Session 1: Definitions and
Oblivious Transfer

Yehuda Lindell
Bar-llan University

“;\5 Secure Computation and Efficiency
3 Bar-llan University, Israel 2015

Secure Multiparty Computation

* A set of parties with private inputs

* Parties wish to jointly compute a function of
their inputs so that certain security
properties are preserved

* Properties must be ensured even if some of
the parties maliciously attack the protocol

 Can model any cryptographic task

(‘}gz\\ence
s ‘
: 8
<
2

Applications

* Elections

* Auctions

* Private database search

* Privacy-preserving data mining
* Secure set intersection

* Much much more...

(‘}gz\\enc{,
S \
Y 4
<
H

Security Requirements

* Consider a secure auction (with secret bids):

— An adversary may wish to learn the bids of all parties
— to prevent this, require PRIVACY

— An adversary may wish to win with a lower bid than
the highest — to prevent this, require CORRECTNESS

— But, the adversary may also wish to ensure that it
always gives the highest bid — to prevent this, require
INDEPENDENCE OF INPUTS

— An adversary may try to abort the execution if its bid
is not the highest — require FAIRNESS

”;\’A Secure Computation and Efficiency
3 _) Bar-llan University, Israel 2015

General Security Properties

Privacy: only the output is revealed

Correctness: the function is computed
correctly

Independence of inputs: parties cannot
choose inputs based on others’ inputs

Fairness: if one party receives output, all
receive output

Guaranteed output delivery

(‘}gz\\enc{,
o .
: 8
<
2

Defining Security

* Option 1: analyze security concerns for each
specific problem
— Auctions: as in previous slide
— Elections: privacy, correctness and fairness only (?)

* Problems:
— How do we know that all concerns are covered?

— Definitions are application dependent and need to
be redefined from scratch for each task

(‘}gz\\enc{,
S \
Y 4
<
H

Defining Security

* Option 2: general definition that captures all
(most) secure computation tasks

* Properties of any such definition
— Well-defined adversary model

— Well-defined execution setting

— Security guarantees are clear and simple to
understand

(‘}gz\\ence
S ’ \
Y 4
g
s

Modeling Adversaries

 Adversarial behavior

— Semi-honest: follows the protocol specification
* Tries to learn more than allowed by inspecting transcript

— Malicious: follows any arbitrary strategy

— Covert: follows any arbitrary strategy, but is averse to
being caught...

* Adversarial power
— Polynomial-time: computational security

— Computationally unbounded: information-theoretic
security

:;\,A Secure Computation and Efficiency
T _) Bar-llan University, Israel 2015

Modeling Adversaries

* Corruption strategy

— Static: the set of corrupted parties is fixed before
the execution begins

— Adaptive: the adversary can corrupt parties
during the execution, based on what has
happened

* Models modern “hacking”

* Cannot use strategies that choose a small set of
representatives to compute for all

* In general, much harder!

(‘}gz\\ence
& ’ .
=¥ 2
g
1

Execution Setting

e Stand-alone

— Consider a single protocol execution only (or that only
a single execution is under attack)

* Concurrent general composition
— Arbitrary protocols executed concurrently
— Realistic setting, very important model

e Stand-alone vs composition

— Stand-alone: a good place to start studying secure
computation, techniques and tools are helpful

— Composition: true goal for constructions

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

Feasibility of Secure Computation

* Assuming an honest majority, any
functionality can be securely computed

— Even information theoretically, and with adaptive
security

 Without an honest majority, it is impossible
to achieve fairness in general

 Without an honest majority, any functionality
can be securely computed without fairness

ccccccccccc

Preliminaries

* Notations:
— Security parameter n

— We wish security to hold for all inputs of all
lengths, as long as n is large enough

* Function U IS negligible: if for every polynomial p(n)

there exists an N such that for alln > N we have u(n) < $

(‘}gz\\ence
& ’ .
=¥ 2
g
1

Preliminaries

* Probability ensemble X = {X(a,n)}
— Infinite series, indexed by a string a and natural n
— Each X(a, n) is a random variable

* In our context: output of protocol execution with input
a and security parameter n

* Probability space: randomness of parties

(‘}gz\\ence
S \
Y 4
<
H

Preliminaries

 Computational indistinguishability X =~ Y

— For every (non-uniform) polynomial-time
distinguisher D there exists a negligible function u
such that for every a and all large enough n'’s:

|IPr[D(X(a,n) = 1] — Pr|[D(Y(a,n) = 1]| < u(n)

