5th Bar-llan Winter School on Cryptography
Advances in Practical Multiparty Computation

“Tiny OT” — Part 1

A New (4 years old) Approach to
Practical Active-Secure
Two-Party Computation

Claudio Orlandi, Aarhus University

Plan for the next 3 hours...

* Part 1: Secure Computation with a Trusted Dealer
— Warmup: One-Time Truth Tables
— Evaluating Circuits with Beaver’s trick
— MAC-then-Compute for Active Security
* Part 2: Active Secure OT Extension
— Warmup: OT properties
— Recap: Passive Secure OT Extension
— Active Secure OT Extension
* Part 3: From “Auth. Bits” to “Auth. Triples”
— Authenticated local-products (aAND)
— Authenticated cross-products (aOT)
— “LEGO” bucketing

Secure Computation

X Y
8dx2rru3dOfW2TS
) —
D muv6tbWg32flglo
~ ‘ <
sledxql30tTzolc
>
f(x,y)
M X Y
-3 —

i

4 ‘ I fix,y)
h

* Privacy
e Correctness

What kind of Secure Computation?

* Dishonest majority
— The adversary can corrupt up to n-1 participants (n=2).

* Static Corruptions

— The adversary chooses which party is corrupted before
the protocol starts.

* Active Corruptions
— Adversary can behave arbitrarily (aka malicious)

* No guarantees of fairness, termination
— Security with abort

Alied paisnil

(TA' 7"B) <D

19|eaq paisnJy

f(x,y)

(o]0]

=

wn

a * Independent of x,y

O % e Tipically only depends

8 < on size of f

8 e Uses public key crypto

DL- ry g technology (slower)
YA s

* Uses only information
theoretic tools
(order of magn. faster)

()
n
O
e
ol
b
=
=
@)

Part 1: Secure Computation with a
Trusted Dealer

* Warmup: One-Time Truth Tables
* Evaluating Circuits with Beaver’s trick

* MAC-then-Compute for Active Security

“The simplest 2PC protocol ever”

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

1) Write the truth table of the function F
you want to compute

X
w N = O
== wWwW W O
RO O N| K
) O O NN
BB IN W

“The simplest 2PC protocol ever” OTTT

(Preprocessing phase)
2) Pick random (r, s), rotate rows and columns

s=3

. >
0 1 2 3
0O |1 4 4 1
_ 1 |2 2 2 3

r=1
2 |0 0 4 3
3 |0 0 4 1
N 10

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

T]

Pick at random, and let

12 = - PR

O I OiINIPKF
O OiINi P
b INPS
=W Wi

11

“The simpl “Privacy”:
inputs masked w/uniform

random values

11

V_

T2[u,v]

Correctness:
by construction

output f(x,y) = T1[u,v] + T2[u,v]

12

y

What about active security?

, r

u=x-=+r

v=y+s+tel
<€

T1
-
" T2[u,v] + e2

13

s this cheating?

cev=y+stel =(ytel)+s=y +s

— Input substitution, not cheating according to the
definition!

* M2[u,v] + e2
— Changes output to z' = f(x,y) + e2
— Example: f(x,y)=0 for all inputs
— With e2=1 Alice outputs 1

* Clearly breach of correctness!

How to force Bob to send the right
value?

* Problem: Bob can send the wrong shares

* Solution: use MACs
— e.g. M=aT+b with (a,b) € F

(a,b)

~—

‘ < (M',T)

Abort if MZaT +b

OTTT+MAC

T2[u,v], M[u,V]

<€

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v])

output f(x,y) = T1[u,v] + T2[u,v] =
else vs. malicious Bob

abort w.p. 1-1/]|F|

Statistical security

Curiosity

* Can we get perfect security?
— Yes!

— On the Power of Correlated Randomness
in Secure Computation

— Ishai, Kushilevitz, Meldgaard, O, Paskin
— TCC 2013

“The simplest 2PC protocol ever” OTTT

e Optimal communication complexity ©
 Storage exponential in input size ®

=» Represent function using circuit
instead of truth table!

18

Part 1: Secure Computation with a
Trusted Dealer

* Warmup: One-Time Truth Tables
e Evaluating Circuits with Beaver’s trick

* MAC-then-Compute for Active Security

Circuit based computation

X, Y1
X, Y
X3 VY3

K

Xo Yq
Xs Vg

Invariant

* For each wire x in the circuit we have
— [x] := (x4, xg) // read “xin a box”
— Where Alice holds x,
— Bob holds x;
— Such that x,+x;=x

* Notation overload:
— xis both the r-value and the I-value of x
— use n(x) for name of x and v(x) for value of x when in doubt.
— Then [n(x)] = (x,,Xg) such that x,+xg=v(x)

P

Circuit Evaluation
(Online phase)

1) [x] € Input(A,x):
— chooses random x; and send it to Bob
— set X, =X+Xg

Alice only sends a random bit! “Clearly” secure

2) z € Open(A,[z]):
— Bobsends z,
— Alice outputs z=7,+7,

Alice should learn z anyway! "Clearly” secure

P

Circuit Evaluation
(Online phase)

2) [z] €< Add([x],[y])
— Alice computes z,=x, +Vy,
— Bob computes z, = x; + v,

— We write [z] = [x] + [y]

No interaction! "Clearly” secure
As expensive as a local addition!

