Day 4.
A Contemporary View of
Symmetric Encryption

Thomas Ristenpart
University of Wisconsin

Some limitations in
90s and 00s viewpoint

* Encryption and authenticity as separate
primitives leads to problems

— Not enough guidance to implementers
— Get the order wrong

— Even with “right” generic composition, problems
can arise

* Nonces can be confusing to developers

* Record layers are much more than “just”
authenticated encryption

The expanding role of SE

* Recognition that the crypto should do more to
help implementers

* Crypto needs to work around system
constraints

— Bad nonces should be protected against to best
extent possible (defense-in-depth)

— APl should be simple

— Systems often can’t be redesigned (e.g., format-
preservation, passwords)

Our game-plan today

We will build two widely needed primitives:

* Authenticated encryption
— Contemporary viewpoint on AE
— Two flavors (speed versus security trade-off)

* Format-preserving encryption

— Used widely in industry for fixed-field encryption
(credit card numbers, etc.)

— Length-preserving encryption as special case
* Time allowing: other SE primitives such as

message-locked encryption, honey encryption,
password-based encryption

Lecture plan

1. Tweakable PRPs and shuffling
2. Nonce-based symmetric encryption
3. Format-preserving encryption
4. Further symmetric primitives

Tweakable PRPs and Shuffling

Thomas Ristenpart
University of Wisconsin

High level views of building
symmetric encryption

* .
,\x\e"(One-way PRPs/PRFs :i;;g;ptlon,
function
6\009 Blockcipher Encryption, Authenticated-
o0 (assumed PRP) MACs Encryption
Authenticated-
QO@‘* Blockcipher Tweakable Encryption,
& (assume PRP) PRPs Format-preserving
o)

© encryption

First up: the basic building blocks

Recall PRFs and PRPs

Feistel and Shuffling

— Thorpe

Tweakable block ciphers

— Built from Thorp

Mix-and-Cut

— Pseudorandom separators
Tweakable block ciphers from PRPs:

— Simple LRW construction
— XE(X) constructions

Pseudorandom functions (PRFs)

* Keyed function family indistinguishable from
random function

F: {0,1}* x {0,1}* — {0,1}"

* *is a bit misleading: usually fixed set, but we’ll
cheat for simplicity
 Examples:

— CBC-mode using suitable block cipher
— HMAC using suitable hash function
— Theoretical constructions from any OWF

Pseudorandom functions (PRFs)

Can adversary distinguish between secret-keyed function

and a random function?

Game PRF1g

Game PRFO,,

K +s{0,1}%
b s AFK
ret b’

p <s Func(n)
b’ s AP
ret b’

Pick a random

_ function with

range n bits

Adv?'(A) = |[Pr [PRF17 = 1] — Pr[PRFO; = 1]

We will measure adversarial resources concretely : running time and queries
Proving “low” advantage for large resources translated as providing security

Pseudorandom permutations (PRPs)

Keyed permutation family indistinguishable from random
permutation

E: {0,1}* x {0,1}" — {0,1}"
VK,M .E Y (K,E(K,M)) =M

A block cipher is just a keyed family of permutations for
which enciphering and deciphering are efficient
Examples:

— AES

— 3DES
— Luby-Rackoff using random functions

Pseudorandom permutations (PRPs)

Can adversary distinguish between secret-keyed permutation

and random permutation?
Pick a random

Game PRP1r Game PRPO,, permutatﬁon with
K s {0, 1}k 7 s Perm(n) range n bits

b s AEK b s AT

ret b’ ret b’

Advh?(A) = |Pr [PRP1y = 1] — Pr[PRPO; = 1]

We will measure concretely adversarial resources: running time and queries
Proving “low” advantage for large resources translated as providing security

PRP/PRF Switching lemma

A PRP for largish n is already good PRF! (and visa-
versa)

Theorem. Fizn. Then for any adversary A making q oracle queries
2

[Pr[PRPO; = 1] — Pr [PRFO; = 1] < -

* Proof uses relatively straightforward birthday
oounds

* Loosely speaking, means we can think of good
olock ciphers as either random functions or
random permutations (when secretly keyed)

Revisiting a classical question

e How to build PRPs from PRFs?

e Why?
— Cool theory (shuffling viewpoint on block ciphers)

— Tweakable PRPs trivial given good PRP-from-PRF
construction

— Needed for format-preserving encryption since no
good block ciphers of right block sizes

PRPs from PRFs

* Recall Feistel networks
— Split input in half
— Apply PRF to one half
— XOR with left half
— Drop right half down to left

This bound is not great. For n = 128 we
have security only up to 232 queries.
Can we do better?

01010101 01010110

I:Kl

\4
10101010 11101101

FKZ

v
10101011 10101111

Theorem. Fiz n and let Fe be a 3-round balanced Feistel network using three

random functions pi,p2,ps: {0,1}* — {0,1}7/2,

making q oracle queries Advp P (A) < 23% :

Then for any adversary A

Time to shuffle!

1 bit n-1 bits
Consider a maximally unbalanced
Feistel network. X
N \//
This is the same as the so-called Fea
Thorpe shuffle [Morris, Rogaway, Stegers 09] >P

Flip random coin.
Heads put ace down first, tails 5. Say it is heads

Q ‘ 3.4- "
.’."‘ -r*-x-’l‘
) v S

Time to shuffle!

1 bit n-1 bits
Consider a maximally unbalanced
Feistel network. X
N \//
This is the same as the so-called Fea
Thorpe shuffle [Morris, Rogaway, Stegers 09] >P

Now look at next two in each pile.
Flip a coin, and put them down in appropriate order

3|) B
o

.’."‘ -r*-x-’l‘ % s
—V S 9 (4

< -
< F >

Time to shuffle!

Consider a maximally unbalanced

1 bit

Feistel network.

This is the same as the so-called
Thorpe shuffle [Morris, Rogaway, Stegers 09]

>
o 2N

o

< ko

N o3
2=t
< 3+ P
N e3-
2
3 3
< L3
3

Now look at next two in each pile.
Flip a coin, and put them down in appropriate order

N
£

‘.’."‘ Ly

\) —§

3 T -
3 F
O3
=N
< 3
N 3 K
ew
< 3 -l-‘
o e3-
N
<+ 3=
£
< 3
N3

n-1 bits

Time to shuffle!

Consider a maximally unbalanced
Feistel network.

This is the same as the so-called
Thorpe shuffle [Morris, Rogaway, Stegers 09]

Now look at next two in each pile.
Flip a coin, and put them down in appropriate order

A— 6 2 3 7

40.’. 3,4-: s O & *4-14- .?.: : i,,, .
] * oo

by Ly By Ly Loy ey B L

0O 1 3 5 6 7

2 4

< =
< F >
<+ P+ >

1 bit n-1 bits
X
N \/J
FKl
<D
“J/

One round of Thorp shuffle

Now think of position in deck
as a numerical value:

5 gets mapped to 2

1 gets mapped to 3

This defines a permutation on
3 bits!

Time to shuffle!

1 bit n-1 bits
Consider a maximally unbalanced
Feistel network. X
N \/J
This is the same as the so-called Fea
Thorpe shuffle [Morris, Rogaway, Stegers 09] >P
X

000 001 010 011, 100 101 110 111

Q‘
o

Y

e ex One round of Thorp shuffle
o
ST

)
)
L]

L) Ly
€ 14

Now think of position in deck
as a numerical value:

5 gets mapped to 2
Now look at next two in each pile. 1 gets mapped to 3

Flip a coin, and put them down in appropriate order
This defines a permutation on

A— 5 6 2 3 7 8 4
) o ok O3 & * oo gk ** - L .
oo sl Tew - ol 3 bits!
=y Loy il ey g iy sy (Leg

000 001 010 011 100 101 110 111

Time to shuffle!

1 bit n-1 bits
Consider a maximally unbalanced
Feistel network. 00
N \/J
This is the same as the so-called Fea
Thorpe shuffle [Morris, Rogaway, Stegers 09] >P
X

000 001 010 011, 100 101 110 111

Q \
h,

Vv

e 4 One round of Thorp shuffle
o
ST

)
)
L]

L) Ly
€ 14

Now think of position in deck
as a numerical value:

5 gets mapped to 2
Now look at next two in each pile. 1 gets mapped to 3

Flip a coin, and put them down in appropriate order
This defines a permutation on

A— 5 6 2— 3 7 8 4
) o ok O3 & * oo gk ** - L .
o sl Tew - : 3 bits!
=y Loy il ey g iy sy (Leg

000 001 010 011 100 101 110 111

Do all card shuffles define
block ciphers?

Sadly no, the shuffle must be oblivious Idea goes back to Naor

Example:
- The traditional “Riffle” shuffle
Eﬂ is not oblivious
G

2o
*

Ly
]

Can trace position of a card without
knowing what cards are in other positions,
just knowing random coins related to this card

Balanced Feistel as Shuffle

n =4 bits

Split deck into 2"2 piles of size 2"/2
Take top card from each pile

Place them down in random order
Take next card from each pile
Place them down in random order

n/2 bits n/2 bits
; R
N /)
Y
I:Kl
sD
UV

3. il 3,7—1. ‘ i?-ﬂ 24. w| 2:-!-\ 3,4._,.-»"\ gf;""
* *» oo L3 oo
w %‘ | * 'E "l- +’£ “* *’g ,‘,* -l-’g ‘ ***'i‘ I *'g
p—
3. . 3,7—1. ‘ i?-ﬂ 24. w| 2:-!-:\‘ 3,4._,.-»\ gf;""
* *» oo L3 oo
w %‘ | * 'E 7‘-1- +’£ ‘* *’g ,‘.* -l-’g ‘*"’*"‘ L *'g

Provable results about shuffles

Approach

Balanced Feistel [LR 88]
Granboulin-Pornin [GP 07]
Thorp [MRS 09]

Thorp [M 09]

Balanced Feistel [HR 10]
Swap-or-Not [HMR 12]
Stefanov-Shi [SS 13]
Mix-and-Cut [RY 13]

Sometimes-Recurse [MR 13]

Efficiency
(# PREF calls)

3

O(log? N)
O(log N)
O(log3 N)
O(6/¢)
O(log N)
O(NY2)
O(log? N)

Expected
O(log N)

N=2"

Provable PRP
Security

q= N1/4

Block ciphers, Tweaks, and Shuffling

Recall PRFs and PRPs

Feistel and Shuffling

— Thorpe

Tweakable block ciphers

— Built from Thorp

Mix-and-Cut

— Pseudorandom separators
Tweakable block ciphers from PRPs:

— Simple LRW construction
— XE(X) constructions

Tweakable block ciphers

* Add public “spice” or “tweak” to block ciphers

— block cipher should appear to behave independently
for each tweak

* First formalized by [Liskov, Rivest, Wagner 2003]

* First such block cipher is Hasty Pudding Cipher by
Schroeppel 1998]

E: {0,1}* x T x {0,1}" — {0,1}"

Tweak space (some finite set)

Tweakable PRPs: definitions

A tweakable PRP is a map
E: {0,1}* x T x {0,1}" — {0,1}"
E(K,M) = Ej(M)
VK, T,M . DL(FEL(M)) =M

Inverse
algorithm

Must be efficiently computable in both directions

Ciphertext = n bits

Sector 1

Sector 2

Sector 3

Tweakable PRPs: why?

