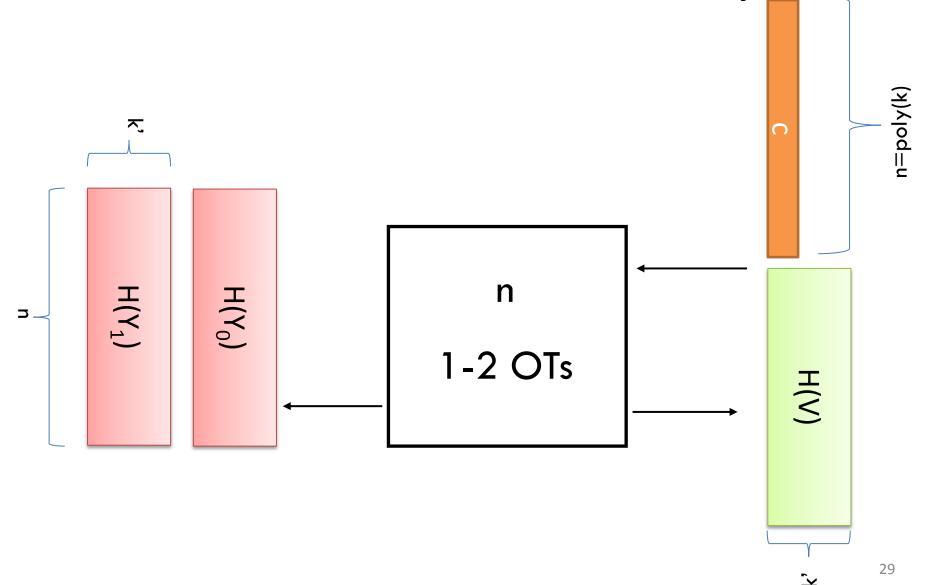




Finishing Up

- **Problem:** (Y_0, Y_1) not random!
- Solution: just hash each row
 - $-Y'_0 = H(Y_0)$
 - $-Y'_1 = H(Y_1)$
- Using a correlation robust hash function H s.t.
 - 1. $\{a_0, ..., a_n, H(a_0 + \Delta), ..., H(a_n + \Delta)\}$
 - 2. $\{a_0, ..., a_n, b_0, ..., b_n\}$ // $(a_i's, b_i's random)$

are computationally indistinguishable



Recap

- 0. Strech **k OTs** from k- to poly(k)=n-bitlong strings
- 1. Set each pair of messages x_0^i, x_1^i s.t. $x_0^i \oplus x_1^i = \Gamma$
- 2. Turn your head (S/R swap roles)
- 3. The bits of $c=\Gamma$ are the new choice bits
- 4. The new messages are of the form $y_0^j, y_1^j = y_0^j \oplus \Delta$
- 5. Break the correlation: $y_0^{j_0} = H(y_0^{j_0}), y_1^{j_1} = H(y_1^{j_0})$
- Not secure against active adversaries

Part 2: Active Secure OT Extension

Warmup: OT properties

Recap: Passive Secure OT Extension

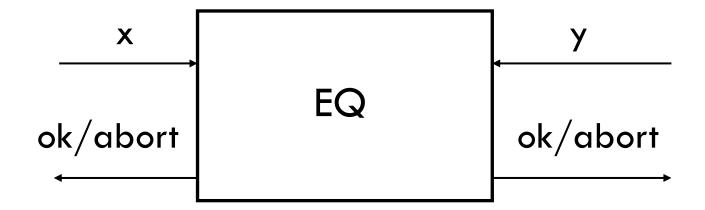
Active Secure OT Extension

Active Security

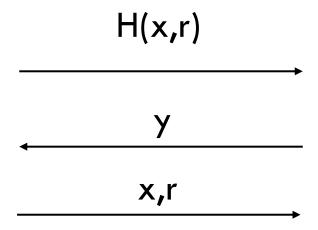
- 1. Set each pair of messages x_0^i, x_1^i s.t. $x_0^i \oplus x_1^i = \Gamma$
- How to force Bob to use same value?
- "Cut-and-choose"
 - Start with ≈2k OTs
 - Pair them at random (destroys half)
 - Check if the same **r** was used
 - abort otherwise