(‘}gz\\ence
S ’ \
Y 4
s
s

Notation

* Functionality

—f = (f1, ..., fm): forinput vector x, each f;(x) is
a random variable (for probabilistic functionalities)

— Party P, receives f;

— We denote (x'y) — (f1(x,J’),fz(x,Y))

(‘}gz\\enc{,
o .
: 8
<
2

Semi-Honest Adversaries

 Simulation:

— Given input and output, can generate the
adversary’s view of a protocol execution

— Important: since parties follow protocol, the
inputs are well defined

(‘}gz\\enc{,
o .
: 8
<
2

Semi-Honest Adversaries

For every semi-honest A, there exists a
simulator S such that for every set of
corrupted parties I and every vector of inputs
x, the following are computationally
indistinguishable

— The output of 4, and the outputs of all parties
after a protocol execution

— The output of § given x; and f;(x) forall i € I,
and all the values f,(x), ..., f,,(X)

$ Cmptt and Efficienc y
'}) Bar-llan Un tyI ael 2015 17

Semi-Honest Adversaries

The REAL execution Simulation

Protocol

Arbitrary Output f (x, y) Simulator
(w.l.o.g.: adversary’s Output f (x: y)
view in execution) =

,5"\%‘6,8 Secure Computation and Efficiency
;'}y Bar-llan University, Israel 2015 18

Properties

* Correctness, independence of inputs, fairness
are all non-issues in the semi-honest model

 Why is privacy guaranteed by this definition?
— The adversary’s view in an execution can be

generated from the input and output only

If the adversary can compute something after a

real protocol execution, it can compute it just
from the input/output

— Very similar to zero-knowledge

(‘}gz\\enc{,
S \
Y 4
<
H

Joint Distribution

* A crucial point: need to consider the joint

distribution of adversary’s output and honest
parties’ output

* In the definition:

— We compare the distribution of all inputs and outputs
together with the adversary’s output

(‘}gz\\ence
s ‘
Y 4
<
H

Joint Distribution

 Example:

— Functionality: 4 outputs random bit, B outputs
nothing

* B should clearly not learn A’s output bit

— Protocol: A chooses a random bit, outputs it, and
sends the bit to B (who ignores it)

* This is simulatable when separately looking
at distribution of B’s view and actual outputs

(‘}gz\\enc{,
S ’ \
Y 4
s
s

Deterministic Functionalities

* In the case of deterministic functionalities,
the outputs are fully determined by the
inputs

* |t suffices to separately prove

— Correctness

— Simulation: can generate view of semi-honest
adversary (corrupted parties’ view), given inputs
and outputs only

* This is significantly easier!

(‘}gz\\enc{,
S ’ \
Y 4
s
s

Malicious Adversaries

* First attempt: require the existence of a
simulator that generates the adversary’s view
given the inputs/outputs of corrupted

* Problem: what are the inputs used by the
adversary?
— They are not necessarily those written on the
Input tape
— They are not explicit: the adversary doesn’t run
the protocol but arbitrary code

(‘}gz\\enc{,
o .
: 8
<
2

Malicious Adversaries

 We also need to require independence of
inputs, correctness, fairness etc.

— These properties are not captured by “view
simulation” alone

» Can we separate correctness and privacy?

— Instead of computing f, compute a function that
reveals first input bit of other party

— Correctness or privacy???

 What about independence of inputs and
privacy?

(‘}gz\\enc{,
S ’ \
Y 4
s
s

The Ideal/Real Paradigm

* What is the best we could hope for?
— An incorruptible trusted party

— All parties send inputs to trusted party (over perfectly
secure communication lines)

— Trusted party computes output

— Trusted party sends each party its output (over
perfectly secure communication lines)

— This is an ideal world

 What can an adversary do?
— Just choose its input...