Say we want to use an n-bit block cipher to encrypt n-bit disk sectors
Plaintext = n bits

n bits

(In practice disk sectors are, e.g., 512 bytes.
We'll deal with it later)

n bits

Woops,
repeat

18

1

blocks
detectable

> B

Length-preservation means we can’t use randomized encryption

28

Tweakable PRPs: why?

Say we want to use an n-bit block cipher to encrypt n-bit disk sectors

Plaintext = n bits (In practice disk sectors are, e.g., 512 bytes.

Ciphertext = n bits We’ll deal with it later)
n bits n bits

Sector 1 » FEg1 10110
Repeats
not

Sector 2 » Ego >’ . detectable,
but now
too many
keys!

>ector 3 _ | Eks J10U

Using independent keys with block cipher gives
independent random permutations 29

Tweakable PRPs: why?

Say we want to use an n-bit block cipher to encrypt n-bit disk sectors

Plaintext = n bits (In practice disk sectors are, e.g., 512 bytes.

Ciphertext = n bits We’ll deal with it later)
n bits n bits

Sector 1 » EL 0110
Repeats
not

Sector 2 > Eg{ >’ _ detectable,
only one
key still!

Sector 3 o E3 " koo

Using distinct tweaks + good tweakable block cipher
gives same effect as distinct keys. Tweaks can be public.

Tweakable block ciphers are the “right” primitive for building
higher level primitives such as AE

Tweakable PRPs: why?

| wM[| M 2]
y y
é}<— Z[1] é}<— Z[2]
y y
Eg Eg
y y
654— Z[1] é5<— Z[2]
y y
| cnl | C[2]

M[m — 1]

OCB AE mode, diagram from [Rogaway et al. 2003]

Checksum

y

Y

[7]

31

Tweakable PRPs: why?

Tweakable block ciphers are the “right” primitive for building
higher level primitives such as AE

M, Mo M3 My b
le@
7y 7y Y o Ty

/ Pad
Tweakable A
Block ~
cipher

P Ch Cs Cs C Tag

OCB AE mode, diagram from [Rogaway 2004]

OCB was implicitly using tweakable block ciphers, making primitive explicit vastly
simplifies treatment. Proof, in particular, becomes very simple 32

Tweakable PRPs (TPRPs)

Can adversary distinguish between tweakable BC for secret key and
family of random permutations (one for each tweak)?

Game TPRP1 Game TPRPO ,
K +s{0,1}* 7 s Perm(T, n)
b s APK() b s ATC

ret b ret b’

Adversary gets to choose tweaks and messages

Adv'P"™(A) = |Pr [TPRP1j = 1| — Pr [TPRPO7,, = 1]

Independent behavior for each tweak:
7(T,M)and 7(T', M) areindependent uniform bit strings

Adding tweaks to PRF-based
constructions is straightforward

n/2 bits n/2 bits

This gives a tweaked round of Feistel. Add tweak to all rounds.

Each tweak gives rise to independent behavior

Provable results about shuffles

Approach

Balanced Feistel [LR 88]
Granboulin-Pornin [GP 07]
Thorp [MRS 09]

Thorp [M 09]

Balanced Feistel [HR 10]
Swap-or-Not [HMR 12]
Stefanov-Shi [SS 13]
Mix-and-Cut [RY 13]

Sometimes-Recurse [MR 13]

Efficiency
(# PREF calls)

3

O(log? N)
O(log N)
O(log3 N)
O(6/¢)
O(log N)
O(NY2)
O(log? N)

Expected
O(log N)

N=2"

Provable PRP
Security

q= N1/4

Mix-and-Cut card shuffle ‘g

on 8 cards mix

E Recursively shuffle each

of the two halves
cut (independently)

— —

36

Mix-and-Cut card shuffle E

on 8 cards mix

% Recursively shuffle each
of the two halves
cut (independently)

RS 2O
U
mix mix mix @mix
— —J]
12 cut Y 1RcutlN Mt 2cut Y
[] [i]/] []
@ Gather

= ;

The Icicle Construction

Example on 4 bits using 4 separators Z1 — 74

C1, C2, C3, C4 “drip” down to output

These bits are randomized by “mix”
Random choice of C1 = random choice of pile

Mixing needs to be independent depending on
which pile we’re in (indicated by bits-so-far-output)

This construction is implicit in [GP 07] cipher,

which uses perfect mix step (randomly picks C1)

based on recursive hypergeometric sampling
Super slow

mix
|
C1
[
> mix
|
C2
|
> mix
|
C3
|
: : 2 mix
I I T

38

The Icicle Construction

mix

C1

C2

C3

39

Can we instantiate mix with something more efficient?

Yes, to do so develop a framework for constructing fully-secure PRPs from
Pseudorandom Separators (PRSs)

a new primitive we define.

40

Can we instantiate mix with something more efficient?

Yes, to do so develop a framework for constructing fully-secure PRPs from
Pseudorandom Separators (PRSs)

a new primitive we define.

A new framework

PRS — PRP

N\

The icicle construction

41

Can we instantiate mix with something more efficient?

Yes, to do so develop a framework for constructing fully-secure PRPs from
Pseudorandom Separators (PRSs)

a new primitive we define.

A new framework

PRF — PRS — PRP

N\

Simple lemma o .
The icicle construction

42

Pseudorandom Separators

[-pseudorandom separator (I-PRS) assigns cards pseudorandomly
into T piles, but says nothing about ordering of cards in those piles.

Separator is keyed permutation Z : {0,1}" -> {0,1}"
Security game:

71 pits 72 pits
l l Random
L 1 F - permutation
¥ = 108 T ' f T TI
————] ——]
— —
R \L/
\ indistinguishable No requirement on the other 72— J/ bits

We will actually need separators that support tweaks, in the sense of tweakable
block ciphers [LRW]. So separatoris Z: T x {0,1}->{0,1}" 43

From 2-PRSs to PRPs: The Icicle Construction

Example on 4 bits using 4 separators Z1 — 74

1) Apply Z1 to 4-bit input

2) Apply Z2 to 3 bits tweaked by C1

3) Apply Z3 to 2 bits tweaked by C1 || C2

4) Apply Z4 to 1 bit tweaked by C1 || C2 || C3

C1, C2, C3, C4 “drip” down to output

Tweaks are used to ensure separators act
“independently” based on output so far

Theorem:
If Z's are fully-secure PRSs, then the Icicle is a

fully-secure PRP.

Z1,
I
Cl
|
> 72,
|
C2
|
> 73,
|
C3
I
: : 7 Ay
: |
I I AT

44

Our Framework

PRF —> PRS — PRP

e

Simple lemma o .
The icicle construction

How to build PRSs: A simple lemma

Lemma:
If E. : N -> N is PRP-secure for N/2 queries, then E, 1 is a fully secure 2-PRS

Proof sketch:

Reduction has to simulate N 2-PRS queries using only N/2 PRP queries

4 N
Yo, o, Yy 4
PRS

adveArsarv X,[1], ..., X;[N] EK—l

NG / X [i] = first bit of E,}(Y)) _

4 \ Yy, e Yy 0 || Xforall X
PRS | |

adveArsarv X,[1],....X,[N] N/2 Y values Ey

.

)

Lemma:
If E, : N -> N is PRP-secure for g = N/2 queries, then E, ! is a fully secure 2-PRS

Putting it all together

Recall that Swap-or-Not [HMR 12] is secure for (1-€)N queries.

Corollary:
E, = Swap-or-Not is a fully secure PRS using r = O(log N) rounds

Apply Icicle and we get fully-secure strong PRP using
O(log? N) operations

Not usable in practice: ~10,000 rounds calls for N = 230

Faster PRSs?

Provable results about shuffles

Approach Efficiency Provable PRP
(# PREF calls) Security
Balanced Feistel [LR 88] 3 q = N4
Granboulin-Pornin [GP 07] O(log? N) g=N
Thorp [MRS 09] O(log N) q=N1-2
Thorp [M 09] O(log3 N) g=N
Balanced Feistel [HR 10] O(6/¢) q = N(1-e)/2
Swap-or-Not [HMR 12] O(log N) g=(1-¢€)N
Stefanov-Shi [SS 13] O(N?/2) q=N
Mix-and-Cut [RY 13] O(log? N) g=N
Sometimes-Recurse [MR 13] Expected g=N
O(log N)

Big open question: O(log N) worse-case performance but full security?

Block ciphers, Tweaks, and Shufflin’

* Recall PRFs and PRPs
* Feistel and Shuffling
— Thorpe
 Tweakable block ciphers
— Built from Thorp
 Mix-and-Cut
— Pseudorandom separators
 Tweakable block ciphers from PRPs:

— Simple LRW construction
— XE(X) constructions

Fast TPRPs: Attempt 1

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume T ={0,1}"

~

E(K,T,M)=FEg(T ® M) Game TPRP1;
k
M M1 K {0, 1}
b s AEC)
T > TH1 >P ret b’
12 Lk Game TPRPO
‘ ‘ 7 s Perm(7,n)
b s ATCH)
Can we break TPRP security? Yup ret '
adversary A° Pr [TPRPI]% = 1} = 1
C <+ O(T, M) a
O OTol,Ma1)| Pr[TPRPOF, =1] = 1/
If C = C’ then Ret 1 tpr
Adv'P'™? =1-1/2"
Ret 0 VE A /

Fast TPRPs: Attempt 2

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume T ={0,1}"

~

E(K,T,M) = Ex(T & Ex(M)) Game TPRP1
K +s{0,1}*
M b s AEC)
‘ ret b’
e Game TPRPO
v 7 <s Perm(7T,n)
T 4 b s A7)
Eyx ret b’

Can we break TPRP security? Nope

Fast TPRPs: Attempt 2

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume T ={0,1}"

~

E(KvTvM) :EK(T@EK(M))

M

‘ Why does this work?
o Intuition: For all M, T and M’, T’

Pr[M @ Ex(T)=M & Ex(T)]

T —>D
Ek

Can we break TPRP security? Nope

is tiny.

