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Today’s Plan

1 One-way functions and hardcore predicates

2 Pseudorandom generators

3 Pseudorandom functions and permutations

4 Symmetric encryption and MACs.
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Online Material

Books:

Oded Goldreich. Foundations of Cryptography
http://www.wisdom.weizmann.ac.il/~oded/foc-book.html

Lecture notes:

Ran Canetti http://www.cs.tau.ac.il/~canetti/f08.html

Iftach Haitner http://www.cs.tau.ac.il/~iftachh/Courses/
FOC/Spring13/index.html

Yehuda Lindell http:
//u.cs.biu.ac.il/~lindell/89-856/main-89-856.html

Luca Trevisan http://www.cs.berkeley.edu/~daw/cs276/

Salil Vadhan
http://people.seas.harvard.edu/~salil/cs120/
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Before we Begin

We assume basic knowledge of probability theory and computational
models, yet please ask us if something is unclear

We sometimes skip some details (left as exercises for you :-)) and
sometimes slightly cheat (we’ll clearly mark when)

Slides are slightly different from your version.

Please ask questions
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Part I

One-Way Functions
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Informal Discussion

A one-way function (OWF) is:

Easy to compute, everywhere

Hard to invert, on the average

Why should we care about OWFs?

Hidden in (almost) any cryptographic primitive: necessary for
“cryptography"

Sufficient for many cryptographic primitives
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Formal Definition

Definition 1 (one-way functions (OWFs))
A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is one-way, if

Pr
x R←{0,1}n

[
A(1n, f (x)) ∈ f−1(f (x))]

]
= neg(n)

for any PPT A.

polynomial-time computable: there exists polynomial-time algorithm F ,
such that F (x) = f (x) for every x ∈ {0,1}∗

neg: a function µ : N 7→ [0,1] is a negligible function of n, denoted
µ(n) = neg(n), if for any p ∈ poly there exists n′ ∈ N such that
µ(n) < 1/p(n) for all n > n′

x R←{0,1}n: x is uniformly drawn from {0,1}n

PPT: probabilistic polynomial-time algorithm

We typically omit 1n from the input list of A
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Non-Uniform OWFs

Definition 2 (non-uniform OWFs)

A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is non-uniformly
one-way, if Pr

x R←{0,1}n

[
Cn(f (x)) ∈ f−1(f (x))

]
= neg(n)

for any polynomial-size family of circuits {Cn}n∈N.

Implies the uniform version

We will mainly focus on uniform security
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Length Preserving OWF

Definition 3 (length preserving functions)

A function f : {0,1}∗ 7→ f : {0,1}∗ is length preserving, if |f (x)| = |x | for every
x ∈ {0,1}∗

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Proof idea: “pad" the non length-preserving OWF to create a
length-preserving one.

Convention for rest of the talk
Let f : {0,1}n 7→ {0,1}n be a one-way function
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Weak One-Way Functions
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Weak One-Way Functions

Definition 5 (weak one-way functions)

A poly-time computable function f : {0,1}n 7→ {0,1}n is α-one-way, if

Pr
x R←{0,1}n

[
A(1n, f (x)) ∈ f−1(f (x))

]
≤ α(n)

for any PPT A and large enough n ∈ N.

(strong) OWF according to Definition 1, is neg-one-way according to the
above definition

Can we convert (i.e., amplify) weak OWFs into strong ones?
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Strong to Weak OWFs

Claim 6

Assume there exists OWFs, then there exist functions that are 2
3 -one-way, but

not (strong) one-way

Proof: For a OWF f , let

g(x) =

{
(1, f (x)), x1 = 1;
0, otherwise (x1 = 1).
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Weak to Strong OWFs

Theorem 7 (weak to strong OWFs (Yao))

Assume there exist (1− δ)-weak OWFs with δ(n) ≥ 1/q(n) for some q ∈ poly,
then there exist (strong) one-way functions.

Idea: parallel repetition (i.e., direct product): Consider
g(x1, . . . , xt ) = f (x1), . . . , f (xt ) for large enough t

Motivation: if something is somewhat hard, than doing it many times is
(very) hard

But, is it really so?

