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Secure Multiparty Computation 

• A set of parties with private inputs 

• Parties wish to jointly compute a function of 
their inputs so that certain security 
properties are preserved 

• Properties must be ensured even if some of 
the parties maliciously attack the protocol 

• Can model any cryptographic task 
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Applications 

• Elections 

• Auctions 

• Private database search 

• Privacy-preserving data mining 

• Secure set intersection 

• Much much more… 
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Security Requirements 

• Consider a secure auction (with secret bids): 

– An adversary may wish to learn the bids of all parties 
– to prevent this, require PRIVACY 

– An adversary may wish to win with a lower bid than 
the highest – to prevent this, require CORRECTNESS 

– But, the adversary may also wish to ensure that it 
always gives the highest bid – to prevent this, require 
INDEPENDENCE OF INPUTS 

– An adversary may try to abort the execution if its bid 
is not the highest – require FAIRNESS 
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General Security Properties 

• Privacy: only the output is revealed 

• Correctness: the function is computed 
correctly 

• Independence of inputs: parties cannot 
choose inputs based on others’ inputs 

• Fairness: if one party receives output, all 
receive output 

• Guaranteed output delivery 
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Defining Security 

• Option 1: analyze security concerns for each 
specific problem 

– Auctions: as in previous slide 

– Elections: privacy, correctness and fairness only (?) 
 

• Problems: 

– How do we know that all concerns are covered? 

– Definitions are application dependent and need to 
be redefined from scratch for each task 
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Defining Security 

• Option 2: general definition that captures all 
(most) secure computation tasks 

• Properties of any such definition 

– Well-defined adversary model 

– Well-defined execution setting 

– Security guarantees are clear and simple to 
understand 
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Modeling Adversaries 

• Adversarial behavior 
– Semi-honest: follows the protocol specification 

• Tries to learn more than allowed by inspecting transcript 

– Malicious: follows any arbitrary strategy 
 

– Covert: follows any arbitrary strategy, but is averse to 
being caught… 
 

• Adversarial power 
– Polynomial-time: computational security 

– Computationally unbounded: information-theoretic 
security 
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Modeling Adversaries 

• Corruption strategy 
– Static: the set of corrupted parties is fixed before 

the execution begins 

– Adaptive: the adversary can corrupt parties 
during the execution, based on what has 
happened 
• Models modern “hacking” 

• Cannot use strategies that choose a small set of 
representatives to compute for all 

• In general, much harder! 
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Execution Setting 

• Stand-alone 
– Consider a single protocol execution only (or that only 

a single execution is under attack) 

• Concurrent general composition 
– Arbitrary protocols executed concurrently 

– Realistic setting, very important model 

• Stand-alone vs composition 
– Stand-alone: a good place to start studying secure 

computation, techniques and tools are helpful 

– Composition: true goal for constructions 
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Feasibility of Secure Computation 

• Assuming an honest majority, any 
functionality can be securely computed 

– Even information theoretically, and with adaptive 
security 

• Without an honest majority, it is impossible 
to achieve fairness in general 

• Without an honest majority, any functionality 
can be securely computed without fairness 
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Preliminaries 

• Notations: 

– Security parameter 𝒏 

– We wish security to hold for all inputs of all 
lengths, as long as 𝒏 is large enough 

 

• Function 𝝁 is negligible: if for every polynomial 𝑝(𝑛) 

there exists an 𝑁 such that for all 𝑛 > 𝑁 we have 𝜇 𝑛 <
1

𝑝(𝑛)
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Preliminaries 

• Probability ensemble 𝑿 = {𝑿 𝒂, 𝒏 } 

– Infinite series, indexed by a string 𝒂 and natural 𝒏 

– Each 𝑿(𝒂, 𝒏) is a random variable 

• In our context: output of protocol execution with input 
𝒂 and security parameter 𝒏 

• Probability space: randomness of parties 
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Preliminaries 

• Computational indistinguishability 𝑿 ≈  𝒀 

– For every (non-uniform) polynomial-time 
distinguisher 𝐷 there exists a negligible function  
such that for every 𝒂 and all large enough 𝒏’s: 
|Pr[𝐷 𝑋 𝑎, 𝑛 = 1 − Pr 𝐷 𝑌 𝑎, 𝑛 = 1 < 𝜇 𝑛  
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Notation 

