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Advances in Practical Multiparty Computation 

Claudio Orlandi, Aarhus University   

“Tiny OT” – Part 1 
 

A New (4 years old) Approach to  
Practical Active-Secure  
Two-Party Computation 

 



Plan for the next 3 hours… 

• Part 1: Secure Computation with a Trusted Dealer 
– Warmup: One-Time Truth Tables 
– Evaluating Circuits with Beaver’s trick  
– MAC-then-Compute for Active Security 

• Part 2: Active Secure OT Extension 
– Warmup: OT properties 
– Recap: Passive Secure OT Extension 
– Active Secure OT Extension  

• Part 3: From “Auth. Bits” to “Auth. Triples” 
– Authenticated local-products (aAND) 
– Authenticated cross-products (aOT) 
– “LEGO” bucketing 

 

 
 



Secure Computation 

• Privacy 

• Correctness 

• … 
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What kind of Secure Computation? 
• Dishonest majority  

– The adversary can corrupt up to n-1 participants (n=2). 

 
• Static Corruptions 

– The adversary chooses which party is corrupted before 
the protocol starts. 

 
• Active Corruptions  

– Adversary can behave arbitrarily (aka malicious) 

 
• No guarantees of fairness, termination 

– Security with abort 
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• Independent of x,y 
• Tipically only depends  

on size of f 
• Uses public key crypto  

technology (slower) 
 

• Uses only information  
theoretic tools  
(order of magn. faster) 
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Part 1: Secure Computation with a 
Trusted Dealer 

 

• Warmup: One-Time Truth Tables 

 

• Evaluating Circuits with Beaver’s trick  

 

• MAC-then-Compute for Active Security 

 

 



“The simplest 2PC protocol ever” 
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“The simplest 2PC protocol ever” OTTT 
(Preprocessing phase) 

1) Write the truth table of the function F  
    you want to compute 

0 1 2 3 

0 3 2 2 2 

1 3 0 0 4 

2 1 0 0 4 

3 1 1 4 4 

y 

x 
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“The simplest 2PC protocol ever” OTTT 
(Preprocessing phase) 

2) Pick random (r, s), rotate rows and columns 

0 1 2 3 

0 1 4 4 1 

1 2 2 2 3 

2 0 0 4 3 

3 0 0 4 1 

s=3 

r=1 
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“The simplest 2PC protocol ever” OTTT 
(Preprocessing phase) 

3) Secret share the truth table i.e., 

  

  

 Pick                          at random, and let   

1 4 4 1 

2 2 2 3 

0 0 4 3 

0 0 4 1 

= - 

T1 

T1 T2 
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“The simplest 2PC protocol ever” OTTT 
(Online phase) 

u = x + r 

v = y + s 

, r T2 , s 

T2[u,v] 

output f(x,y) = T1[u,v] + T2[u,v] 

“Privacy”:  
inputs masked w/uniform 

random values 
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Correctness: 
 by construction 

T1 



What about active security? 

u = x + r 

v = y + s + e1 

, r T2 , s 

T2[u,v] + e2  
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Is this cheating? 

• v = y + s + e1 = (y+e1) + s = y’ + s  

– Input substitution, not cheating according to the 

definition! 

• M2[u,v] + e2  

– Changes output to z’ = f(x,y) + e2 

– Example: f(x,y)=0 for all inputs 

– With e2=1 Alice outputs 1  

• Clearly breach of correctness! 

 



How to force Bob to send the right 
value? 

• Problem: Bob can send the wrong shares 

• Solution: use MACs  

– e.g. M=aT+b with (a,b) F 

 

(M,T) 

(M’,T’) 

(a,b) 

Abort if M’≠aT’+b 



OTTT+MAC 

u = x + r 

v = y + s 

 T1 , r  T2 , s 

M[u,v] 

 

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v]) 

 output f(x,y) = T1[u,v] + T2[u,v] 

else  

 abort 
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Statistical security  
vs. malicious Bob  

w.p. 1-1/|F| 

T2[u,v],  



Curiosity 

• Can we get perfect security? 

– Yes! 

– On the Power of Correlated Randomness  
in Secure Computation 

– Ishai, Kushilevitz, Meldgaard, O, Paskin 

– TCC 2013 



“The simplest 2PC protocol ever” OTTT 

• Optimal communication complexity  

 

• Storage exponential in input size  

 

Represent function using circuit  
 instead of truth table! 

18 



Part 1: Secure Computation with a 
Trusted Dealer 

 

• Warmup: One-Time Truth Tables 

 

• Evaluating Circuits with Beaver’s trick  

 

• MAC-then-Compute for Active Security 

 

 



Circuit based computation 
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Invariant 

• For each wire x in the circuit we have  
– [x] := (xA, xB)                              // read “x in a box” 

– Where Alice holds xA 

– Bob holds xB  

– Such that xA+xB=x 
 

 

• Notation overload: 
– x is both the r-value and the l-value of x 

– use n(x) for name of x and v(x) for value of x when in doubt.  

– Then [n(x)] = (xA,xB) such that xA+xB=v(x) 



Circuit Evaluation 
(Online phase) 

1) [x]  Input(A,x) :  
– chooses random xB and send it to Bob 
– set xA=x+xB                                       // symmetric for Bob 

 
Alice only sends a random bit! ”Clearly” secure 
 
2) z  Open(A,[z]):              // z Open([z]) if both get output 

– Bob sends zB 

– Alice outputs z=zA+zB                         // symmetric for Bob 

 
Alice should learn z anyway! ”Clearly” secure 
 

 
 



Circuit Evaluation 
(Online phase) 

2)  [z] Add([x],[y])               // at the end z=x+y 

– Alice computes zA = xA + yA 

– Bob computes zB = xB + yB 

   

– We write [z] = [x] + [y] 

 

No interaction! ”Clearly” secure 
As expensive as a local addition! 