Consider matrix multiplication: Let A ∈ Rn×n and x ∈ Rn

Computing Ax takes Θ(n2) times, but computing A (x1, x2, . . . , xn) takes
. . . only O(n2.3...) < Θ(n3)

Fortunately, parallel repetition does amplify weak OWFs :-)
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Amplification via Parallel Repetition
Theorem 8

Let f : {0,1}n 7→ {0,1}n, and for t(n) :=
⌈

log2 n
δ(n)

⌉
define

g : ({0,1}n)t(n) 7→ ({0,1}n)t(n) as
g(x1, . . . , xt(n)) = f (x1), . . . , f (xt(n))

Assume f is (1− δ)-weak OWF and δ(n) = 1/q(n) for some (positive)
q ∈ poly, then g is a one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction: Assume ∃ PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f .

Difficultly: We need to use an inverter for g with low success probability, e.g.,
1
n , to get an inverter for f with high success probability, e.g., 1

2 or even 1− 1
n

In the following we fix (an assumed) PPT A, p ∈ poly and infinite set I ⊆ N s.t.

Pr
w R←{0,1}t(n)·n

[A(g(w)) ∈ g−1(g(w))] ≥ 1/p(n)

for every n ∈ I. We also “fix" n ∈ I and omit it from the notation.
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q ∈ poly, then g is a one-way function.

Clearly g is efficient. Is it one-way? Proof via reduction:

Assume ∃ PPT A
violating the one-wayness of g, we show there exists a PPT B violating the
weak hardness of f .

Difficultly: We need to use an inverter for g with low success probability, e.g.,
1
n , to get an inverter for f with high success probability, e.g., 1

2 or even 1− 1
n

In the following we fix (an assumed) PPT A, p ∈ poly and infinite set I ⊆ N s.t.

Pr
w R←{0,1}t(n)·n

[A(g(w)) ∈ g−1(g(w))] ≥ 1/p(n)

for every n ∈ I. We also “fix" n ∈ I and omit it from the notation.
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Proving that g is One-Way – the Naive Approach

Assume A attacks each of the t outputs of g independently: ∃ PPT A′ such
that A(z1, . . . , zt ) = A′(z1) . . . ,A′(zt )

It follows that A′ inverts f with probability greater than (1− δ(n)).
Otherwise

Pr
w R←{0,1}t(n)·n

[A(g(w)) ∈ g−1(g(w))] =
t∏

i=1

Pr
x R←{0,1}n

[
A′(f (x)) ∈ f−1(f (x))

]
≤ (1− δ(n))t(n) ≤ e− log2 n ≤ n− log n

Hence A′ violates the weak hardness of f

A less naive approach would be to assume that A goes over the inputs
sequentially.

Unfortunately, we can assume none of the above.

Any idea?
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Hardcore Sets
Assume f is of the form

Definition 9 (hardcore sets)

S = {Sn ⊆ {0,1}n} is a δ-hardcore set for f : {0,1}n 7→ {0,1}n, if:

1 Pr
x R←{0,1}n

[f (x) ∈ S] ≥ δ(n) for large enough n, and

2 For any PPT A and q ∈ poly: for large enough n, it holds that
Pr
[
A(y) ∈ f−1(y)

]
≤ 1

q(n) for every y ∈ Sn.

Assuming f has a δ seems like a good starting point :-)

Unfortunately, we do not know how to prove that f has hardcore set :-<
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Failing Sets

Definition 10 (failing sets)

A function f : {0,1}n 7→ {0,1}n has a δ-failing set for a pair (A,q) of algorithm
and polynomial, if exists S = {Sn ⊆ {0,1}n}, such that the following holds for
large enough n:

1 Pr
x R←{0,1}n

[f (x) ∈ Sn] ≥ δ(n), and

2 Pr
[
A(y) ∈ f−1(y)

]
≤ 1/q(n), for every y ∈ Sn

Claim 11
Let f be a (1− δ)-OWF, then f has a δ/2-failing set, for any pair of PPT A and
q ∈ poly.