• Functionality 

– 𝒇 = 𝒇𝟏, … , 𝒇𝒎 : for input vector 𝒙, each 𝒇𝒊(𝒙) is 
a random variable (for probabilistic functionalities) 

– Party 𝑷𝒊 receives 𝒇𝒊 

 

– We denote 𝒙, 𝒚   𝒇𝟏 𝒙, 𝒚 , 𝒇𝟐 𝒙, 𝒚  
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Semi-Honest Adversaries 

• Simulation: 

– Given input and output, can generate the 
adversary’s view of a protocol execution 

– Important: since parties follow protocol, the 
inputs are well defined 
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Semi-Honest Adversaries 

• For every semi-honest 𝑨, there exists a 
simulator 𝑺 such that for every set of 
corrupted parties 𝑰 and every vector of inputs 
𝒙, the following are computationally 
indistinguishable 

– The output of 𝑨, and the outputs of all parties 
after a protocol execution 

– The output of 𝑺 given 𝒙𝒊 and 𝒇𝒊(𝒙) for all 𝒊 ∈ 𝑰, 
and all the values 𝒇𝟏(𝒙), … , 𝒇𝒎(𝒙) 
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Semi-Honest Adversaries 
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Protocol 𝒚 
𝒙 

Arbitrary Output 
(w.l.o.g.: adversary’s 
    view in execution) 

𝒇(𝒙, 𝒚) 

The REAL execution Simulation 

𝒙, 𝒇(𝒙, 𝒚) 

𝒇(𝒙, 𝒚) 
Simulator 

Output 



Properties 

• Correctness, independence of inputs, fairness 
are all non-issues in the semi-honest model 

• Why is privacy guaranteed by this definition? 

– The adversary’s view in an execution can be 
generated from the input and output only 

– If the adversary can compute something after a 
real protocol execution, it can compute it just 
from the input/output 

– Very similar to zero-knowledge 
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Joint Distribution 

• A crucial point: need to consider the joint 
distribution of adversary’s output and honest 
parties’ output 

• In the definition: 

– We compare the distribution of all inputs and outputs 
together with the adversary’s output 
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Joint Distribution 

• Example: 

– Functionality: 𝑨 outputs random bit, 𝑩 outputs 
nothing 

• 𝑩 should clearly not learn 𝑨’s output bit 

– Protocol: 𝑨 chooses a random bit, outputs it, and 
sends the bit to 𝑩 (who ignores it) 

• This is simulatable when separately looking 
at distribution of 𝑩’s view and actual outputs 
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Deterministic Functionalities 

• In the case of deterministic functionalities, 
the outputs are fully determined by the 
inputs 

• It suffices to separately prove 

– Correctness 

– Simulation: can generate view of semi-honest 
adversary (corrupted parties’ view), given inputs 
and outputs only 

• This is significantly easier! 

Secure Computation and Efficiency          
Bar-Ilan University, Israel 2015 22 



Malicious Adversaries 

• First attempt: require the existence of a 
simulator that generates the adversary’s view 
given the inputs/outputs of corrupted 

• Problem: what are the inputs used by the 
adversary? 

– They are not necessarily those written on the 
input tape 

– They are not explicit: the adversary doesn’t run 
the protocol but arbitrary code 
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Malicious Adversaries 

• We also need to require independence of 
inputs, correctness, fairness etc. 
– These properties are not captured by “view 

simulation” alone 

• Can we separate correctness and privacy? 
– Instead of computing 𝒇, compute a function that 

reveals first input bit of other party 

– Correctness or privacy??? 

• What about independence of inputs and 
privacy? 

Secure Computation and Efficiency          
Bar-Ilan University, Israel 2015 24 



The Ideal/Real Paradigm 

• What is the best we could hope for? 
– An incorruptible trusted party 

– All parties send inputs to trusted party (over perfectly 
secure communication lines) 

– Trusted party computes output 

– Trusted party sends each party its output (over 
perfectly secure communication lines) 

– This is an ideal world 

• What can an adversary do? 
– Just choose its input… 
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The Ideal/Real Paradigm 

• The real protocol must be like the ideal world 

• Formalizing this notion: 
– For every adversary A attacking the real protocol, 

there exists an adversary S in the ideal model such 
that the output distributions (of all) are 
computationally indistinguishable 