Fast TPRPs: Construction 1

, Intuition:
Let’s sketch the proof. Adversary can’t force input

to second E call to ever collide

M
M T
Ex >D
Actually this construction o >
. . _ ' K K
T —>@ is equivalent to CBC-MAC!
Ek

‘ CBC-MACI[E}(K,M [|T)

Special case of [Bellare, Killian, Rogaway 99] gives that for any A there is ‘B s.t.

rf r
Advipovacs (A) < AdvpP(B) + — -

Here ‘B must make 2q queries when A makes q queries

Fast TPRPs: Construction 1

, Intuition:
Let’s sketch the proof. Adversary can’t force input

to second E call to ever collide

AdvP'™(A) = Pr[TPRP1j = 1] — Pr[TPRPO7F, = 1]

2
< Pr[TPRPIZ = 1] - Pr[PRF0; = 1] + .

Extension of PRP/PRF ,

switching to tweaks

rf q
= AdV](pJBC-MAC[E] (B) + on

CBC[E] and E are prp / 10/ 16¢° ¢
the same < AdVE (B) + on + on

; 17¢*
Bellare et al. result on — Adv%p(B') ™ omn

CBC-MAC. (29 queries)

Addition

Fast TPRPs: Construction 2

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume T ={0,1}"

~

E(KvTvM) :EK(T@EK(M))

M
| M T
>f\
Bk Why can’t we switch ordering e
of M and T in CBC-MAC Eyx Eyx
T P interpretation?
Ek

‘ CBC-MACIE](K,M| |T)

Fast TPRPs: Construction 2

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume T ={0,1}"

~

E(K,T,M)=FEx(M ® Fx(T))

T
| T M
>D
Bk Why can’t we switch ordering
of M and T in CBC-MAC Eg Ex
M P interpretation?
Ek

‘ CBC-MACIE](K,T| M)

We can! Same proof.
This will be faster in some cases. When?

Fast TPRPs

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume T ={0,1}"

E(K,T,M) = Ex(T ® Ex(M)) E(K,T,M) = Ex(M & Ex(T))
\T i
EK EK
M—>D T —
EK EK
Fast for fixed tweak Fast for fixed message

Can we get best of both worlds? Yes, for special cases.

Recall motivating applications

n bits n bits

sector 1 || Bk
Repeats
not

Sector 2 m > EE{ m detectable,
only one
key stilll

sector 3 RUIUIN—| B m/

58

Recall motivating applications

M
e
Tweakable
Block
iph
cipher c:

For many applications tweakable BC with

C>

C3

(1
)

Cs

specialized tweak space suffices

Tag

59

~

Towards faster TPRPs

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume 7 = {0,1}" x [0..2" — 2]

E(KvTvM) :EK(T@EK(M))

M

T —> Ex O
Ek

\

i M

T —> Ex GIB >D
Ex

Ideal to have something like this, where
i can be an integer

But this is insecure!

Essentials on GF(2")

 GF(2") is Finite (Galios) Field over n-bit strings
* Represent point a equivalently as:
— Polynomial a(z) = ap—12" " + -+ + a17 + ag

n—1
_ i
a = E a;2
i=0

— Bit string a = an—1---a1ao

— Integer

Essentials on GF(2")

GF(2") is Finite (Galios) Field over n-bit strings
Addition = bitwise xor of points (as bit strings)
Multiplication:
— fix primitive poly. For n = 128 use

e i+ 1
— Multiple points ac by treating as polynomials,

multiplying formal polys, and take remainder mod
fixed prim poly

Benefit: x = 2 (a = 0%10) generates
multiplicative subgroup of GF(2")

Essentials on GF(2")

Multiplication by 2 is fast!

2(x) -alz) = () (ap_12" '+ - +a1T + ap)

= ap_1z" 4+ a2 + aox

Divide by primitive polynomial and take remainder

If a, ;=1 then:

left-shift a by 1 and add prim poly
If a, ;=0 then:

left-shift a by 1

One shift and one conditional xor!

Fast TPRPs: XE construction

[Rogaway 2004]

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume 7 = {0,1}" x [0..2" — 2]

E(K,(T,i),M)=Ex(M® A) A =FEg(T) 2
20 M Multiplication in GF(2") using primitive
T —> By _é)_>@ polynomial. This means that
E 2Y, 4Y, 8Y, ...
i are all distinct! (Think Y = E(T))

Proof by extension of previous arguments

But is this fast? Yes in an amortized sense:
Computing 2Y given Y is 1 shift and 1 conditional xor!

Fast TPRPs: XE construction

Using XE in @a mode in many settings is fast. Compute E (N) once
and then only have to do doublings

M, Mo, M3 My b))
le@
my usy Uy s iy
/ Pad
Tweakable A
Block 7
cipher

So far: only secure against
chosen-plaintext attacks

Can adversary distinguish between tweakable BC for secret key and
family of random permutations (one for each tweak)?

Game TPRP1 5 Game TPRPO7 ,,
K +s{0,1}" 7 <+s Perm(7,n)
b s AFKC) b s ATCH)

ret b’ ret b’

Adversary gets to choose tweaks and messages

Adv'P™(A) = |[Pr [TPRP1} = 1| — Pr [TPRPO7,, = 1]

Independent behavior for each tweak:
7(T,M)and 7(T', M) areindependent uniform bit strings

Tweakable Strong PRPs (TSPRPs)

Can adversary distinguish between tweakable BC for secret key and
its inverse and family of random permutations (one for each tweak)

and inverses?

Game TSPRP1; Game TSPRPO7 ,,
K s {0,1}* 7 s Perm (7T, n)
b s AEx(),Dx () b s ATC) AT
ret O/ ret b’

Adversary gets to choose tweaks and messages

AdvP"P(A) = |Pr [TSPRP1 = 1] — Pr [TSPRPO7 ,, = 1]

A sometimes useful rule of thumb in building Strong PRPs:
Do what you did for PRPs, twice

... and then spend >2x the time checking/proving it works

Fast TPRPs: XEX construction

[Rogaway 2004]

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume 7 = {0,1}" x [0..2" — 2]

~

E(K,(T,i),M) =Ex(M®A)@® A A= FEg(T) -2

i M Ok we did it twice. Done?
T —> Ex FOT—>® Not quite: can’t use tweak (T,0) forany T
1% —
adversary A9¢

N <« O-1((0™,0),0™)
C' <+~ O((0™,1),2N)
C' « O((0",2),4N)
If C = C" then Ret 1
Ret 0

Fast TPRPs: XEX construction

[Rogaway 2004]

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume 7 = {0,1}" x [0..2" — 2]

Just don’t allow O
E(K,(T,i),M)=Ex(M®&AN)&A A=Eg(T)- 2

20 N=E(O") Ok we did it twice. Done?

on—> Ex —O—>D Not quite: can’t use tweak (T,0) forany T
Dk —
adversary A®¢
—0 N« O-1((0",0),0")
or C O((0",1),2N)

C" +— O((0™,2),4N)
If C = C" then Ret 1
Ret 0

Fast TPRPs: XEX construction

[Rogaway 2004]

Given a good PRP (e.g., AES) how do we build a tweakable PRP?
Assume 7 ={0,1}" x [1..2" — 2]

Just don’t allow O
E(K,(T,i),M)=Ex(M®&AN)&A A=Eg(T)- 2

20 N=E(O") Ok we did it twice. Done?

on—> Ex —O—>D Not quite: can’t use tweak (T,0) forany T
Dk —
adversary A®¢
—0 N« O-1((0",0),0")
or C O((0",1),2N)

C" +— O((0™,2),4N)
If C = C" then Ret 1
Ret 0

Block ciphers, Tweaks, and Shufflin’

* Recall PRFs and PRPs

* Feistel and Shuffling
— Thorpe

 Tweakable block ciphers
— Built from Thorp

* Mix-and-Cut Shuffle
— Pseudorandom separators

 Tweakable block ciphers from PRPs:
— Simple LRW construction
— XE(X) constructions

Lecture plan

1. Tweakable PRPs and shuffling
2. Nonce-based symmetric encryption
3. Format-preserving encryption
4. Further symmetric primitives

Lecture 2:
Nonce-based Symmetric Encryption

Thomas Ristenpart
University of Wisconsin

Lecture plan

1. Tweakable PRPs and shuffling
2. Nonce-based symmetric encryption
3. Format-preserving encryption
4. Further symmetric primitives

Outline

* Nonce-based Symmetric Encryption
— Security notions

* OCB (Offset Codebook Mode)
e 2-pass Modes

Deficiencies in prior treatments

* Encryption and authenticity as separate
primitives leads to problems

— Get the order wrong
— Hard to implement properly

* Nonces are a problem in practice
— Bad randomness

— Counters get replayed
— Failure modes are bad (e.g., CTR mode)

* Speed is very important
— Generic composition = 2 cryptographic passes

The expanding role of SE

* Recognition that the crypto should do more to
help implementers

* Crypto needs to work around system
constraints

— Bad nonces should be protected against to best
extent possible

— APl should be simple

— Systems often can’t be redesigned (e.g., format-
preservation, passwords)

Symmetric encryption

key generation (randomized)

$
kg

1
l K l

S
M—> enc —>C C—> dec —s Mor
error
Encryption randomized
SE = (kg, enc, dec) VM . Pr[dec(K,enc(K,M))=M]=1

Probability over coins of kg and enc .

Nonce-based symmetric encryption

key generation (randomized)

S
kg
K
N | N
enc | C dec Mor
M | C error
Encryption deterministic
SE = (kg, enc, dec) VN, M . Pr[dec(K, N,enc(K,N,M)) = M]

Probability over coins of kg

Associated data

K

Z
=

enc | C | dec | M or
M | C | error

In most applications of encryption, need to consider plaintext data
that should be cryptographically bound to ciphertext

e C(Called associated data

 Think of N now as a vector of bit strings

* Security notions are same (constructions can treat long N)

For simplicity we’ll just think of N as a short nonce

Nonce-based security: two flavors

Game REALSsg Game RANDgg
K +s{0,1}* K +s{0,1}*
b/ P AEnc b/ s AEnc
ret b’ ret b’
Enc(N, M) Enc(N, M)
C' < enc(K,N, M) C' < enc(K,N,M)
Ret C C <s{0,1}¢
Ret C'

AdvE®(A) = [Pr[REALZ = 1] — Pr[RANDg = 1]]

Nonce-respecting adversaries: all queries unique N

Repetition-respecting adversaries: all queries unique (N,M)
Also called deterministic AE (DAE) security

IndS IndS
nonce- a repetition-
respecting respecting

Example: CTR mode using nonces

N+ 1 N+2 N+3
Nonce is N % % %
EK EK EK
P1 P2 P3
M1 —¢ Mz—é M34¢
C1 C2 C3

Is this secure against nonce-respecting adversaries? No!

Query C0,C1,C2 <- Enc(O", 02")
Query C0’,C1’,C2’ <- Enc(0™11,0%")
If C1’ =C2 then Ret 1

Ret O

Example: CTR mode using nonces

N N +1 N + 2 N +3
EK EK EK EK
l, P1 P2 P3
N M1 —¢ Mz—é M34¢
C1 C2 C3

Is this secure against nonce-respecting adversaries? Yes!
Is this secure against repetition-respecting adversaries? No!