Proof: Assume ∃ PPT A and q ∈ poly, such that for any S = {Sn ⊆ {0,1}n} at
least one of the following holds:

1 Pr
x R←{0,1}n

[f (x) ∈ Sn] < δ(n)/2 for infinitely many n’s, or

2 For infinitely many n’s: ∃y ∈ Sn with Pr
[
A(y) ∈ f−1(y)]

]
≥ 1/q(n).

We’ll use A to contradict the hardness of f .
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Using A to Invert f
For n ∈ N, let Sn := {y ∈ {0,1}n : Pr

[
A(y) ∈ f−1(y)]

]
< 1/q(n)}.

Claim 12
∃ infinite I ⊆ N with Pr

x R←{0,1}n
[f (x) ∈ Sn] < δ(n)/2 for every n ∈ I.

Algorithm 13 (The inverter B on input y ∈ {0,1}n)

Do (with fresh randomness) for n · q(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 14

For n ∈ I, it holds that Pr
x R←{0,1}n

[
B(f (x)) ∈ f−1(f (x))

]
> 1− δ(n)

2 − 2−n

Proof: ?

Hence, for large enough n ∈ I: Pr
x R←{0,1}n

[
B(f (x)) ∈ f−1(f (x))

]
> 1− δ(n).

Namely, f is not (1− δ)-one-way
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Algorithm 13 (The inverter B on input y ∈ {0,1}n)

Do (with fresh randomness) for n · q(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 14

For n ∈ I, it holds that Pr
x R←{0,1}n

[
B(f (x)) ∈ f−1(f (x))

]
> 1− δ(n)

2 − 2−n

Proof: ?

Hence, for large enough n ∈ I: Pr
x R←{0,1}n

[
B(f (x)) ∈ f−1(f (x))

]
> 1− δ(n).

Namely, f is not (1− δ)-one-way
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Proving g is One-Way cont.
We show that is g is not one way, then f has no δ/2 flailing-set for some PPT B and q ∈ poly.

Claim 15
Assume ∃ PPT A, p ∈ poly and an infinite set I ⊆ N such that

Pr
w R←{0,1}t(n)·n

[
A(g(x)) ∈ g−1(g(w))

]
≥ 1

p(n)

for every n ∈ I. Then ∃ PPT B such that

Pr
x R←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)p(n) − n− log n

for every n ∈ I and every Sn ⊆ {0, 1}n with Pr
x R←{0,1}n

[f (x) ∈ Sn] ≥ δ(n)/2.

Fix S = {Sn ⊆ {0, 1}n}. By Claim 15, for every n ∈ I, either

Pr
x R←{0,1}n

[f (x) ∈ Sn] < δ(n)/2, or

Pr
x R←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)p(n) − n− log n
(for large enough n∈I)

≥ 1
2t(n)p(n)

(for large enough n∈I)
=⇒ ∃y ∈ Sn: Pr

[
B(y) ∈ f−1(y)

]
≥ 1

2t(n)p(n)

Namely, f has no δ/2 failing set for (B, q = 2t(n)p(n))
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The No Failing-Set Algorithm

Algorithm 16 (Inverter B on input y ∈ {0, 1}n)

1 Choose w R← ({0, 1}n)t(n), z = (z1, . . . , zt ) = g(w) and i R← [t]

2 Set z′ = (z1, . . . , zi−1, y , zi+1, . . . , zt )

3 Return A(z′)i

Fix n ∈ I and a set Sn ⊆ {0,1}n with Pr
x R←{0,1}n

[f (x) ∈ S] ≥ δ(n)/2.

Claim 17

Pr
x R←{0,1}n|y=f (x)∈Sn

[
B(y) ∈ f−1(y)

]
≥ 1

t(n)·p(n) − n− log n.

Proof: Assume for simplicity that A is deterministic.

Let Typ = {v ∈ {0,1}t(n)·n : ∃i ∈ [t(n)] : vi ∈ Sn}. Prz [Typ] ≥ 1− n− log n.

For all L ⊆ {0,1}t(n)·n : Prz′ [L] ≥ Prz [L∩Typ]
t(n) ≥ Prz [L]−n− log n

t(n) .