– S simulates a real protocol execution while 
interacting in the ideal world 

– Here we always look at the joint output 
distribution 
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“Formal” Security Definition 

• Protocol 𝝅 securely computes a function 𝒇 if: 

– For every non-uniform polynomial-time real-model 
adversary 𝑨, there exists a non-uniform polynomial-time 
ideal-model adversary 𝑺, such that for all input vectors 
and auxiliary inputs:  

– the joint outputs of 𝑨 and the honest parties in a real 
execution of 𝝅 is computationally indistinguishable from 
the joint outputs of 𝑺 and the honest parties in an ideal 
execution where the trusted party computes 𝒇 
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Properties 

• The following properties hold 

– Privacy: from adversary’s outputs 

– Correctness: from honest parties’ outputs 

– Independence of inputs: from ideal execution 

– Fairness and guaranteed output delivery: from 
ideal execution 

 

– More? 
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Relaxing the Ideal Model 

• In some cases, this ideal model is too strong 
and cannot be achieved 

• Fairness cannot be achieved in general 
without an honest majority 

Secure Computation and Efficiency          
Bar-Ilan University, Israel 2015 30 



Relaxing the Ideal Model 

• Change the instructions of the trusted party 

– Trusted party receives input from all parties 

– Trusted party sends corrupted parties’ outputs to 
adversary 

– Adversary says “continue” or “halt” 

– If “continue”, trusted party sends output to honest 
parties; else, it sends “abort” 
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Reactive Functionalities 

• Functionalities that obtain inputs and provide 
outputs in stages 

• Examples: 

– Mental poker 

– Commitment schemes 

• This is also useful for relaxing ideal 
functionalities (give side information to 𝑆) 

• The definition extends naturally to this as well 
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Advantages of This Approach 

• General – it captures ALL applications 

• The specifics of an application are defined by 
its functionality, security is defined as above 

• The security guarantees achieved are easily 
understood (because the ideal model is easily 
understood) 

– We can be confident that we did not “miss” any 
security requirements 
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Using Secure Computation 

• The ideal-model paradigm 

– You don’t need to understand anything about how 
a protocol works to use it 

– You just need to imagine an incorruptible trusted 
party computing the functionality for you 

 

• Very advantageous for usage 
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Sequential Modular Composition 

• Sequential modular composition:  
– Secure protocols are run sequentially, with arbitrary 

messages sent in between them 

• Why consider this? 
– An important security goal within itself 

– Very helpful (if not crucial) tool for analyzing the 
security of protocols 

• Formalization – Hybrid Model 
– A trusted party helps to compute a sub-functionality 

– REAL messages & IDEAL messages  
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Sequential Modular Composition 

• Subprotocols 𝑖 securely compute functionalities 𝑓𝑖 

• Protocol  securely computes 𝑔 in a hybrid model where a 
trusted party is used to compute every 𝑓𝑖 

– This is much easier to analyze since each 𝒇𝒊 is effectively “perfectly 
secure” 

• Theorem: assuming the above, the real protocol  that uses 
real calls to each 𝑖 instead of a trusted party for 𝑓𝑖, securely 
computes 𝑔. 
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 Concurrent Composition 

• We have considered the stand-alone model 
– This implies sequential composition 

• What about concurrent composition? 
– An Internet-like setting where many (arbitrary, secure 

and insecure) protocols are run concurrently, with the 
adversary controlling the scheduling 

• This models the real-world setting more 
accurately 
– We don’t know what the result is of running stand-

alone protocols concurrently with related inputs 
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Concurrent Composition 

• Concurrent general composition 
– Strictly harder than the stand-alone model 

– Impossible  without some trusted set-up 
assumption (like a common reference string) 

• The UC definition (universal composability) 
guarantees security in this setting 
– Efficient UC security is a special challenge… 

• Recommended to study UC next, after 
studying the stand-alone setting 
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Relaxed Definitions 

• In order to achieve high efficiency, 
sometimes can consider weaker definitions 
– Semi-honest (but this is very weak) 

– Covert adversaries: adversary may be malicious 
but is guaranteed to be caught cheating with good 
probability 
• Suitable where adversaries can be penalized for being 

caught cheating (e.g., business loss) 

– Privacy only (malicious) 
• Problematic… 
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Summary 