Query C0,C1,C2 <- Enc(0", 0%")
Query C0’,C1’,C2’ <- Enc(0",0"1")
If C1’ = C1 then Ret 1

Ret O

Confidentiality for nonce-based SE

* Nonce-respecting IndS:

— Hides all partial info about plaintexts assuming nonces
are never repeated

— If nonces repeated security may break down

— Traditional IndS/IND-CPA: choose nonce randomly
* Repetition-respecting IndS:

— Also called deterministic AE security

— Scheme is indistinguishable from a random injection

— Implies nonce-respecting IndS

— If nonces repeated security still pretty strong (just
reveal repeat plaintexts)

Nonce-based SE CTXT integrity

Game CTXTgg
K +s{0,1}*

b/ g AEnc,Forge
ret false

Enc(N, M)

C' < enc(K,N,M)
C+— CU{(N,C)}
Ret C

Dec(N, C)

M < dec(K, N, M)

If (N,C) ¢ C and M # L then
Ret true

Ret M

AdvEEt(A) = Pr [CTXTE: = true]

Can’t forge ciphertexts for
new nonces

Provides authenticity

Is nonce-based CTR-mode
secure against CTXT adversaries?

No!

Security for SE schemes

* Nonce-respecting IndS + CTXT
— Not as robust, but allows faster schemes
— Example: OCB
* Repetition-respecting IndS + CTXT
— Stronger security target
— Example: SIV

* Can also give equivalent all-in-one security
definitions.

Game REALsg
K +s{0,1}*

b s AEnc,Dec
ret b’

Enc(N, M)
C' < enc(K,N, M)
ret C

Dec(N, C)
Ret Dec(N, O)

Nonce-respecting:

Never repeat N to Enc

Game RANDgg
K +s{0,1}*

b/ g AEnC

ret b’

Enc(N, M)

C' < enc(K,N, M)
C +s{0,1}/¢l

ret C

Dec(N, C)
Ret L

Can’t query Dec(N,C) if (N,C) from Enc(N,M)

Repeat-respecting:

Never repeat (N,M) to Enc
Can’t query Dec(N,C) if (N,C) from Enc(N,M)

All-in-one notions

See [Rogaway, Shrimpton 2006]

Simple strengthening of CCA
security to also prevent forgeries

CTXT + Nonce-resp. IndS <=>
Nonce-resp. All-in-one IndS

CTXT + Repeat-resp. IndS <=>
Repeat-resp. All-in-one IndS

Reflection on security goals for SE

* 1 primitive, as many security properties as

possible
— Often we

are treating orthogonal properties

e CTXT (unforgeability), IndS (confidentiality)

— We can’t

* More simp

obuild one scheme per property

y:

— target “ro

bustness” / “defense-in-depth”

Outline

* Nonce-based Symmetric Encryption
— Security notions

* OCB (Offset Codebook Mode)
e S|V (Synthetic IV) and Encode-then-encipher

Towards Nonce-based AE

M1 M2
EK EK
C1 C2

Encrypted with ECB

Images courtesy
of Wikipedia

90

CPA-core of OCB mode

Tweakable block ciphers can fix all this!
Let N be an n-bit nonce
and use XE mode (or other suitable tweakable BC):

M1 M2 M3
~N,1 ~N,2 ~N.,3
By By By
C1 C2 C3

Remember our tweakable block cipher mode XE:

T ={0,1}" x [0..2" — 2]

~

E(K,(T,i),M) = Ex(M ® A) A= FEg(T)-2

CPA-core of OCB mode

Tweakable block ciphers can fix all this!
Let N be an n-bit nonce
and use XE mode (or other suitable tweakable BC):

M1 M2 M3
Eg,l Eg@ Egﬁ

C1 C2 C3

Encrypted with OCB

Images courtesy

of Wikipedia 92

Nonce-resp. IndS of OCB CPA-core

Theorem. Let OCB be the SE scheme defined above using a tweakable block
cipher B {0, 1}*x T x{0,1}" — {0,1}" with T = {0,1}"*x[0..2"—2]. Then for
any nonce-respecting adversary A making q oracle queries with m-block messages
and running in time t we give an explicit adversary B such that

Advds(A) < AdviPP(B)

B runs in time t + O(mgq) and makes mq queries.

Standard reduction to switch from real TBC to family of
random permutations

As long as nonces never repeat, then tweak inputs are
unique to every use, selecting distinct random

permutations

Outputs are uniformly random

Nonce-resp. IndS of OCB CPA-core

Adv

ind$
OCB

M1 M2 M3
~N,1 ~N,2 ~N.,3
By By By

C1 C2 C3

Reduce to
adversary B

Theorem. Let OCB be the SE scheme defined above using a tweakable block
cipher B {0, 1}*x T x{0,1}" — {0,1}" with T = {0,1}"*x[0..2"—2]. Then for
any nonce-respecting adversary A making q oracle queries with m-block messages
and running in time t we give an explicit adversary B such that

(A) < Adv'P"™(B)

B runs in time t + O(mgq) and makes mq queries.

M1 M2 M3
'ﬁ'N’l 'ﬁ'N’Q 7:{_]\7,3
Cl C2 C3

Each random perm used on at most one point
C1, C2, C3 all independent uniform points

How to get CTXT integrity?

Game CTXTgg
K +s{0,1}*

b s AEnc,Forge
ret false

Enc(N, M)

C' < enc(K,N, M)
C<+CU{(N,C)}
Ret C

Dec(N
]\46(1 (je(ZgK N, M) Trivially CTXT insecure as every 3n-bit
If (N,C) ¢ é ar,ld M # | then string is a valid ciphertext
Ret true
Ret M |deas for getting CTXT?

95

How to get CTXT integrity?

Game CTXTgg

K +s{0,1}*

b/ g AEnc,Forge

ret false Eg’l

Enc(N, M)

C' < enc(K,N, M)
C<«+ CU{(N,C)}
Ret C

Dec(N, C)

M < dec(K, N, M)

If (N,C) ¢ C and M # L then
Ret true

Ret M

Add integrity checksum.
Tweak N,z used for checksum call must be
distinct from all other uses of TBC

Here M1 + M2 + M3 is XOR of
message blocks.

Why not C1 + C2 + C3? (Insecure) %

How to get CTXT integrity?

Game CTXTgg
K +s{0,1}*

b s AEnc,Forge
ret false

Enc(N, M)

C' «+ enc(K,N, M)
C <+ CU{(N,C)}
Ret C

Dec(N, C) — New N means:
M < dec(K,N, M) inverse of T random
It (N,C) ¢ C and M # L then L
Ret true New C means:
Ret M one of M1, M2, M3, inverse of T
—_— random
Either way, low prob. of hitting a correct T

How to get CTXT integrity?

Theorem. Let OCB be the SE scheme defined above using a tweakable block
cipher E: {0,1}% x T x {0,1}" — {0, 1} with T = {0,1}" x [0..2" — 2]. Then
for any adversary A making q oracle queries with m-block messages and running
in time t we give an explicit adversary B such that

1
AdviER(A) < AdvEPP(B) +

2" —1

B runs in time t + O(mq) and makes mq queries.

| described simplified OCB: only works with fixed-length messages of mn bits
(don’t implement as I've described!)

Full OCB handles:
* Messages that aren’t multiple of n bits
e Uses slightly more complex XEX TBC construction for super fast tweaking

 See [Rogaway 2004]

OCB repetition-resp. IndS Security?

Game REALSsg Game RANDgg
K +s{0,1}* K +s{0,1}*
b/ P AEnc b/ P AEnc
ret b’ ret b’
Enc(N, M) Enc(N, M)
C <+senc(K,N, M) C <+senc(K,N, M)
Ret C C <s{0,1}¢
Ret C

Repetition-respecting adversaries: all queries unique (N,M)

M1 M2 Adversary A:
l l C1,C2 <- Enc(N, 0"0")
C1’,C2’ <- Enc(N, 0"1")
E~N,1 EN,Q If C1 =C1" thenRet 1
1S K Ret 0
l l AdviidS (A) =1
C1 C2 VOCB() — T on

2’7’L

Cycles/byte

Recap of OCB

* OCB gives fast, single pass nonce-respecting

scheme

 OCB doesn’t give repetition-resp. security
* OCB remains fastest AES-based AE scheme

From [Krovetz, Rogaway 2011]:

P A -3 C O O [SER] N = v N O
| S N N N N N [[I |

i i e)
o - B h > g T =

S =

: CCM
3 x86-64 AES-NI o
3 Time OCB3
Y CTR

“.‘ A

Message length (bytes)

Outline

* Nonce-based Symmetric Encryption
— Security notions

* OCB (Offset Codebook Mode)
e S|V (Synthetic IV) and Encode-then-encipher

Single pass can’t give repetition-

Single pass means process each message
block once, constant memory state

M1

Cl

respecting security

M2

Encryption process
(n bits of memory)

C2

M3

C3

Game REALsg

K +s{0,1}*
b/ g AEHC
ret b’

Enc(N, M)

C <senc(K,N, M)
Ret C

Game RANDgg
K +s{0,1}*

b/ P AEnc

ret b’

Enc(N, M)

C <senc(K,N, M)
C s {0,1}/Cl
Ret C

Must output ciphertext bits before processing all message bits
BUT: Can never be repetition-resp IndS secure!!!

Two-pass modes

* Single-pass mode can’t achieve repetition-
resp. IndS

 We will see 2 two-pass modes

— SIV mode
— Encode-then-Encipher

Two-pass construction (SIV mode)

[Rogaway, Shrimpton 2006]

CTR mode , IV C

Two-pass construction (SIV mode)

[Rogaway, Shrimpton 2006]

IV ’ | CTR mode | IV, C

Apply PRF to nonce and message to derive new nonce for use with encryption
Decryption: check the IV included in C

Intuition for IndS security:

N,M never repeat, guaranteed random IV fed to encryption
Intuition for CTXT security:

change to any ciphertext component changes M or IV

Encode-then-encipher

Say we have “wide-block” tweakable BC secure as SPRP that
accepts arbitrary-length inputs

If T=0!then
ret M
0 || M TIIM Ee
ret error
E¥ Dy
C C

Original analysis (without tweaks) in [Bellare, Rogaway 1997]
Intuition: TBC randomizes everything, low probability of hitting Ot
TBC on long inputs are all two-pass (we will see examples soon)

Any security difference between
SIV and Encode-Encipher?

* Both meet Repetition-resp. IndS + CTXT
— What do you think?

* Encode-Encipher also provides Strong PRP

— This seems to add robustness

* Crisply clarifying this issue is a good question
for future research

A high level summary

Scheme ________| i of cryptographic passes

OCB 1 Nonce-resp.
SIV 2 Repeat-resp.
Encode-then-Encipher 3 Strong PRP / Repeat-resp.