Circuit Evaluation 
(Online phase) 

2a)  [z] Mul(a,[x])               // at the end z=a*x 

– Alice computes zA = a*xA  
– Bob computes zB = a*xB  

 

 

2c)  [z] Add(a,[x])               // at the end z=a+x 

– Alice computes zA = a+xA  
– Bob computes zB = xB  



Circuit Evaluation 
(Online phase) 

3) Multiplication?   

 How to compute [z]=[xy] ? 

 

Alice, Bob should compute  
 zA + zB = (xA+xB)(yA+yB) 

    = xAyA + xByA + xAyB + xByB 

  

 Alice can compute 
this 

Bob can compute this 

How do we compute this? 



Circuit Evaluation 
(Online phase) 

3) [z]Mul([x],[y]): 

1. Get [a],[b],[c] with c=ab from trusted dealer  

 

2. e=Open([a]+[x]) 

3. d=Open([b]+[y]) 

 

4. Compute [z] = [c] + e[y] + d[x] - ed  

  ab+ (ay+xy) + (bx+xy) - (ab+ay+bx+xy) 

 

 

Is this secure? 
e,d are “one-time-pad” encryptions 

of x and y using a and b 



Part 1: Secure Computation with a 
Trusted Dealer 

 

• Warmup: One-Time Truth Tables 

 

• Evaluating Circuits with Beaver’s trick  

 

• MAC-then-Compute for Active Security 

 

 



Secure Computation 
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Active Security? 

• “Privacy” 

– even a malicious Bob does not learn anything. 

 

• “Correctness” 

– a corrupted Bob can change his share during any 
“Open” (both final result or during multiplication) 
leading the final output to be incorrect. 



Problem 
2) z  Open(A,[z]): 

– Bob sends zB +e 

– Alice outputs z=zA+zB +e                       // symmetric for Bob 

 

 



Problem 
2) z  Open(A,[z]): 

– Bob sends zB, mB 

– Alice outputs  

• z=zA+zB    if  mB = kA + zB ∆A   

• “abort”        otherwise 

 

• Solution: Enhance representation [x] 

– [x] = ( (xA,kA,mA) , (xB, kB, mB) ) s.t. 

– mB = kA + xB ∆A   (symmetric for mA) 

– ∆A,∆B is the same for all wires. 



Linear representation 

• Given  
– [x] = ( (xA,kAx,mAx) , (yB, kBx, mBx) )  

– [y] = ( (yA,kAy,mAy) , (yB, kBy, mBy) )  

– Compute [z] = (  
(zA=xA+yA, kAz=kAx+kAy, mAz=mAx+mAy ) , 
(zB=xB+yB,  kBz=kBx+kBy, mBz=mBx+mBy ) , ) 

 

• And [z] is in the right format since…  
mBz = (mBz+mBy) = (kAx + xB∆A) + (kAy + yB∆A)  

  = (kAx + kAy) + (xB+yB)∆A = kAz + zB∆A 



Recap 

1. Output Gates:  
– Exchange shares and MACs  

– Abort if MAC does not verify 

2. Input Gates: 
– Get a random [r] from trusted dealer 

– r  Open(A,[r])  

– Alice sends Bob d=x-r,  

– Compute [x]=[r]+d  

 



Recap 

1. Addition Gates:  

– Use linearity of representation to compute 
  [z]=[x]+[y] 

2. Multiplication gates:  

– Get a random triple [a][b][c] with c=ab from TD.  

– e Open([a]+[x]), d  Open([b]+[y]) 

– Compute [z] = [c] + a[y] + b[x] - ed 

 



Final remarks 

 

• Size of MACs 

 

 

• Lazy MAC checks 



Size of MACs 

1. Each party must store a mac/key pair for 
each other party 
– quadratic complexity!  

– SPDZ (tomorrow) for linear complexity. 

 

2. MAC is only as hard as guessing key! 
k MACs in parallel give security 1/|F|k 

– In TinyOT F=Z2, then MACs/Keys are k-bit strings  

– MiniMACs for constant overhead 
 

 



Lazy MAC Check 
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Lazy MAC Check 
1) z  PartialOpen(A,[z]): 

1. Bob sends zB   

2. Bob runs OutMAC.append(mB) 

3. Alice runs InMAC.append(kA + zB ∆A) 

4. Alice outputs z=zA+zB   

2) z  FinalOpen(A,[z]): 

1. Steps 1-3 as before 

2. Bob sends u=H(OutMAC) to Alice 

3. Alice outputs  z=zA+zB if u=H(InMAC) 

4.    “abort”        otherwise 



Recap of Part 1 

• Two protocols “in the trusted dealer model” 
– One Time-Truth Table 

• Storage exp(input size)  

• Communication O(input size)  

• 1 round  

– (BeDOZa)/TinyOT online phase 
• Storage linear #number of AND gates 

• Communication linear #number of AND gates 

• #rounds = depth of the circuit 

– …and add enough MACs to get active security 
 

39 



Recap of Part 1 

• To do secure computation is enough to 
precompute enough random multiplications! 

 

 

 

 

• If no semi-trusted party is available, we can 
use cryptographic assumption (next) 
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