(‘}gz\\ence
S \
¥ 4
<
3

The Ideal/Real Paradigm

* The real protocol must be like the ideal world

* Formalizing this notion:

— For every adversary A attacking the real protocol,
there exists an adversary S in the ideal model such
that the output distributions (of all) are
computationally indistinguishable

— S simulates a real protocol execution while
interacting in the ideal world

— Here we always look at the joint output
distribution

(‘}gz\\ence
& ’ \
¥ 4
g
:

The Ideal/Real Paradigm

0 Real World Ideal World

Protocol

arbitrary output
output

cellenc, -)
j‘;\ﬁ Secure Computation and Efficiency arbltrary f(x ’ y) .
B Bar-llan University, Israel 2015 output

“Formal” Security Definition

* Protocol T securely computes a function f if:

— For every non-uniform polynomial-time real-model
adversary A, there exists a non-uniform polynomial-time
ideal-model adversary S, such that for all input vectors
and auxiliary inputs:

— the joint outputs of A and the honest parties in a real
execution of 1 is computationally indistinguishable from
the joint outputs of § and the honest parties in an ideal
execution where the trusted party computes f

(‘}gz\\enc{,
S ’ \
Y 4
s
s

Properties

* The following properties hold
— Privacy: from adversary’s outputs
— Correctness: from honest parties’ outputs
— Independence of inputs: from ideal execution

— Fairness and guaranteed output delivery: from
ideal execution

— More?

“;\5 Secure Computation and Efficiency
3 Bar-llan University, Israel 2015

29

Relaxing the Ideal Model

* In some cases, this ideal model is too strong
and cannot be achieved

* Fairness cannot be achieved in general
without an honest majority

ccccccccccc

Relaxing the Ideal Model

* Change the instructions of the trusted party
— Trusted party receives input from all parties

— Trusted party sends corrupted parties’ outputs to
adversary

— Adversary says “continue” or “halt”

— If “continue”, trusted party sends output to honest
parties; else, it sends “abort”

(‘}gz\\ence
s ‘
: 8
<
2

Reactive Functionalities

* Functionalities that obtain inputs and provide
outputs in stages

 Examples:
— Mental poker

— Commitment schemes

* This is also useful for relaxing ideal
functionalities (give side information to 5)

* The definition extends naturally to this as well

ccccccccccc

Advantages of This Approach

* General — it captures ALL applications

* The specifics of an application are defined by
its functionality, security is defined as above

* The security guarantees achieved are easily
understood (because the ideal model is easily
understood)

— We can be confident that we did not “miss” any
security requirements

ccccccccccc

Using Secure Computation

* The ideal-model paradigm

— You don’t need to understand anything about how
a protocol works to use it

— You just need to imagine an incorruptible trusted
party computing the functionality for you

* Very advantageous for usage

(‘}gz\\enc{,
S \
Y 4
<
H

Sequential Modular Composition

* Sequential modular composition:

— Secure protocols are run sequentially, with arbitrary
messages sent in between them

 Why consider this?

— An important security goal within itself

— Very helpful (if not crucial) tool for analyzing the
security of protocols

* Formalization — Hybrid Model
— A trusted party helps to compute a sub-functionality
— REAL messages & IDEAL messages

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

Sequential Modular Composition

Subprotocols p; securely compute functionalities f,

Protocol t securely computes g in a hybrid model where a
trusted party is used to compute every f;

— This is much easier to analyze since each f; is effectively “perfectly
secure”

Theorem: assuming the above, the real protocol nf that uses
real calls to each p; instead of a trusted party for f;, securely
computes g.

(‘}gz\\ence
S ’ \
Y 4
g
s

Concurrent Composition

 We have considered the stand-alone model
— This implies sequential composition
 What about concurrent composition?

— An Internet-like setting where many (arbitrary, secure
and insecure) protocols are run concurrently, with the
adversary controlling the scheduling

* This models the real-world setting more
accurately

— We don’t know what the result is of running stand-
alone protocols concurrently with related inputs

(‘}gz\\enc{,
S ’ \
Y 4
s
s

Concurrent Composition

* Concurrent general composition
— Strictly harder than the stand-alone model

— Impossible without some trusted set-up
assumption (like a common reference string)

* The UC definition (universal composability)
guarantees security in this setting

— Efficient UC security is a special challenge...

e Recommended to study UC next, after
studying the stand-alone setting

(‘}gz\\enc{,
o .
: 8
<
2

Relaxed Definitions

* In order to achieve high efficiency,
sometimes can consider weaker definitions

— Semi-honest (but this is very weak)

— Covert adversaries: adversary may be malicious
but is guaranteed to be caught cheating with good
probability

e Suitable where adversaries can be penalized for being
caught cheating (e.g., business loss)

— Privacy only (malicious)
* Problematic...