“

We'll see this in next lecture

108

Recap

 Make SE more robust
— Any nonce works (don’t need random one)

— Nonce failures should be handled gracefully
* Possible with repetition-resp. security

— SE based on strong PRP may be even better

e Target easy-to-use interfaces
— Encrypt(), Mac() versus Encrypt(N,M)

 Tweakable PRPs good starting point for
building such SE schemes

Lecture plan

1. Tweakable PRPs and shuffling
2. Nonce-based symmetric encryption
3. Format-preserving encryption
4. Further symmetric primitives

Lecture 3:
Format-preserving encryption and
special cases

Thomas Ristenpart
University of Wisconsin

Lecture plan

1. Tweakable PRPs and shuffling
2. Nonce-based symmetric encryption
3. Format-preserving encryption
4. Further symmetric primitives

Outline

Motivation for FPE
Formalization of FPE
Rank-Encipher-Unrank

— Ranking for regular expressions
— Integer FPE

Integer FPE schemes for small domains
Disk-sector / FPE schemes for large domains

Example #1: Disk sector encryption

Say we want to do full-disk encryption sector-by-sector
Plaintext = 4096 bytes
Ciphertext = 4096 bytes How to build TBC on 4096 bits
given BC with n = 1287

4096 bits 4096 bits
Sector 1 [S IAI | Bk g 00110
>ector 2 _ | B gf M
Sector 3 o E3 : 100

114

Example #2: Data field encryption

Jane Doe 1343-1321-1231-2310 Database schemas
and software require

Thomas Ristenpart 9541-3156-1320-2139
John Jones 5616-2341-2341-1210 <= 16 decimal digits
Eve Judas 2321-4232-1340-1410 and valid Luhn

checksum

AES, : {0,1}128 — {0,1}128
M = 2321-4232-1345-1415

Ciphertexts are too big for l
replacing plaintext within
| AES
database! K 198 bits

l
©

115

Example #2: Data field encryption

Jane Doe Database schemas
and software require
<= 16 decimal digits
and valid Luhn
checksum

Thomas Ristenpart
John Jones

Eve Judas

Encryption tool whose ciphertexts are also credit-card numbers

Valid credit-card number

!

E, : [0..9]16 —> [0..9]6 E,

!

Valid credit-card number

Format-preserving encryption (FPE)

Enjoys format N Enjoys format N

Disk sectors / payment card numbers just two examples
Some others:

1) Valid addresses for a certain country
2) 4096-byte disk sectors
3) Assigned Social Security Numbers (9 digits, without leading 8 or 9)

4) Composition of (1) and (3)

117

History of FPE:

FIPS 74 (1981) --- DES to encipher strings over some fixed
alphabet (e.g. decimal digits)

Ad-hoc
Brightwell and Smith (1997) --- datatype-preserving approaches

encryption

Hasty pudding cipher (1998) --- variable block-length blockcipher

Black, Rogaway (2002) --- special case of FPE (arbitrary set encryption)

Voltage, Semtek, etc. --- promote use of commercial FPE technologies

Spies (2008) --- FFSEM submitted to NIST as potential standard
for FPE. Based on Black, Rogaway techniques

Bellare, Ristenpart, Rogaway, Stegers (2009) --- formal treatment of FPE

Bellare, Rogaway, Spies (2009) --- FFX proposed standard submitted to NIST

Format-preserving encryption (FPE) [Bellare, Ristenpart,
Rogaway, Stegers "09]
Format N —
Tweak T—> E, —— Ciphertext C or L

Message M —

N ={N1,N2,...} is format space (set of formats handled)
Domain is X = {X }ye
Tweaks [LRWO5] required

Slices of
domain . E(K,NL1,T,)
. . >

(finite sets)

\ E(K,N,T, ®) is

E(K,N2,T, *) permutation
> for all KN, T
E(K,N3,T, *)
>

Format-preserving encryption (FPE) [Bellare, Ristenpart,
Rogaway, Stegers "09]

Format N —>
Tweak T—> E, —— Ciphertext C or L

Message M —

AES is an FPE (with singleton tweak space)

Domain is X = {X,,; } where X, ={0,1}1?

E(K, *)

Format-preserving encryption (FPE) [Bellare, Ristenpart,
Rogaway, Stegers "09]
Format N —
Tweak T—> E, —— Ciphertext C or L

Message M —

Encrypting Credit Card Numbers (CCNs) with valid Luhn digit

Domain is X = {X }ye o Where /N ={12,13,14,15,...,20}
X, = {XE{0,1,...,.91N | LuhnOK(X) }

Example E(K,16,T,)
slice:

All 16-digit CCNs
with valid Luhn digit

121

Format-preserving encryption (FPE) [Bellare, Ristenpart,
Rogaway, Stegers "09]
Format N —
Tweak T—> E, —— Ciphertext C or L

Message M —

Encrypting members of a regular language L

Domain is X = {X }ye o Where N ={0,1,2,3,...}
Xy={0, AN NL

Example E(K,130,T,)
slice:

All 130-bit strings in L

122

Format-preserving encryption (FPE) [Bellare, Ristenpart,
Rogaway, Stegers "09]
Format N —
Tweak T—> E, —— Ciphertext C or L

Message M —

Encrypting integers [We call this Integer FPE 1
Domain is X = {X }ye o Where N ={1,2,3,...}
Xy=2Z,
Example E(K,400,T, *) R

slice:

Any number between 0 and 399

123

Security for FPE

Game SPRP1 Game SPRPOx 1
K +s{0,1}* for (N,T) e X x T
b s AEKC).Dic(0n0) T(N,T,-) s Perm(Xn)
ret b/ b s ATC)
ret b’

Adv"?(A) = |Pr [SPRP1} = 1] — Pr [SPRPO% = 1]

Allows adversarial format, tweaks

PRP security variant disallows inverse queries

Attacker can detect repeats if same tweak, format, message
Special case is strong tweakable PRP security we’ve already seen

General construction of FPE schemes: Rank-then-Encipher

N ={N1,N2,...} some arbitrary format space
Domain is X = {X }yen

E(K,N,T, ») EIONT, *) s
> permutation
for all K,N,T
4 Task 1: o
Specifying
fast rar\kmg lRank(Nl, ¢) Unrank(N1, ®)T
. functions
\
E(K,s1,(N1,T), *) 1ask 2.
s1=]2, > Fast, secure
integer FPEs

)

Just need integer FPE for /N ={s1,s2,...} where s1 = | X, |, s2 = | X\;, |, ---

E inherits security of E. Proof is easy

125

Rank-then-Encipher Task 1: Fast ranking schemes

Specialized constructions Last digit of CC number

is checksum fully determined

b ding 15 digit
X, = {XE{0,1,...,9}6 | LuhnOK(X) } y preceding 15 digits

1) Compute number X that is

Rank(N, D; ... Dy5Dyg) base-10 represented by D, ... D,

! 2) Return X
Z1015
1) Compute base-10
Unrank(N, X) representation of Xas D, ... D¢
2) Solve for Luhn digit D
Y 3) Return D, ... D, Dy

Xy

126

Rank-then-Encipher Task 1: Fast ranking schemes

General constructions for regular languages

Regular languages naturally describe many
formatting constraints!

X =L for any regular language L
N={0,1,2,3,..}
Let X, ={0,1}NNL

[BRRS09] gives polytime Q = number of DFA states
Rank(N, ¢), Unrank(N, ®) 2 = the alphabet |
following [Goldberg, Sipser ’'85] Nmax = length of !ongest string
Based on dynamic programming N = length of string to be ranked
/Requires DFA I Precomputatlon.:
, CN., +| 2 [-Q time, c-N___ -Q space
representation of L.
Starting from regex is rank: O(N)

. PSPACE-complete unrank: O(N ¢ | 2 |) 127

Limits of Rank-then-Encipher approach

Theorem [BRRS 09] Suppose there exists a one-way function. Then there is
a domain X = { X} that admits a PRP-secure FPE scheme but for which {JX}
cannot be efficiently ranked.

N = simple, undirected graphs G

X = all proper k-colorings of G for k = 2d+1
(d is max degree of any vertex)

[Bubley et al. ‘99] prove that counting
number of k-colorings is #P-complete

$

Can’t exist efficient Unrank(N, .) if P # #P

Modify [Jerrum ‘95] results to give direct FPE on proper k-colorings s

General construction of FPE schemes: Rank-then-Encipher

N ={N1,N2,...} some arbitrary format space
Domain is X = {X }yen

E(K,N,T, ») EIONT, *) s
> permutation
for all K,N,T
4 Task 1: o
Specifying
fast rar\kmg lRank(Nl, ¢) Unrank(N1, ®)T
. functions
\
E(K,s1,(N1,T), *) 1ask 2.
s1=]2, > Fast, secure
integer FPEs

)

Just need integer FPE for /N ={s1,s2,...} where s1 = | X, |, s2 = | X\;, |, ---

E inherits security of E. Proof is easy

129

Rank-then-Encipher Task 2: Integer FPE schemes

Required domain is X ={Z}, e a-Wwhere N ={1,2,3,...}
* We will focus on one slice: cipher on Z for someN &€ N

e Build using conventional n-bit block cipher (AES)

* Target conventional strong PRP security

“Small-block | Example:
N < 2" | encryption” |n=128 Shuffling algorithms from last segment
problem N=10"= 230
Security:
. - n/2
“Wide-block EXfTZpSIe' Fastest solutions are of | 0(2"%)
N . ” -
N2 2 e:g;‘l’zrl:]on N = 4096*8 (ES'\t/;Ezt'uf]'\e/'dC)' TED, o sWle | peeiency:
P Y O(log N) AES
calls 130

Rank-then-Encipher Task 2: Integer FPE schemes

Required domain is X ={Z}, e a-Wwhere N ={1,2,3,...}
* Used to operating on bit strings, but N often not power-of-2

* Many shuffling constructions work for arbitrary N
* Mix-and-cut, Swap-or-Not, Sometimes-Recurse, etc.
* So far a bit slow for practical deployment

* In practice: FFX mode based on some radix (e.g., r = 10)

d digits d digits E\y’lvi?jrkr:;?co
R specifier This works for N
a power of some
T, N radix. What about
when not?
FKl
>D Now use addition
modulo rd
R

FFX specification heuristically suggests

10 rounds of Feistel. (Fast) 131

Unbalanced Feistel-based FPEs
Format space is /N ={(a,b) | 2<a<b}and X, =2,

SplitinputM e Z_, intol,€ Z,and R, € Z,

Apply R rounds of an unbalanced Feistel network

FE1
Lo R
|
. What if N is prime?
0 Addition
L Ry
‘ / mod a
sl
L R,
|
12
Ls R3

[Hoang, Rogaway 2010] show security up to “N/a queries for enough rounds.
Probably can get by with fewer rounds than they suggest 132