To conclude the proof take L = {v ∈ {0,1}t(n)·n : A(v) ∈ g−1(v)}
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]
≥ 1

t(n)·p(n) − n− log n.

Proof: Assume for simplicity that A is deterministic.
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Closing remarks

One-way functions (OWFs) are hidden in (almost) any cryptographic
primitive

Weak OWFs can be amplified into strong one

Can we give a more efficient amplification?

Similar hardness amplification theorems for other cryptographic
primitives (e.g., Captchas, general protocols)?

What properties of the weak OWFs have we used in the proof?
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Part II

Hardcore Predicates

Iftach Haitner (TAU) OWFs and Hardcore Predicates January 27, 2014 22 / 33



Informal Discussion

f is one-way =⇒ predicting x from f (x) is hard.

But predicting parts of x might be easy.

e.g., let f be a OWF then g(x ,w) = (f (x),w) is one-way

Can we find a function of x that is totally unpredictable — looks uniform —
given f (x)?

Such functions have many cryptographic applications
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Formal Definition

Definition 18 (hardcore predicates)

A poly-time computable b : {0,1}n 7→ {0,1} is an hardcore predicate of
f : {0,1}n 7→ {0,1}n, if

Pr
x R←{0,1}n

[P(f (x)) = b(x)] ≤ 1
2

+ neg(n)

for any PPT P.

Does any OWF has such a predicate?

Is there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then g(x) = (f (x),b(x)) is
one-way.

Does the existence of hardcore predicate for f implies that f is one-way?

Consider f (x , y) = x , then b(x , y) = y is a hardcore predicate for f

Answer to above is positive, in case f is one-to-one
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Weak Hardcore Predicates

For x ∈ {0,1}n and i ∈ [n], let xi be the i ’th bit of x .

Theorem 19
For f : {0,1}n 7→ {0,1}n, define g : {0,1}n × [n] 7→ {0,1}n × [n] by

g(x , i) = f (x), i

Assuming f is one way, then

Pr
x R←{0,1}n,i R←[n]

[A(f (x), i) = xi ] ≤ 1− 1/2n

for any PPT A.

Proof: ?

We can now construct an hardcore predicate “for" f :

Construct a weak hardcore predicate for g (i.e., b(x , i) := xi ).

Amplify into a (strong) hardcore predicate for gt via parallel repetition

The resulting predicate is not for f but for (the one-way function) gt ...
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The Goldreich-Levin Hardcore predicate

For x , r ∈ {0,1}n, let 〈x , r〉2 := (
∑n

i=1 xi · ri ) mod 2 =
⊕n

i=1 xi · ri .

Theorem 20 (Goldreich-Levin)

For f : {0,1}n 7→ {0,1}n, define g : {0,1}n × {0,1}n 7→ {0,1}n × {0,1}n as
g(x , r) = (f (x), r).

If f is one-way, then b(x , r) := 〈x , r〉2 is an hardcore predicate of g.

Note that if f is one-to-one, then so is g.

A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting b(x , r) “too well" from (f (x), r),
implies an inverter for f
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Proving Goldreich-Levin Theorem

Assume ∃ PPT A, p ∈ poly and infinite set I ⊆ N with
Pr[A(g(Un,Rn)) = b(Un,Rn)] ≥ 1

2
+

1
p(n)

,

for any n ∈ I, where Un and Rn are uniformly (and independently) distributed
over {0,1}n.

Claim 21

For n ∈ I, there exists a set Sn ⊆ {0,1}n with

1 |Sn|
2n ≥ 1

2p(n) , and

2 Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 1
2 + 1

2p(n) , for every x ∈ Sn.

Proof: ?

We next show ∃ PPT B and q ∈ poly with

Pr
[
B(f (x)) ∈ f−1(f (x))

]
≥ 1

q(n)
,

for every n ∈ I and x ∈ Sn. =⇒ B violates the one-wayness of f .