The Equality BOX

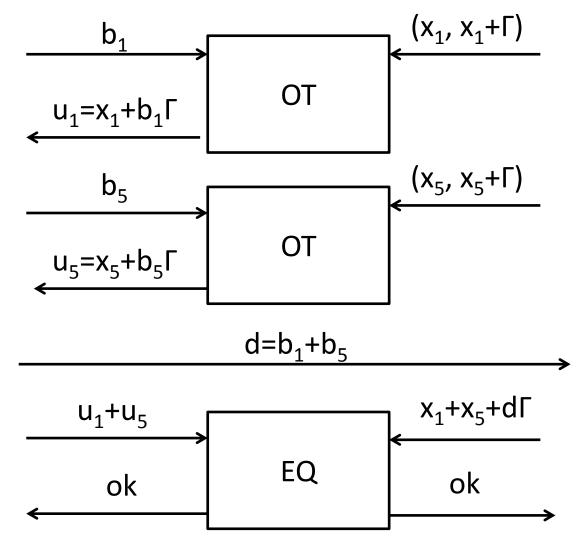
- Output ok if equal
- abort/reveal all if different



The Equality BOX



Pair and check



Analysis

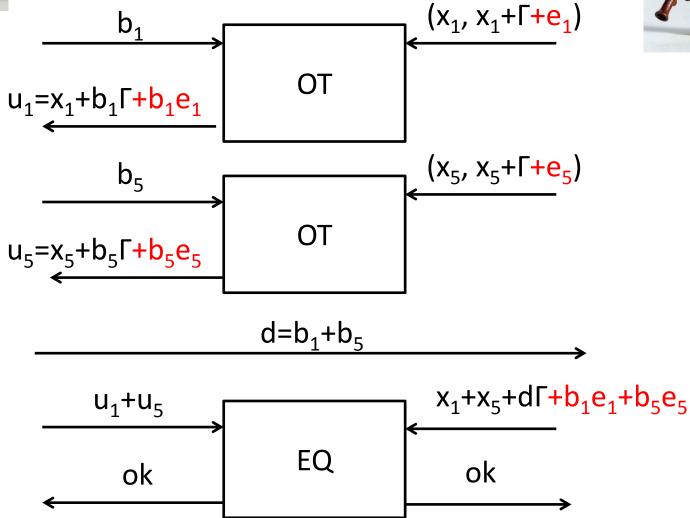
Ok if both honest

- $-u_i = x_i + b_i \Gamma_i$
- $-u_i + u_i = x_i + x_j + (b_i + b_j) \Gamma$ if $\Gamma_i = \Gamma_j = \Gamma$
- Throw away OT j and keep i for later use

Why use EQ?

- Alice needs to prove d is correct too!
- Else: corrputed Alice sends $d = 1 + b_i + b_j$...
- ...learns two MACs with same key
- ...learns Γ
- ...protocol brekas down completely

