
5th Bar-Ilan Winter School on Cryptography
Advances in Practical Multiparty Computation

Claudio Orlandi, Aarhus University

“Tiny OT” – Part 1

A New (4 years old) Approach to
Practical Active-Secure
Two-Party Computation

Plan for the next 3 hours…

• Part 1: Secure Computation with a Trusted Dealer
– Warmup: One-Time Truth Tables
– Evaluating Circuits with Beaver’s trick
– MAC-then-Compute for Active Security

• Part 2: Active Secure OT Extension
– Warmup: OT properties
– Recap: Passive Secure OT Extension
– Active Secure OT Extension

• Part 3: From “Auth. Bits” to “Auth. Triples”
– Authenticated local-products (aAND)
– Authenticated cross-products (aOT)
– “LEGO” bucketing

Secure Computation

• Privacy

• Correctness

• …

3

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

f(x,y)

x y

z

f(x,y)

x y

What kind of Secure Computation?
• Dishonest majority

– The adversary can corrupt up to n-1 participants (n=2).

• Static Corruptions

– The adversary chooses which party is corrupted before
the protocol starts.

• Active Corruptions

– Adversary can behave arbitrarily (aka malicious)

• No guarantees of fairness, termination

– Security with abort

x y

z

5

(𝑟𝐴, 𝑟𝐵) ← 𝐷

rA
rB

x
y

f(x,y)

Tr
u

st
ed

 D
ea

le
r

Tr
u

st
ed

 P
ar

ty

rA
rB

O
n

lin
e

P
h

as
e

P
re

p
ro

ce
ss

in
g

• Independent of x,y
• Tipically only depends

on size of f
• Uses public key crypto

technology (slower)

• Uses only information
theoretic tools
(order of magn. faster)

6

rA
rB

x
y

f(x,y)

Part 1: Secure Computation with a
Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver’s trick

• MAC-then-Compute for Active Security

“The simplest 2PC protocol ever”

8

(𝑟𝐴, 𝑟𝐵) ← 𝐷

rA
rB

x
y

f(x,y)

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

1) Write the truth table of the function F
 you want to compute

0 1 2 3

0 3 2 2 2

1 3 0 0 4

2 1 0 0 4

3 1 1 4 4

y

x

9

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

2) Pick random (r, s), rotate rows and columns

0 1 2 3

0 1 4 4 1

1 2 2 2 3

2 0 0 4 3

3 0 0 4 1

s=3

r=1

10

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

 Pick at random, and let

1 4 4 1

2 2 2 3

0 0 4 3

0 0 4 1

= -

T1

T1 T2

11

“The simplest 2PC protocol ever” OTTT
(Online phase)

u = x + r

v = y + s

, r T2 , s

T2[u,v]

output f(x,y) = T1[u,v] + T2[u,v]

“Privacy”:
inputs masked w/uniform

random values

12

Correctness:
 by construction

T1

What about active security?

u = x + r

v = y + s + e1

, r T2 , s

T2[u,v] + e2

13

T1

Is this cheating?

• v = y + s + e1 = (y+e1) + s = y’ + s

– Input substitution, not cheating according to the

definition!

• M2[u,v] + e2

– Changes output to z’ = f(x,y) + e2

– Example: f(x,y)=0 for all inputs

– With e2=1 Alice outputs 1

• Clearly breach of correctness!

How to force Bob to send the right
value?

• Problem: Bob can send the wrong shares

• Solution: use MACs

– e.g. M=aT+b with (a,b) F

(M,T)

(M’,T’)

(a,b)

Abort if M’≠aT’+b

OTTT+MAC

u = x + r

v = y + s

 T1 , r T2 , s

M[u,v]

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v])

 output f(x,y) = T1[u,v] + T2[u,v]

else

 abort
16

 M A B

Statistical security
vs. malicious Bob

w.p. 1-1/|F|

T2[u,v],

Curiosity

• Can we get perfect security?

– Yes!

– On the Power of Correlated Randomness
in Secure Computation

– Ishai, Kushilevitz, Meldgaard, O, Paskin

– TCC 2013

“The simplest 2PC protocol ever” OTTT

• Optimal communication complexity 

• Storage exponential in input size 

Represent function using circuit
 instead of truth table!

18

Part 1: Secure Computation with a
Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver’s trick

• MAC-then-Compute for Active Security

Circuit based computation

20

x5 y5

x4 y4

x3 y3

x2 y2

x1 y1

z

Invariant

• For each wire x in the circuit we have
– [x] := (xA, xB) // read “x in a box”

– Where Alice holds xA

– Bob holds xB

– Such that xA+xB=x

• Notation overload:
– x is both the r-value and the l-value of x

– use n(x) for name of x and v(x) for value of x when in doubt.

– Then [n(x)] = (xA,xB) such that xA+xB=v(x)

Circuit Evaluation
(Online phase)

1) [x]  Input(A,x) :
– chooses random xB and send it to Bob
– set xA=x+xB // symmetric for Bob

Alice only sends a random bit! ”Clearly” secure

2) z  Open(A,[z]): // z Open([z]) if both get output

– Bob sends zB

– Alice outputs z=zA+zB // symmetric for Bob

Alice should learn z anyway! ”Clearly” secure

Circuit Evaluation
(Online phase)

2) [z] Add([x],[y]) // at the end z=x+y

– Alice computes zA = xA + yA

– Bob computes zB = xB + yB

– We write [z] = [x] + [y]

No interaction! ”Clearly” secure
As expensive as a local addition!