Use cycle-walking [Black, Rogaway 2002]
togo from N ={(a,b) | 2<a<b}to N ={1,2,3,..}

X To encrypt message X € 2,
v Choose a,b so that ab > N
=] |
5
Lo] R]
B -
T ¥ = FE1(K,(3,0),TX) Worst-case running time:
L O(N)
! Expected running time:
Y IsY&E Z,? Yes, stop and output Y O(N/ab)
v
el 1
5
Lo | & l
= | Y= FELUK(@b)T,Y)
g
o] |
v IsY' € Z,? Yes, stop and output Y’

YI

Rank-then-Encipher Task 2: Integer FPE schemes

Required domain is X ={Z}, e a-Wwhere N ={1,2,3,...}
* We will focus on one slice: cipher on Z for someN &€ N

e Build using conventional n-bit block cipher (AES)

* Target conventional strong PRP security

“Small-block | Example:
N < 2" | encryption” |n=128 Shuffling algorithms from last segment
problem N=10"= 230
Security:
. - n/2
“Wide-block EXfTZpSIe' Fastest solutions are of | 0(2"%)
N . ” -
N>2 e:gg\l/zr:on N = 4096 fsll/;EZt,u(;l\e/ldC), TET, ... style Efficiency:
P Y O(log N) AES
calls 134

Length-preserving encryption for large domains

Required domain is X ={{0,1}N} c aA-where /N ={128,129,...}
(128 because of AES)

How to build TBC on 4096 bits
given BC with n = 1287

4096 bits 4096 bits
sector 1 - | Bk g 00110
Sector 2 - | Ek g L0111
Sector 3 01C > E?()hl'li'l'i

Studied extensively due to need for disk-sector encryption

135

Length-preserving encryption for large domains

Required domain is X ={{0,1}N} c aA-where /N ={128,129,...}

(128 because of AES)

Split 4096 bit sector across multiple invocations of XEX

M1 M2 M3

A S

~ ~

N,1 N,2 ~N,3
Ey By Ey

Voo

Cl C2 C3

!

~N,1 ~N,2 ~N,3
By By By

I

What’s wrong with OCB core?
(say N is tweak = sector #)

Each ciphertext block not affected
by all plaintext blocks

What does this leak?

Multiple ciphertexts leak n-bit diffs

Practitioners seem to think this is ok:
XTS mode standardizes variant of this

XTS used in many products
136

Length-preserving encryption for large domains

Required domain is X ={{0,1}N} c aA-where /N ={128,129,...}
(128 because of AES)

We can do better by building wide-block length-preserving ciphers

4096 bits 4096 bits

~

>E}< 00110

Sector 1

~

Ex

Sector 2

E

~

Sector 3 s E3 1100

UK

Change any bit here All bits here randomized
137

Length-preserving encryption for large domains

Required domain is X ={{0,1}N}, c aA-where /N ={128,129,...}

(128 because of AES)

Simple solution is 4 rounds of a type of unbalanced Feistel

4096 bits

A

R

Repeat twice more and

tweak appropriately (via F and G)
v Build F, G from AES

R Security is birthday-bound in
IL| (e.g., up to q = ~2"/2)

a

A
J

<

y Efficiency is poor:
R ~4 AES calls per n-bit input

Length-preserving encryption for large domains

Required domain is X ={{0,1}N} c aA-where /N ={128,129,...}
(128 because of AES)

Faster modes: EME (~2 block ciphers per n-bit input)

P1 P2 PB
L 2 4
PP, PP, PP, SP = PPP, + PPP,
SC = CCC, + CCC,
M =MP + MC
PPP, PPP, PPP;,
PD=—SPaT
| Provably secure up to ~2"/2
2M—=D Y. blocks encrypted in total
MC
Pb=—SCasT .
| cee, | coc, ccc, Proof is super complex
D D D Recast using TBC and get simpler
v ccC, cC, ',CCg prOOf?
L —= 21— AL
v Diagram from [Halevi , Rogaway 2003] 130

Length-preserving encryption for large domains

Required domain is X ={{0,1}N} c aA-where /N ={128,129,...}
(128 because of AES)
Faster modes: EME (~2 block ciphers per n-bit input)

Extending to arbitrary bit-lengths? EME* does.
A generic approach with XLS (eXtension by Latin Squares)

My | |) [| IM,| =jn forj>=0
?Knblts |M2|=n
| My | [M| M | [, | M| <n
I. ! 2s bits
flip mix
| ' - . . .
[, | [a] Ms | (3 | mixis a multipermutation on 2s bits:
! I bits
£
N A B
[C: | [Cut| Ce | [M |
I, 2s bits ?‘—
flip mllx
|
|Cl I|C’4|Cs ||Ca |
' i - >
K n bits @ @

Orthogonal Latin Squares

Latin square: each column and each row include all symbols
Orthogonal Latin square: two Latin squares for which (Ali,j],BlIi,j])
never repeats for distinct i,j

A B
00[{01|10|11 00[10|11 |01
01{00|11 (10 0111|1000
10|11 (00|01 10|/00(01 |11
11|110(01 |00 11|101(00| 10

mix((i,j)) = (Ali,jl,Bli,j])

Sufficiently good approximation of OLS is:
mix(i,j) = (i + rol(i+j), j + rol(i+j))
Where + is xor and rol is circular-rotate left by one bit

Protected IV mode (TCT1)

[Shrimpton,
Terashima 2013]
T H Pad X2X3 XV) 1 <O> <1> <V — 2>

FK’ t l t
T || Pad(Y2Y3---Y,)

¢—JV—> Fr |IV—PFr | o ¢« IV—D [y

Input: (T, X) Frer
X1 Xy X, — X XD X3P X,—~P
(|Xs| =nfori<v, | X,| <n.) Y \ \ \
Output: ¥ =Y1Y>---Y, Y Y, Ys Y.,
- X
~1 BC call + -5
(

~2 finite field multiplications

per n-bit input T—— n Ero

/
N
<—{(p<

Outline

Motivation for FPE
Formalization of FPE
Rank-Encipher-Unrank

— Ranking for regular expressions
— Integer FPE

Integer FPE schemes for small domains
Disk-sector / FPE schemes for large domains

Lecture plan

1. Tweakable PRPs and shuffling
2. Nonce-based symmetric encryption
3. Format-preserving encryption
4. Further symmetric primitives

Lecture 4.
Further symmetric primitives

Thomas Ristenpart
University of Wisconsin

Our game-plan today

We will build two widely needed primitives:

* Nonce-based symmetric encryption
— Contemporary viewpoint on SE
— Two flavors (speed versus security trade-off)

* Format-preserving encryption

— Used widely in industry for fixed-field encryption
(credit card numbers, etc.)

— Length-preserving encryption as special case
* Time allowing: advanced SE primitives such as

message-locked encryption, honey encryption,
password-based encryption,

Further SE Primitives

Dealing with passwords
— PKCS#5 constructions

Multi-instance security
Honey encryption
Format-transforming encryption

These address deficiencies in conventional encryption
schemes in various contexts

Examples of deficiencies:

Deep packet inspection systems can block protocols

—>» Encryption tools are easy to detect

Format-transforming encryption to trick DPI

AY N Dropbox has access to your data

<. Encryption doesn’t allow deduplication to save space

Message-locked encryption to support dedup

Lastpass uses password-based encryption that can be cracked

— Encryption reveals when wrong key is used to decrypt

PBKDFs and honey-encryption

148

Password-based encryption

secret password K People don’t pick good

passwords

(Conventional) | C
Encryption

Password-based encryption

secret password K People don’t pick good

drayvn from set K passwords
of size g
(e.g., g = 10°) y
M (Conventipnal) C
Encryption
Brute force attack given C:
M, <- Decrypt(K,,C) abufdsjklfeqgfds;
M, <- Decrypt(K,,C) hgjkzalcfewjiofw
M, <- Decrypt(K;,C) beertimeat5man

M, <- Decrypt(K,,C) tyeiragjzfjfdajsal

How to deal with
offline brute-force attacks?

* Slow them down by making encryption/
decryption slower

— Standard practice of using hash chains / salts
— PKCS#5 standardizes this
— Used widely in practice

 Make it hard to pick out correct plaintext
— Folklore idea

— Very recently: honey encryption

PKCS #5 : Password based cryptography

pw I H

o

H K

/

H :
H:{0,1} ->{0,1}" is cryptographic hash

function (e.g., SHA-256)

K truncated if needed

PB-Encrypt(pw, M)
salt < {0,1}

K < H(pw| |salt)
C € Encrypt(K,M)
Returnsalt || C

Used widely: Winzip, OpenOffice, Mac OS X
FileVault, TrueCrypt, WiFi WPA (PBKDF), ...

52

Intuition for no short-cut attacks

pw, || salt —}Bf e — H Ky
pw, || salt —B‘B' .. — H K,
pw, | | salt—— H B— .. — H K,

If H is “ideal” (a random oracle) then probability of any two chains
overlapping is small. Surprisingly complex proof, though.

. i . . PB-Encrypt(pw, M)
Proving benefit of iterations salt € {0,1)

K €< H(pw| |salt)

C < Encrypt(K,M)
Returnsalt || C

Let D be set of possible passwords (dictionary)
IND-CPA security is traditional goal here

(shown as single-query version for simplicity):

Enc(Mg, M,):

pw < D My, My

b <{0,1} b’

C < E(pw, M,)

Ret C C A Salts play no role in
IND-CPA security!

Adv(E,A) = PrfA=>b]-1/2 What are they for?

Theorem: PB-Encrypt is such that for all IND-CPA adversaries A
Adv(PB-Encrypt,A) < gq/cN

where N = | D|, ignoring negligible terms and small constants, and modeling

H as a random oracle

An easy brute-force attack works in time close to cN

The role of salts

* Make precomputation attacks harder/not
work

— Rainbow tables are nice time-memory trade-off

— Long salts prevent this, since need to know salt
before attacking system

 Make breaking encryptions under
independent passwords harder

— Attacking encryptions of m independent
passwords require m times the work

.. . PB-Encrypt(pw, M)
Multi-instance attack setting salt < {0,1)
_ K €< H(pw| |salt)
Adversary gets encryptions C,,...,C_ C € Encrypt(K,M)
for unknown messages M,,...,M, under Returnsalt || C

passwords pwg,...,pw,, independently
chosen from D with N= |D]

Salting slows down best known attacks:

With salts:
attack in time O(mcN) recovers all m passwords

Without salts:
attack in time O(cN + mN) recovers all m passwords

Can we prove that “breaking m encryptions”
requires mCN time?