Corrupted Bob

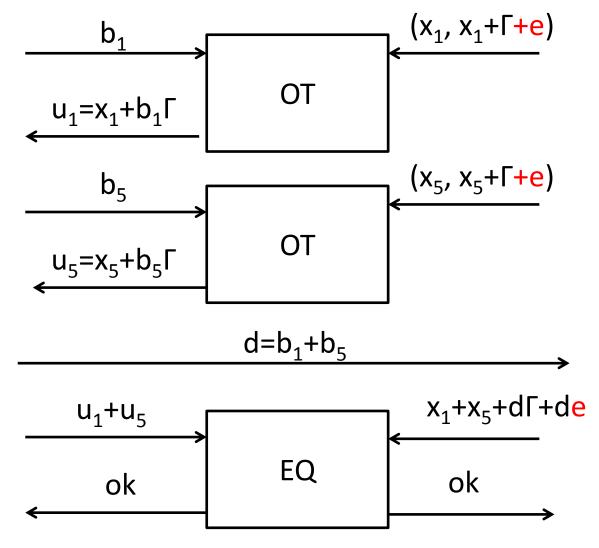


Three cases

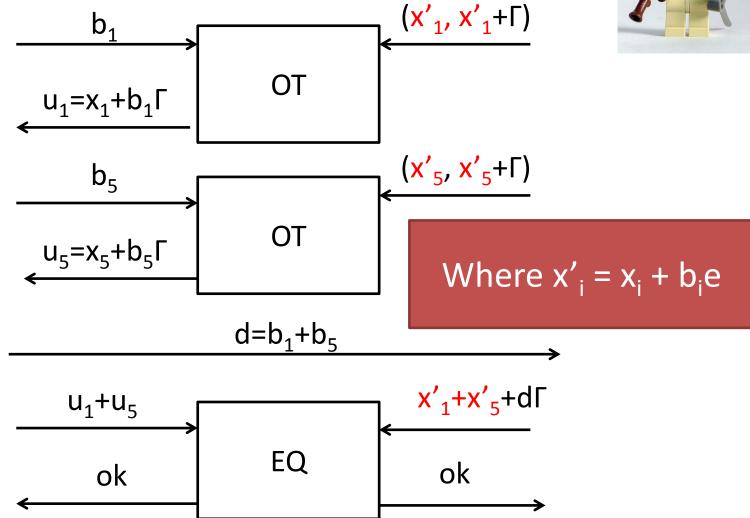
- No error: $e_i = e_j = 0$
 - Bob always pass the check and learns nothing
- One error: $e_i \neq 0$, $e_j = 0$
 - Bob pass the test if guess b_i correctly
 - 50% abort, 50% Bob learns $b_i \stackrel{ ext{ }}{\bigcirc}$
- Canceling errors: $e_i = e_j \neq 0$
 - Bob always pass the test
 - Can be simulated by leaking bit b_i

For simplicity $\forall i \ e_i \in \{0, e^*\}$

Simulating (3)



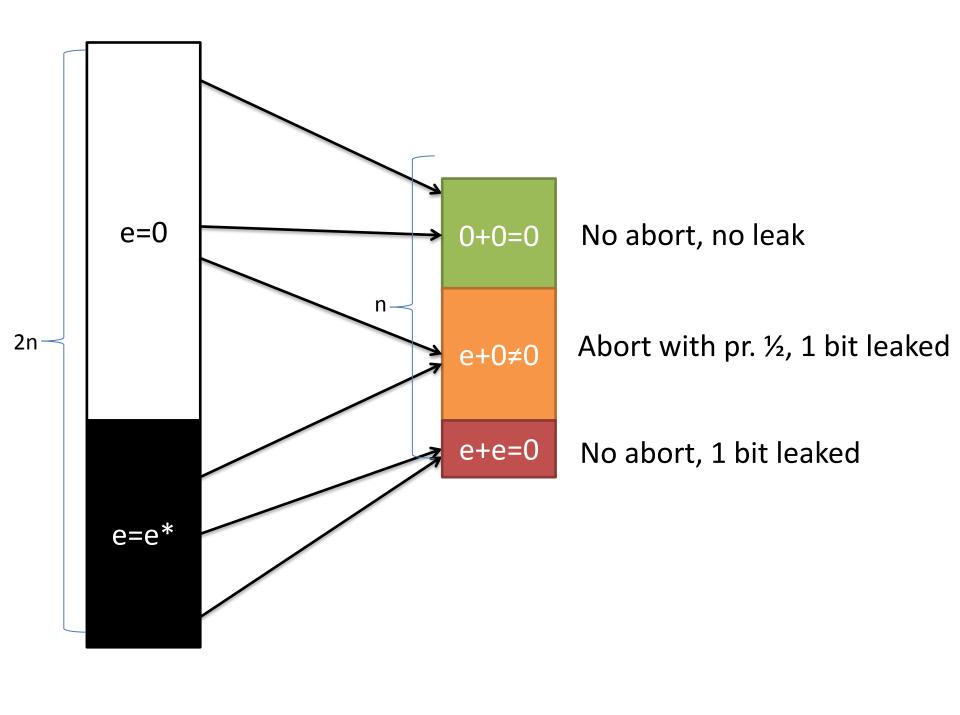
Simulating (8)