(‘}gz\\enc{,
o .
: 8
<
2

Summary

* Semi-honest: simulator given input/output generates the
adversary’s view

— Probabilistic functionalities — must consider joint distribution of view
and outputs

— Deterministic functionalities: easier, suffices to separately consider
correctness and view simulation

e Malicious: ideal-real simulation
e Sequential composition

* Advanced topics
— Concurrent composition
— Relaxed definition
— Semi-honest vs malicious

(‘}gz\\ence
S ’ \
Y 4
g
s

General vs Specific Protocols

* Most of the school will focus on general
protocols

— Convert the function into a Boolean or arithmetic
circuit
— Compute the circuit securely
* It seems that for specific problems, specific
protocols should be more secure

(‘}gz\\enc{,
o .
: 8
<
2

General vs Specific Protocols

* General protocols — advantages
— Implement once

— Very flexible: almost no difference between
* Set intersection
* Size of set intersection
e Output 1 if set intersection size is greater than k

— In many cases is competitive, and in fact the
fastest solution known

(‘}gz\\ence
o .
: 8
<
2

OBLIVIOUS TRANSFER

(‘}gz\\ence
S ’ \
Y 4
s
s

Oblivious Transfer (OT)

2 Yo
(learns nothing)

Called 1-out-of-2 oblivious transfer (0T12)

5‘;\5 Secure Computation and Efficiency
t Bar-llan University, Israel 2015 44

Fundamental Primitive

* OTis complete

— If can compute OT then can compute any
functionality

* Constructing OT

— OT cannot be constructed from PKE in a black box
manner

— Can be constructed from

* Enhanced trapdoor permutations
* DDH, RSA, Lattices

(‘}gz\\ence
s ‘
Y 4
<
H

Just a Few Important OT Results

OT is symmetric

Can construct efficient 0T and OT’,X from OT5

Can construct malicious OT from semi-honest
OT in a black-box manner (inefficiently)

Many variants of OT are equivalent
— Random OT

— Rabin OT

— Weak OT

ccccccccccc

Efficient OT from DDH

* Recall the DDH assumption over a group G of
order q with generator g

— The DDH assumption says that

{(9,9% 9" 9%)} ~{(9.9% 9° 9°)}
where a, b, c « ZLq are random

Semi-Honest OT

* Recall EIGamal encryption
— Secret key: random a « Z,
— Public key: h = g¢
— Encryptm € G: c = (u,v) = (g",h" - m), randomr € Z,

— Decrypt (4, V): compute m = —

ua

. Note: 2 — h"m _ h"™m _ h"m
Cue (gnNe (@dHT owT

—m

(‘}gz\\ence
& ’ \
=¥ 2
<
s

Semi-Honest OT

Choose a,; compute h, = g% o
) ho, hy Choose random hy_,; € G (=

Encrypt x¢ with hy
Encrypt x4 with hq

Co, C1

>

Decrypt ¢, with a,

Note:
* Encrypt xo with hy: (ug, vo) = (g7, (hy)" - x¢)
* Encrypt x4 with hqy: (uq,v1) = (g%, (h1)® - x1)

5‘;\3 Secure Computation and Efficiency
t Bar-llan University, Israel 2015 49

Semi-Honest OT — Security

* Security:

— Alice sees only two public keys, which are two random
group elements (and so learns nothing about o)

* Formally, simulate by sending two random group elements

— Bob knows only one private key and so learns only x;

* Formally, simulate by encrypting x, with h,, and encrypting
garbage (e.g., 0) with h,_,

Choose a,; compute h, = g%
hy, h4 Choose random hy_, € G

<€

Encrypt x4 with hy
Encrypt x4 with hq Co, C1

S ‘ Decrypt ¢, with a
i'\f\y ypt €y o

More Efficient Semi-Honest OT

Cﬁe\!enc{,
s
vgb })
¥ 4
S
s
v

Choose a,; compute h, = g% o

Choose r « Z,
Computeu =g
Compute vy = (hy)" - x;

Compute v; = (hy)" - x4

r

Secure Computation and Efficiency
Bar-llan University, Israel 2015

ho, hy Choose random hq_p € G (S
<€)
U, vy, vq
>
Vg
Output x, = o

51

Malicious Adversaries

* Corrupted sender:
— Sender cannot cheat

— Simulator can “extract” both x,, x; by choosing
both hy and hy so that it knows the secret keys