Circuit Evaluation
(Online phase)

2a) [z] Mul(a,[x]) // at the end z=a*x

– Alice computes zA = a*xA
– Bob computes zB = a*xB

2c) [z] Add(a,[x]) // at the end z=a+x

– Alice computes zA = a+xA
– Bob computes zB = xB

Circuit Evaluation
(Online phase)

3) Multiplication?

 How to compute [z]=[xy] ?

Alice, Bob should compute
 zA + zB = (xA+xB)(yA+yB)

 = xAyA + xByA + xAyB + xByB

 Alice can compute
this

Bob can compute this

How do we compute this?

Circuit Evaluation
(Online phase)

3) [z]Mul([x],[y]):

1. Get [a],[b],[c] with c=ab from trusted dealer

2. e=Open([a]+[x])

3. d=Open([b]+[y])

4. Compute [z] = [c] + e[y] + d[x] - ed

 ab+ (ay+xy) + (bx+xy) - (ab+ay+bx+xy)

Is this secure?
e,d are “one-time-pad” encryptions

of x and y using a and b

Part 1: Secure Computation with a
Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver’s trick

• MAC-then-Compute for Active Security

Secure Computation

28

E(x5) E(y5)

E(x4) E(y4)

E(x3) E(y3)
E(x2) E(y2)

E(x1) E(y1)

z

+e

x

*

Active Security?

• “Privacy”

– even a malicious Bob does not learn anything.

• “Correctness”

– a corrupted Bob can change his share during any
“Open” (both final result or during multiplication)
leading the final output to be incorrect.

Problem
2) z  Open(A,[z]):

– Bob sends zB +e

– Alice outputs z=zA+zB +e // symmetric for Bob

Problem
2) z  Open(A,[z]):

– Bob sends zB, mB

– Alice outputs

• z=zA+zB if mB = kA + zB ∆A

• “abort” otherwise

• Solution: Enhance representation [x]

– [x] = ((xA,kA,mA) , (xB, kB, mB)) s.t.

– mB = kA + xB ∆A (symmetric for mA)

– ∆A,∆B is the same for all wires.

Linear representation

• Given
– [x] = ((xA,kAx,mAx) , (yB, kBx, mBx))

– [y] = ((yA,kAy,mAy) , (yB, kBy, mBy))

– Compute [z] = (
(zA=xA+yA, kAz=kAx+kAy, mAz=mAx+mAy) ,
(zB=xB+yB, kBz=kBx+kBy, mBz=mBx+mBy) ,)

• And [z] is in the right format since…
mBz = (mBz+mBy) = (kAx + xB∆A) + (kAy + yB∆A)

 = (kAx + kAy) + (xB+yB)∆A = kAz + zB∆A

Recap

1. Output Gates:
– Exchange shares and MACs

– Abort if MAC does not verify

2. Input Gates:
– Get a random [r] from trusted dealer

– r  Open(A,[r])

– Alice sends Bob d=x-r,

– Compute [x]=[r]+d

Recap

1. Addition Gates:

– Use linearity of representation to compute
 [z]=[x]+[y]

2. Multiplication gates:

– Get a random triple [a][b][c] with c=ab from TD.

– e Open([a]+[x]), d  Open([b]+[y])

– Compute [z] = [c] + a[y] + b[x] - ed

Final remarks

• Size of MACs

• Lazy MAC checks

Size of MACs

1. Each party must store a mac/key pair for
each other party
– quadratic complexity! 

– SPDZ (tomorrow) for linear complexity.

2. MAC is only as hard as guessing key!
k MACs in parallel give security 1/|F|k

– In TinyOT F=Z2, then MACs/Keys are k-bit strings

– MiniMACs for constant overhead

Lazy MAC Check

37

E(x5) E(y5)

E(x4) E(y4)

E(x3) E(y3)
E(x2) E(y2)

E(x1) E(y1)

z

+ e

*

Lazy MAC Check
1) z  PartialOpen(A,[z]):

1. Bob sends zB

2. Bob runs OutMAC.append(mB)

3. Alice runs InMAC.append(kA + zB ∆A)

4. Alice outputs z=zA+zB

2) z  FinalOpen(A,[z]):

1. Steps 1-3 as before

2. Bob sends u=H(OutMAC) to Alice

3. Alice outputs z=zA+zB if u=H(InMAC)

4. “abort” otherwise

Recap of Part 1

• Two protocols “in the trusted dealer model”
– One Time-Truth Table

• Storage exp(input size) 

• Communication O(input size) 

• 1 round 

– (BeDOZa)/TinyOT online phase
• Storage linear #number of AND gates

• Communication linear #number of AND gates

• #rounds = depth of the circuit

– …and add enough MACs to get active security

39

Recap of Part 1

• To do secure computation is enough to
precompute enough random multiplications!

• If no semi-trusted party is available, we can
use cryptographic assumption (next)

40

OT

b m0, m1

mb