P

Circuit Evaluation
\ .
. (Online phase)

2a) [z]< Mul(a,[x])

i — 1k
— Alice computes z, = a*x,

— 1k
— Bob computes z; = a*x,

2¢) [z]€ Add(a,[x])
— Alice computes z, = a+x,

— Bob computes z; = x;

i Circuit Evaluation

(Online phase)

3) Multiplication?
How to compute [z]=[xy] ?

How do we compute this?

Alice, Bob should compute
Zp+ 25 = (X) (Y atYe)

Alice can compute
this

Bob can compute this

P

Circuit Evaluation
(Online phase)

3) [z] €Mul([x],[y]):
1. Get[a],[b] [c] with c=ab from trusted dealer <}:| E

2 e=0pen([a]+[x]) e,d are ”onlg-i?r;seif)gl:i’:incryptions]
3 d:Open([b]+[y]) i of x and y using a and b

4. Compute [z] = [c] + e[y] + d[X] - ed
ab+ (ay+xy) + (bx+xy) - (ab+ay+bx+xy)

Part 1: Secure Computation with a
Trusted Dealer

* Warmup: One-Time Truth Tables
* Evaluating Circuits with Beaver’s trick

 MAC-then-Compute for Active Security

Secure Computation

E(x,) E(y,)

E(x,) E(y,)

@)

2 2
o E(G) Eva)
B

oy

J

EDEDREDERED

+e

28

Active Security?

* “Privacy”

— even a malicious Bob does not learn anything.

* “Correctness”

— a corrupted Bob can change his share during any
“Open” (both final result or during multiplication)
leading the final output to be incorrect.

Problem
2) z € Open(A,[z]):

— Bob sends z;
— Alice outputs z=z,+z7,

Problem
2) z € Open(A,[z]):

— Bobsends z; m,
— Alice outputs
* 7=7,+7, if my=k,+z, A,

e “gbort” otherwise

e Solution: Enhance representation [x]
— [x] =((XA/kA;mA) ’ (XB/ sz mB)) s.t.
— my =k, +x; A, (symmetric for m,)
— A, Ay is the same for all wires.

Linear representation

e Given

- [X] = ((XAIkAX)mAx) ’ (yB) kBX’ me))
- [y] = ((YAIkAy)mAy) ’ (YB/ kBy} mBy))
— Compute [z] = (
(ZA=Xa+Y ps K =KaxtK
(2g=Xg+Ys, Kg=Kg, K

rnAzzrnAx-HnAy) ’
mBzszx+mBy) ’)

Ay’
By’

 And [z] is in the right format since...
rnBz = (mBz+mBy) = (kAx+ XBAA) t (kAy+ yBAA)
= (k,, + kAy) + (Xgtyg)A, = ky, + 254,

Recap

1. Output Gates:

2.

Exchange shares and MACs
Abort if MAC does not verify

Input Gates:

Get a random [r] from trusted dealer
r < Open(A,[r])

Alice sends Bob d=x-r,

Compute [x]=[r]+d

Recap

1. Addition Gates:

— Use linearity of representation to compute
[z]=[x]+[y]
2. Multiplication gates:
— Get arandom triple [a][b][c] with c=ab from TD.
— e <Open([a]+[x]), d & Open([b]+[y])
— Compute [z] = [c] + a[y] + b[x] - ed

Final remarks

e Size of MACs

* Lazy MAC checks

Size of MACs

1. Each party must store a mac/key pair for
each other party

— quadratic complexity! ®
— SPDZ (tomorrow) for linear complexity.

2. MAC is only as hard as guessing key!
k MACs in parallel give security 1//F[*

— In TinyOT F=Z,, then MACs/Keys are k-bit strings
— MiniMACs for constant overhead

Lazy MAC Check

E(x,) E(y,)

E(x,) E(y,)

(@)

o 2
o Ex;) Ely;)
o

o

e

N2 A +e
2 .

EDEDREDERED

37

Lazy MAC Check

1) z < PartialOpen(A,[z]):
1. Bob sends z,
2. Bob runs OutMAC.append(my)
3. Alice runs InMAC.append(k, + z; A,)
4. Alice outputs z=7,+7,
2) z € FinalOpen(A,[z]):
1. Steps 1-3 as before
2. Bob sends u=H(OutMAC) to Alice
3. Alice outputs z=z,+z;if u=H(InMAC)
4 “abort” otherwise

Recap of Part 1

* Two protocols “in the trusted dealer model”

— One Time-Truth Table
 Storage exp(input size) ®
« Communication O(input size) ©
* 1 round ©

— (BeD0OZa)/TinyOT online phase

e Storage linear #fnumber of AND gates
e Communication linear #number of AND gates
* #rounds = depth of the circuit

— ...and add enough MACs to get active security

Recap of Part 1

* To do secure computation is enough to
precompute enough random multiplications!

b Mg, My

* |f no semi-trusted party is available, we can
use cryptographic assumption (next)

40