In the following we fix n ∈ I and x ∈ Sn.
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The Perfect Case

Pr [A(f (x),Rn) = b(x ,Rn)] = 1

In particular, A(f (x),ei ) = b(x ,ei ) for every i ∈ [n], where
ei = (0, . . . ,0︸ ︷︷ ︸

i−1

,1,0, . . . ,0︸ ︷︷ ︸
n−i

).

Hence, xi = 〈x ,ei〉2 = b(x ,ei ) = A(f (x),ei )

Let B(y) = (A(y ,e1), . . . ,A(y ,en))
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Easy case

Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 1− neg(n)

1 b(x ,w)⊕ b(x , y) = b(x ,w ⊕ y) for every w , y ∈ {0,1}n.

2 ∀r ∈ {0,1}n, the rv (Rn ⊕ r) is uniformly distributed over {0,1}n.

Hence, ∀i ∈ [n]:

1 xi = b(x ,ei ) = b(x , r)⊕ b(x , r ⊕ ei ) for every r ∈ {0,1}n

2 Pr[A(f (x),Rn) = b(x ,Rn)∧A(f (x),Rn ⊕ ei ) = b(x ,Rn ⊕ ei )] ≥ 1− neg(n)

Algorithm 22 (Inverter B on input y )

Return (A(y ,Rn)⊕ A(y ,Rn ⊕ e1)), . . . ,A(y ,Rn)⊕ A(y ,Rn ⊕ en)).
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Intermediate Case

Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 3
4 + 1

q(n)

For any i ∈ [n]

Pr[A(f (x),Rn)⊕ A(f (x),Rn ⊕ ei ) = xi ]

≥ Pr[A(f (x),Rn) = b(x ,Rn) ∧ A(f (x),Rn ⊕ ei ) = b(x ,Rn ⊕ ei )]

≥ 1−
(

1− (
3
4

+
1

q(n)
)

)
−
(

1− (
3
4

+
1

q(n)
)

)
=

1
2

+
2

q(n)

Algorithm 23 (Inverter B on input y ∈ {0,1}n)

1 For every i ∈ [n]

1 Sample r1, . . . , r v ∈ {0,1}n uniformly at random
2 Let mi = majj∈[v ]{(A(y , r j )⊕ A(y , r j ⊕ ei )}

2 Output (m1, . . . ,mn)
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B’s Success Provability

The following holds for “large enough" v = v(n) ∈ poly(n).

Claim 24
For every i ∈ [n], it holds that Pr[mi = xi ] ≥ 1− neg(n).

Proof: For j ∈ [v ], let the indicator rv W j be 1, iff
A(f (x), r j )⊕ A(f (x), r j ⊕ ei ) = xi .
We want to lowerbound Pr

[∑v
j=1 W j > v

2

]
.

The W j are iids and E[W j ] ≥ 1
2 + 2

q(n) for every j ∈ [v ]

Lemma 25 (Hoeffding’s inequality)

Let X 1, . . . ,X v be iids over [0,1] with expectation µ. Then,

Pr
[
|
∑v

j=i X j

v − µ| ≥ ε
]
≤ 2 · exp(−2ε2v) for every ε > 0.

We complete the proof taking X j = W j , ε = 1/4q(n) and v ∈ ω(log(n) · q(n)2).
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The actual (hard) case

Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 1
2 + 1

q(n)

What goes wrong?

Pr[A(f (x),Rn)⊕ A(f (x),Rn ⊕ ei ) = xi ] ≥ 2
q(n)

Hence, using a random guess does better than using A :-<

Idea: guess the values of {b(x , r1), . . . ,b(x , r v )}
(instead of calling {A(f (x), r1), . . . ,A(f (x), r v )})

Problem: negligible success probability

Solution: choose the samples in a correlated manner
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Conclusion

A close relative of any one-way function has an hardcore predicate.

Can we construct an hardcore predicate for any one-way function?

Hardcore functions:
Similar ideas allows to output log n “pseudorandom bits"

LPN - learning parity with noise:
Find x given polynomially many samples of 〈x ,Rn〉2 ⊕ y , where
Pr[y = 1] ≤ 1

2 − δ.

LPN is believed to be hard

The difference comparing to Goldreich-Levin – no control over the Rn’s.

Least decoding error correction codes
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