* Corrupted receiver:

— Receiver can choose both hy and h{ so that it
knows the secret keys

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

Preventing Malicious

* The idea:
— Alice sends a random group element w

— Bob chooses hy, hy sothat hy - hy = w
 Bob can easily do this by choosing a,, computing h, = g%
and setting hy_, = w/h,
* Bob cannot know both DLOGs of hy, hq or it can compute
the DLOG of H

* Encryption uses a random oracle since “not
completely knowing” a secret key doesn’t

suffice
— Encrypt by (9", HASH((ho)") © xg),...

(‘}gz\\enc{,
S ’ \
Y 4
s
s

State of the Art - OT

* Semi-honest adversaries
— Receiver: 2 exponentiations + send 2 group elements
— Sender: 3 exponentiations + send 3 group elements

* Malicious adversaries (Random Oracle)

— Same as semi-honest

 Malicious adversaries (PVW)
— Receiver: 3 exponentiations + send 2 group elements

— Sender: 8 exponentiations (effectively 6) + send 4
group elements

(‘}gz\\enc{,
S \
Y 4
<
H

Proving Malicious Security

* Proving security in the malicious model is tricky
and subtle

* The ideal/real model paradigm

— Need a simulator who internally runs the real
adversary and externally interacts with the trusted

party (sending input and getting output)
— The simulator needs to “extract” the real adversary’s
input, get output, and make the output match

* We demonstrate the ideal/real proof technique
for the problem of coin tossing

A

Proving Malicious Security

* Blum’s protocol (with EIGamal):
— Party P;:
* Chooserandom b € {0,1}andr,s « Z,
* Computeh=g",u=g%v=~h"g°
* Send (h,u,v) to P,
— Party P;:
* Choose random b’ € {0,1}
* Send b’ to P;

— Party P, sendsr,s,bto P,
— Party P, verifiesthath = g",u = g5, v = h® - g°
— Both parties output b @ b’

(‘}gz\\ence
& ’ \
¥ 4
g
:

Intuition

* Consider a corrupt P,

— By the security of El| Gamal encryption, it knows
nothing about b when it chooses b’

* Consider a corrupt P4
— The values (h, u, v) fully define b

* There exists a single pair (r,s) sothath = g",u = g°
* The value v can either be h°> or h® - g, but not both
— P, chooses b’ after P, sends b; by the above, P,

cannot change b and so P; cannot bias the output

(‘}gz\\ence
S \
Y 4
<
H

Proving Security - P, corrupted

* Let A be an adversary; S works as follows
* Sreceives a random bit § from the trusted party
* Sinvokes A and receives (h,u, v)
e S works as follows:
— Sinternally hands A the value b’ =0
— Srewinds A and internally hands A the value b’ = 1

— If A replies correctly both times, S learns the value b, sets
b’ = b @ B, and outputs this as A’s view. In addition, A
externally sends continue to the TTP

— |If A does not reply correctly either time, S sends abort to the
TTP and outputs a random b’ as A’s view

— If A aborts once, then S learns the value b, sets b’ = b @ f3, and
outputs this as A’s view. If A aborts on this b’ then S sends sends
abort to the TTP; else it sends continue to the TTP

(‘}gz\\ence
S ’ \
Y 4
g
s

Proving Security - P, corrupted

* Let A be an adversary; S works as follows
* Sreceives a random bit § from the trusted party
* Sinvokes A and works as follows:

— S chooses a random b and internally hands A the tuple
(h,u, v) computed correctly for b

— Sreceives b’ from A

—1If b @ b’ = B then S outputs (h,u,v) and (r, s, b) as
its view, and sends continue to the TTP

— Else, S rewinds A and goes to the beginning again

* Note: there is no abort here since we can just
take b’ = 0 as default if P, doesn’t respond

(‘}gz\\ence
S ’ \
Y 4
g
s

Summary

* Oblivious transfer is a fundamental primitive

— It is heavily used in most general secure
computation protocols

* Oblivious transfer is very efficient
— But it does cost exponentiations every time!
— This afternoon we will see how to improve this

(‘}gz\\enc{,
& ’ \
=¥ 2
<
s