Three cases

- No error: $e_i = e_j = 0$
 - Bob always pass the check and learns nothing
- One error: $e_i \neq 0$, $e_j = 0$
 - Bob pass the test if guess b_i correctly
 - 50% abort, 50% Bob learns $b_i \stackrel{ ext{ }}{\bigcirc}$
- Canceling errors: $e_i = e_j \neq 0$
 - Bob always pass the test
 - Can be simulated by leaking bit b_i

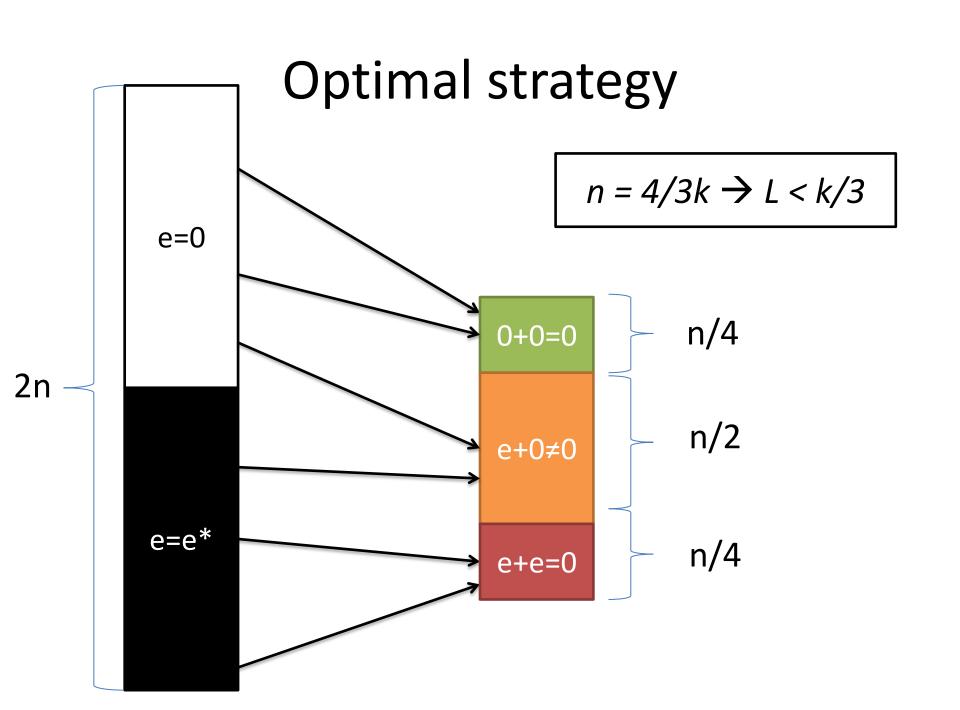
For simplicity $\forall i \ e_i \in \{0, e^*\}$



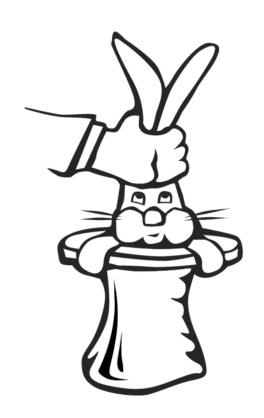
How many bits does Bob learn?

Define game:

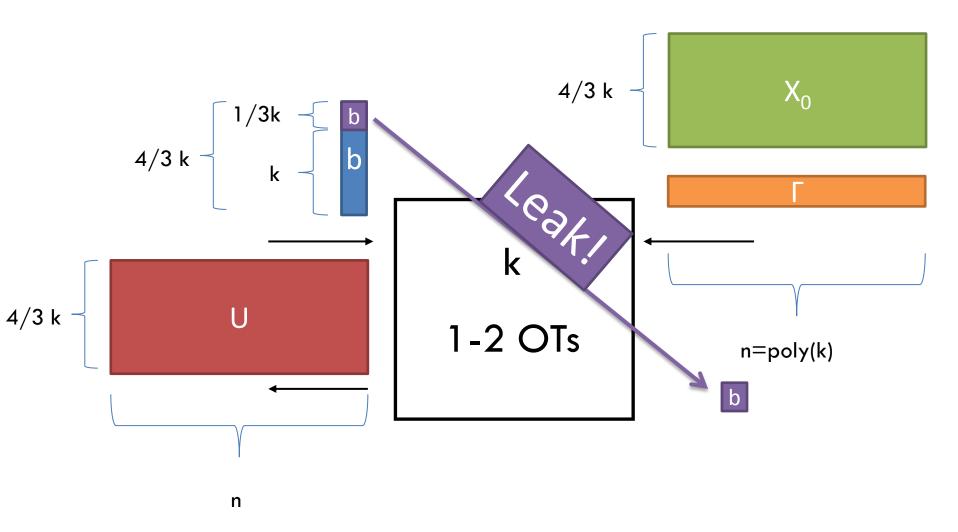
- Choose how many $e \neq 0$. Abort \rightarrow loses
- Receive b_i for all i in yellow and red
- Guess entire vector b. Wrong guess → loses
- Define leak L < n + log(pr. Bob wins the game)
 - Win = not abort + correct guess
 - $-\Pr(not\ abort) = 2^{-\#yellow}$
 - $Pr(correct guess) = 2^{-\#green}$
- L = n #yellow #green = #red



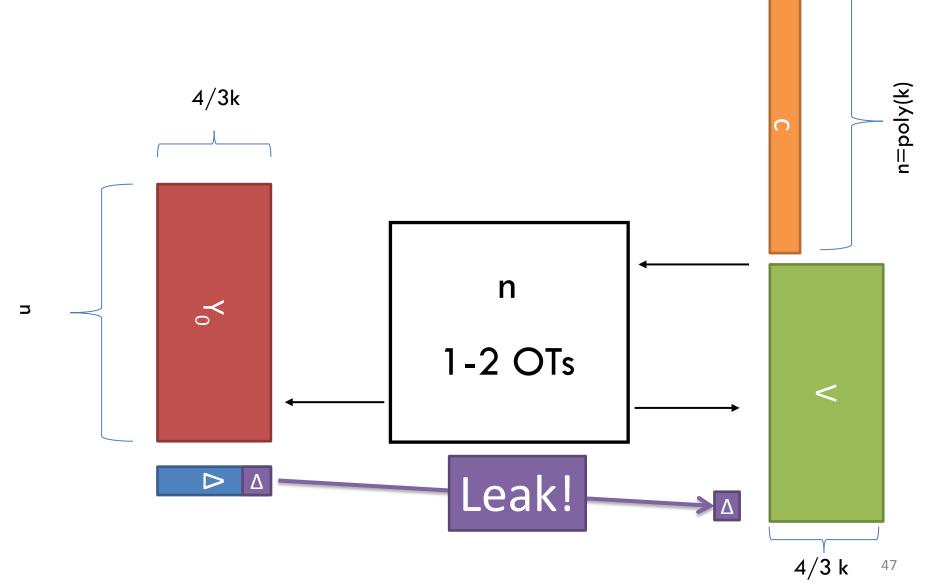
Finishing up...



OT Extension, Pictorially



OT Extension, Pictorially



Solutions

- OT Extension:
 - -Hash the leak away!

- Authenticated Bits (need linear relation)
 - Universal hash...(multiply with random matrix A)
 - -...or do nothing! (MAC still secure with k unknown bits!)

TinyOT authenticated bits

- $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B)) s.t.$
 - $-m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
 - $-\Delta_{A_i}\Delta_B$ is the same for all wires (where the adversary knows at most L bit).
 - MACs, keys are k-bit strings.

Authenticated Bits/OT Extension

- Run (2+2μ)n OTs with constant difference Γ
- 2. Cut-and-choose and throw away half OTs
- 3. Turn your head (OT extension)

Authenticated Bits

4. Deal with μ -leaked bits with universal hash (or don't).

OT Extension

4. Deal with μ-leaked bits with cryptographic hash.