156

Defining two-instance encryption security: try 1

Enc(M,, M,):
pw, € D

C < E(pwy, M)
Ret C

b <{0,1}

bl
Enc(M,, M,):
pw, € D

C € E(pw,, M,)
Ret C

Adv(A) = Pr[A=>b]-1/2

This is the multi-user setting of [Bellare, Boldyreva, Micali 2000]
But it doesn’t work for us: recovering pw, or pw, revealsb

Defining two-instance encryption security: try 2

Enc(M,, M,):
pw, € D My, M,
b, < {0,1}

C < E(pwy, M)
Ret C

Enc(M,, M,):
pw, € D

b, < {0,1} How do we measure
C € E(pw, M,)

Ret C C adversary winning?

Use independent challenge bits in two different instances

Defining two-instance encryption security: try 2

Enc(M,, M,):
pw, € D My, M,
b, < {0,1}

C < E(pwy, M)
Ret C

Enc(My, M,): b,’, by’
pw, € D

b, < {0,1} How do we measure
C € E(pw, M,)

Ret C C adversary winning?

Adv(A) = Pr[A=> (b, b,)]-1/4

Use independent challenge bits in two different instances
AND measure: recover pw, and guess b, gives Adv(A)=%-%="%

Defining two-instance encryption security: try 3

Enc(M,, M,):
pw, € D My, M,
b, < {0,1}

C < E(pwy, M)
Ret C

Enc(M,, M,): b’
pw, € D

b, < {0,1} How do we measure
C € E(pw, M,)

Ret C C adversary winning?

Adv(A) = Pr[A=>(b,®b,)]1-1/2

Use independent challenge bits in two different instances
AND measure: recover pw, and guess b, gives Adv(A)=%-%="%
XOR measure: recover pw, and guess b, gives Adv(A) =0

This is simplified view of multi-instance security notions

Adaptive corruptions (attacker can adaptively
corrupt games, learning, e.g., password)

Extends to primitives beyond encryption

Connections with Yao-style hardness amplification literature

Multi-instance setting surfaces technical challenges

Hybrid arguments no longer easy and incur factor 2™
loss in advantage

Details in [Bellare, R., Tessaro 2012]

161

Back to passwords and PKCS #5...

ow || salt —1 H H e — H K

PB-Encrypt(pw, M)
salt €< {0,1}

Introduce indifferentiability-style K € H(pw| [salt)
simulation-based PBKDF notion C € Encrypt(K,M)

c times

e : .. : Returnsalt || C
to overcome difficulties of multi-instance setting 1

Theorem: PB-Encrypt is such that for all m-IND-CPA adversaries A there exists

an adversary B such that
Adv(PB-Encrypt,A) <(g/mcN + m Adv(Encrypt,B) + g2/ 2" + g%/ 2°
where N = | D], ignoring small constants, and modeling H as a random oracle

162

How to deal with
offline brute-force attacks?

* Slow them down by making encryption/
decryption slower

— Standard practice of using hash chains / salts
— PKCS#5 standardizes this
— Used widely in practice

 Make it hard to pick out correct plaintext
— Folklore idea (one paper in 99 looked at this)

— Very recently: honey encryption

163

Password-based encryption

* PKCS#5 standard:
— Slow down decryption by lots of hashing and salts

— Provably works ...

— ... but only slows down previous attack to O(mcN)

In practice, N is too small

6-digit lower-case alphanumeric

passwords

N = 231

c = 10000

q=2%* tosucceed

LastPassEXXEIa

The Last Password You'll Ever Need.

Password-based encryption

secret password K

drawn from set K
of size g
(e.g., g =10°) :
M i PB-Encrypt | C

What if we could build encryption so that:

Brute force attack given C:

M, <- Decrypt(K,,C) abufdsjklfeqgfds;
M, <- Decrypt(K,,C) hgjkzalcfewjiofw
M, <- Decrypt(K;,C) beertimeat5man

M, <- Decrypt(K,,C) tyeiragjzfjfdajsal

Password-based encryption

secret password K

drawn from set K
of size g
(e.g., g =10°) :
M i PB-Encrypt | C

What if we could build encryption so that:

Brute force attack given C:

M, <- Decrypt(K,,C) yvehudarocks

M, <- Decrypt(K,,C) yabbadabbado
M, <- Decrypt(K;,C) beertimeat5man

2
2

M, <- Decrypt(K,,C) isthislectureoveryet

[Juels, R. —2013]

Honey encryption

 Same API as password-based encryption
schemes

— Secure in conventional sense
e But use special encodings to ensure that

decrypting ciphertext with *wrong* key yields
fresh sample from some target distribution

e Attacker can’t figure out which is right
message

Honey encryption for prime numbers

secret passwo rd K K Useful to store secret keys for
drawn from set some crypto systems (RSA) [HK99]

of size g

P i PB-Encrypt | C

1024-bit prime number
Run primality tests to see which is prime. FP
probability about 1 / 1024 for each candidate

Brute force attack given C:

M, <- Decrypt(K,,C) 100
M, <- Decrypt(K,,C) 321849
M, <- Decrypt(K;,C) 0883

M, <- Decrypt(K,,C) 16

Honey encryption for prime numbers

secret passwo rd K K Useful to store secret keys for
drawn from set some crypto systems (RSA) [HK99]

of size g

Honey
P Encryption C
1024-bit prime number
All outputs of decryption are uniformly

distributed prime numbers!
Brute force attack given C:

M, <- Decrypt(K,,C) 102953
M, <- Decrypt(K,,C) 56431
M, <- Decrypt(K;,C) 9883

M, <- Decrypt(K,,C) 26171

Honey encryption for prime numbers

secret password K K
drawn from set
of size q)
P Honey
Encryption

1024-bit prime number

Uniform
prime
number

P

Fresh uniform
Prime number

P’

Distribution-
transforming
encoder

Distribution-
transforming
decoder

Uniform
bit string

Fresh
uniform
bit string

Useful to store secret keys for
some crypto systems (RSA) [HK99]

K

(Conventional™)
Encryption | C

K’

(Conventional™)
Decryption C

Honey encryption for prime numbers

secret passwo rd K K Useful to store secret keys for
drawn from set some crypto systems (RSA) [HK99]
of size g l
P a HoneY o
Encryption

1024-bit prime number

Thm (roughly). No attacker A can recover message with
probability better than 1/ g

Proof requires interesting non-standard balls-and-bins analyses

Security bound essentially optimall

171

[Juels, R. —2013]

Honey encryption

* Only have DTEs for some messages types
— Uniform prime numbers
— Credit-card numbers

 Want to build ones for messages being

— Passwords (to help out poor Lastpass)
— Others?

Examples of deficiencies:

Deep packet inspection systems can block protocols

—>» Encryption tools are easy to detect

—> Format-transforming encryption to trick DPI
AV N Dropbox has access to your data

> >
<! —> Encryption doesn’t allow deduplication to save space

—>» Message-locked encryption to support dedup

Lastpass uses password-based encryption that can be cracked

— Encryption reveals when wrong key is used to decrypt

—> PBKDFs and honey-encryption
173

Protocol identification via
deep-packet inspection (DPI)

Client of

protocol X
("“

Server of
DPI system protocol X

®.L

((!5\ P

Check packet contents against regular expressions
/M (\x16\x03[\x00\x01\x02]..\x02...\x03[\x00\x01\x02] |...? .*/

Free translation: Does packet include “I’'m TLS 1.1” ?

DPI users want to identify protocol X
X =TLS or Tor then throttle connection

X = HTTP then leave it alone
X = 7?7 then throttle traffic

174

TLS1.1 ...

A43FB89CD213F31456
DPI systems can classify Encryption doesn’t attempt
encrypted protocols to hide its presence

gz | Iran reportedly blocking encrypted Internet
g traffic

& | The Iranian government is reportedly blocking access to websites that use the ...

e | by Jon Brodkin - Feb 10 2012, 9:44pm IST _

175

Directly connecting users from the Islamic Republic of Iran

12000 -

10000 - h

8000 -

6000 -

- +

2000 -

| | | | |
Dec-2010 Jan-2011 Feb-2011 Mar-2011 Apr-2011

The Tor Project - https://metrics.torproject.org/
176

Scenario:
DPI system only allows HTTP traffic unfettered

Tor client

®.

((44\

DPI system Tor proxy

Stegonagraphy (e.g., Stegotorus): embed bits into HTTP messages

- Too slow for practical use (56k modem anyone?)

Obsfproxy (built into Tor): encrypt all bits sent over network (no plaintext bits)
- Really fast

- But DPI will flag traffic as ???

Want way to force DPI to classify traffic incorrectly as HTTP
So-called “misclassification attacks” against DPI

177

Surveying modern DPI systems

System Look at TCP stream Uses regex’s | Use’s C/C++
ports? reassembly

ApplD
L7-filter
Yaf

Bro

nProbe

Proprietary*

* Hint: it’s a serious product (~¥$10k) and similar ones seem to be used in Iran.

Yes No
Yes Yes
Yes Yes
No Yes
Yes Yes

Yes
Yes
Yes
Yes

Not explicitly
?

No
No
No
Yes

Yes
?

Can we build encryption schemes that

fool regex-based systems?

178

[Dyer, Coull, R., Shrimpton — CCS 2013]

Attacking DPI

Cryptographic
secret key K

. C looks like
M (Conventional) | C
Encryption random
junk. Won’t

look like HTTP

[Dyer, Coull, R., Shrimpton — CCS 2013]

Attacking DPI

Cryptographic

Regular expression R
K, R specifying desired

{0,...[L(R)[-1} Format-
Encryption match against R
L(R)
Ranking for DFAs (1985). [Goldberg-Sipser "85]
But want it now for regexes: [BRRS "09]
Regex R NFA M DFA M’

Exponential blow-up in worst case. We show that here it is ok.

[Luchaup, Jha, R., Shrimpton —

Approximate ranking for NFAs oreparation 2013]

We build a complete FTE record layer and proxy system

FTE(K,R,, M,)
ﬁk) e FTEK R1 Ml)
- /Ny, WV

“’” client

Client of
protocol X @
format
(R,k,m)
4 4
o
C > split ! unrank
X FTE
c) R x||c’, Cﬁohertext
Encrypted
CTRi1(IM[[| M) T

HMACy »()
|

FTE
server

Server of
protocol X

Encrypts stream of data with AE using
shared keys

Splits up ciphertext into unrankable
chunks

Library of regexes specifying formats
Handles regex negotiation with server
Many efficiency hurdles

181

We build a complete FTE record layer and proxy system

@ - FTE(K,Rl, M1)
@@)ﬁfi FTE FTE(K,R,, M,) rTC

Az client server
Client of Server of
protocol X protocol X

You are protocol Y!

Want to trick DPI into thinking we’re protocol Y =X
Where do we get R; and R, ???

(1) Easy to manually craft We build regexes for
(2) Get from DPI themselves variety of “cover” protocols:
(3) Learn from traffic samples | Y =HTTP, SSH, SMB, SIP, RTSP

182

FTE forces protocol misidentification

5 . FTE(K,R,, M)

> =
ﬂp\ | FTE FTE(K,R,, M FTE
\J(@/% 7 Client 2

c~T

[2 V server

Server of
protocol X

Client of
protocol X

Tests with gets on Alexa Top 50 sites (X = mix of HTTPS/HTTP)
R, R, setto HTTP, SSH, SMB, and more. When do we trick DPI ?

System DPI-derived | Manual Learned
regex’s regex’s regex’s

AppID Always Always Always
L7-filter Always Always Always
Yaf Always Always Always
Bro Sometimes Always Always
nProbe Never Always Almost always

I Proprietary Always Always Always | 183

Target Protocol: HTTP

1.0
0.8
« 0.6
204
0.2
0.0

0 2 4 6 g 10 12

Download Time (seconds)
Top 50 Alexa websites

socks-over-ssh

intersection 42 Mbps goodput (manual/extracted regexes)
2 Mbps goodput (learned regexes)

58 Mbps goodput baseline

auto .

manual

We added our record layer to Tor

FTE FTE
client) . server

Virtual private
server in China

Tor proxy
in Wisconsin

We rented virtual private server in China. Setup Tor proxy in WI

Confirmed vanilla Tor blocked on this setup

FTE never blocked as we expected

Working with Tor team to put FTE in main bundle

185

Examples of deficiencies:

Deep packet inspection systems can block protocols

—>» Encryption tools are easy to detect

—> Format-transforming encryption to trick DPI
AV N Dropbox has access to your data

> >
<! —> Encryption doesn’t allow deduplication to save space

—>» Message-locked encryption to support dedup

Lastpass uses password-based encryption that can be cracked

— Encryption reveals when wrong key is used to decrypt

—> PBKDFs and honey-encryption
186

Deduplication

%+ Dropbox

(3
\\ <
\(L o .)
\J‘f%i; myFile”, 010101'; User Filename Contents
User A A myFile 010101...
’ Cloud B thefile 010101..
(& 77\ “theFile”, 010101... storage
W, L ;
= Dropbox saves on storage
User B

by storing (logically) only
one copy of file contents

Deduplication
Find duplicate files and remove redundant copies

187

{ Dedup doesn’t work with conventional client-side encryption }

a@»ﬂ/j “myFile”, C,
C, =E(K, M) \ >

e —
=

Contents
CA
CB

User A User Filename

myFile
'' theFile

—“theFile”, C,

Service must
store both
C,and C;

Even when file contents M same for both users, C, and C; will
appear to be independent, random bit strings

188

%+ Drophbox
K, < KeyGen()

EMC ¥ . E(K, M)

NetApp

Deduplication saves Encryption doesn’t
space allow deduplication

<"\\ _«». |TUESDAY, APRIL 12, 2011

<! « ~ |How Dropbox sacrifices user privacy for cost savings
- by Christopher Soghoian

Corporations outsource storage/backups and deduplication
But: data must be encrypted before it leaves network

NetApp

189

Prior work

(Distributed) storage literature: Systems:
[Batten et al. 01] Flud

[Douceur e\tal. 02] Convergent TahoeFS
[Cox et al. '02] —>

[Cooley et al. *04] encryption (CE) Ciphertite
[Killijian et al. "06] GNUnet
[Wilcox-O’Hearn, Warner 08]

[Storer et al. "08] Companies:
... (many more) bitcasa

Crypto literature:

(this space intentionally left blank)

What security is achieved? Are there other approaches?

190

Conventional symmetric encryption has
3 algorithms:

KeyGen() K D(K,C) M

M | E(K,M) —> C

[Bellare, Keelveedhi, R. — Eurocrypts13]

We formalize a new cryptographic primitive:
Message-Locked Encryption (MLE)

M — KeyGen() =»K — D(K,C) - M

I

V] > E(K,M) —» C—> TagGen(C) —T

* Keygen, Encrypt may be randomized
e TagGen, are deterministic

The big idea:

message is “shared secret material”

used to derive keys

[Bellare, Keelveedhi, R. — Eurocrypts713]

Using MLE with deduped storage

Ky < KeyGen(M) \Jﬁi\(\% “myFile”, C,
CA % EnC(KA/M)

>
Storage server:

| T <— TagGen(C,)
T'<— TagGen(Cy)

User A

Ky <— Keygen(M) If T=T then
Cs < Enc(Kg,M) store C,
else

--- store C,, Gy

Ky, Kz can be encrypted and stored using conventional scheme
Space savings when: |K,|, |K;| << [M] 193

Message privacy security?
Let {M,, ..., M_ } be set of possible messages

Let C<—Enc(KeyGen(M.), M.) for random i and give adversary C

L\

BruteForce(C):
T<+-TagGen(C)
Forj=1tomdo
K; <— KeyGen(M,)
C < Enc(K;, M;)
T, <~ TagGen(C)
If T="T, then
Return Mj

Works against any scheme

Runs in time O(m)

Privacy for MLE schemes only possible
for unpredictable messages

194

[Douceur et al. 2002]

Convergent encryption ettt ‘96 (clarke et . ‘00

[Wilcox-O'Hearn "00]

Deterministically encrypt M under cryptographic hash H(M)
CE as an MLE scheme:

Dec(K,C):
KeyGen(M):
ret K <—H(M) K rl\gtT/ID(K’C) M
M
Enc(K,M): _
C—E(K,M) I{fole(gc)' T
ret C

E is deterministic symmetric scheme E (decryption via D)
(e.g., CTR-mode AES with constant V)

Non-triviality: |K| = 128 bits while M can be arbitrary length

Used in TahoeFsS,

Hash-and-CE (HCE) scheme o2

Dec(K,C || T):
KeyGen(M): K
M <—D(K,C
ret K< H(M) et M (K,C) M
M
Enc(K,M):
C<E(K,M) | TagGen(C||T): T
T<H(K) Ret T
retC||T

In paper two new schemes:
e Hash-and-CE 2 with tag check (HCE2)
 Randomized CE (RCE) that achieves single-pass MLE

Why? All three schemes are faster than CE

Security analysis of fast MLE schemes
In-use CE and variant HCE + 2 new schemes HCE2 and RCE

2 new privacy deﬁnmons 2 new mtegrlty deﬁnmons
o
TagGen time
11.8 cpb
HCE 6.6 cpb Yes Yes No No
HCE2 6.6 cpb Yes Yes Yes No
RCE 6.5 cpb Yes Yes Yes No

Proofs of message privacy for unpredictable message spaces

Proofs of, or attacks against, integrity

Attack against HCE used by TahoeFS that erases user’s messag@

Duplicate faking attacks and MLE inteﬁrit%

Storage server:
$ ’
C, < FakeCtxt(M,M’) “myFile”, C, T <— TagGen(C,)
>

User A T'<— TagGen(Cy)
““ If T=T then
Ky < Keygen(M) vy _ ., store C,
Cs < Enc(Kg,M) 6@@\5[; theFile”, C, >\| else
__ Jser8 store Cy , Cg
¥ _ /
A [Get “theFile” :
M’ << Dec(K,,C,) 6@};{% > Service stores /
UserB . Cl, just CA

T —

1) Adversary knows M, makes fake C,, uploads it
2) User B uploads honestly-generated Cg, server dedups
3) User B later gets back corrupted file!

198

Duplicate faking attacks and MLE inteﬁrit%

C, & FakeCtxt(M,M'X% “myFile”, C,
>

Storage server:

User A
Attack against HCE:
Encrypt(K,M): FakeCtxt(M,M’):
C < E(K,M) K <= H(M)
T<H(K) C s E(K,M)
retC || T T < H(K)
retCll T

T <— TagGen(C,)
T'<— TagGen(Cy)
If T=T then
store C,
else
store C, , Cg

/

Service stores
just C,

.4

Similar attack in [Storer et al. '08], but vulnerabilities not realized

Weaker attack would just make decryption fail

199

Security analysis of fast MLE schemes
In-use CE and variant HCE + 2 new schemes HCE2 and RCE

2 new privacy deﬁnmons 2 new mtegrlty deﬁnmons
o
TagGen time
11.8 cpb
HCE 6.6 cpb Yes Yes No No
HCE2 6.6 cpb Yes Yes Yes No
RCE 6.5 cpb Yes Yes Yes No

Proofs of message privacy for unpredictable message spaces

Proofs of, or attacks against, integrity

Attack against HCE used by TahoeFS that erases user’s messag%ﬂ

MLE leaks nothing about messages...

if messages are unpredictable

Attacker recovers M given Enc(KeyGen(M),M)
in time O(m) when m is # of possible messages

o

1) Sometimes m = 2
2) Hard for defenders to determine m

201

DUpLESS (DuplicateLess Encryption for Simple Storage)

Provides protection against
brute-force attacks

Dropbox

User secret key K

!

L “myFile”, M

//Q\ 4

Google Drive

o ”
c,",C,C,

>

DupLESS

Key server helps
“mix” in secret key into
MLE encryption for clients

Oblivious PRF protocol:
KS learns nothing about M

C, can be
Deduped
» Key C,, C, short
| Server
(KS) Storage service

cannot mount
brute-force attacks

[Bellare, Keelveedhi, R. — Usenix Security2'13]

DupLESS performance for storage

916 [- \) 216 = ‘ -
- DupLESS - DupLESS _
....... Convergent Encryption ------. Convergent Encryption
—_— Dropbox ull— Google Drive
N 25 N
- 2l2 -
- - _—F_ - _—,I.-. - -_T'_ ~on
N 910 1 l N
98 \ \ \ 98 \ \ |
20 24 28 212 216 20 24 28 212

X-axis: File size (KB)
Y-axis: Put time (ms)

Code for DupLESS available at: http://cseweb.ucsd.edu/~skeelvee/dupless/

Examples of deficiencies:

Deep packet inspection systems can block protocols

—>» Encryption tools are easy to detect

—> Format-transforming encryption to trick DPI
AV N Dropbox has access to your data

> >
<! —> Encryption doesn’t allow deduplication to save space

—>» Message-locked encryption to support dedup

Lastpass uses password-based encryption that can be cracked

— Encryption reveals when wrong key is used to decrypt

—> PBKDFs and honey-encryption
204

Some concluding thoughts

e Typical case: no right security definition

— Righter ones and wronger ones

— One primitive, multiple security goals

— We don’t yet know all the security goals
* Crypto should be designed to support

applications, not other way around

— Nonce-based SE, FPE, MLE, PW-based encryption

— Industry has lots of really cool crypto problems
* Understanding systems key

— First order approximation: no one in practice will care
unless you implement it

Our game-plan today

We will build two widely needed primitives:

* Nonce-based symmetric encryption
— Contemporary viewpoint on SE
— Two flavors (speed versus security trade-off)

* Format-preserving encryption

— Used widely in industry for fixed-field encryption
(credit card numbers, etc.)

— Length-preserving encryption as special case
* Time allowing: advanced SE primitives such as

message-locked encryption, honey encryption,
password-based encryption