• Semi-honest: simulator given input/output generates the 
adversary’s view 

– Probabilistic functionalities – must consider joint distribution of view 
and outputs 

– Deterministic functionalities: easier, suffices to separately consider 
correctness and view simulation 

• Malicious: ideal-real simulation 

• Sequential composition 

• Advanced topics 

– Concurrent composition 

– Relaxed definition 

– Semi-honest vs malicious 
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General vs Specific Protocols 

• Most of the school will focus on general 
protocols 

– Convert the function into a Boolean or arithmetic 
circuit 

– Compute the circuit securely 

• It seems that for specific problems, specific 
protocols should be more secure 
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General vs Specific Protocols 

• General protocols – advantages  

– Implement once 

– Very flexible: almost no difference between 

• Set intersection 

• Size of set intersection 

• Output 1 if set intersection size is greater than 𝑘 

– In many cases is competitive, and in fact the 
fastest solution known 
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OBLIVIOUS TRANSFER 
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Oblivious Transfer (OT) 
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𝒙𝟎, 𝒙𝟏 𝝈 

𝝈 𝒙𝟎, 𝒙𝟏 

𝒙𝝈 
𝝀  

(learns nothing) 

Called 1-out-of-2 oblivious transfer (𝑂𝑇1
2) 



Fundamental Primitive 

• OT is complete 

– If can compute OT then can compute any 
functionality 

• Constructing OT 

– OT cannot be constructed from PKE in a black box 
manner 

– Can be constructed from 

• Enhanced trapdoor permutations 

• DDH, RSA, Lattices 
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Just a Few Important OT Results 

• OT is symmetric 

• Can construct efficient 𝑶𝑻𝟏
𝑵 and 𝑶𝑻𝒌

𝑵 from 𝑶𝑻𝟏
𝟐 

• Can construct malicious OT from semi-honest 
OT in a black-box manner (inefficiently) 

• Many variants of OT are equivalent 

– Random OT 

– Rabin OT 

– Weak OT 
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Efficient OT from DDH 

• Recall the DDH assumption over a group 𝔾 of 
order 𝒒 with generator 𝑔 

– The DDH assumption says that    

 𝑔, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ≈ 𝑔, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑐   

    where 𝑎, 𝑏, 𝑐 ← ℤ𝑞 are random 
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Semi-Honest OT 

• Recall ElGamal encryption 

– Secret key: random 𝑎 ← ℤ𝑞 

– Public key: ℎ = 𝑔𝑎 

– Encrypt 𝒎 ∈ 𝔾: c = 𝑢, 𝑣 = 𝑔𝑟 , ℎ𝑟 ⋅ 𝑚 , random 𝑟 ∈ ℤ𝑞 

– Decrypt 𝒖, 𝒗 : compute 𝑚 =  
𝑣

𝑢𝑎 

• Note:   
𝑣

𝑢𝑎 =
ℎ𝑟⋅𝑚

𝑔𝑟 𝑎 
=

ℎ𝑟⋅𝑚

𝑔𝑎 𝑟 
=

ℎ𝑟⋅𝑚

ℎ𝑟 
= 𝑚 
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Semi-Honest OT 
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𝒙𝟎, 𝒙𝟏 
𝒃 

Choose 𝐚𝝈; compute 𝒉𝝈 = 𝒈𝒂𝝈 
Choose random 𝒉𝟏−𝝈 ∈ 𝔾 𝒉𝟎, 𝒉𝟏 

Encrypt 𝒙𝟎 with 𝒉𝟎 
Encrypt 𝒙𝟏 with 𝒉𝟏 

𝒄𝟎, 𝒄𝟏 

Decrypt 𝒄𝝈 with 𝒂𝝈 

Note: 
• Encrypt 𝒙𝟎 with 𝒉𝟎: 𝑢0, 𝑣0) = (𝑔𝑟, ℎ0

𝑟 ⋅ 𝑥0  
• Encrypt 𝒙𝟏 with 𝒉𝟏: (𝑢1, 𝑣1) = 𝑔𝑠, ℎ1

𝑠 ⋅ 𝑥1  



Semi-Honest OT – Security 

• Security: 

– Alice sees only two public keys, which are two random 

group elements (and so learns nothing about 𝜎) 

• Formally, simulate by sending two random group elements 

– Bob knows only one private key and so learns only 𝑥𝜎 

• Formally, simulate by encrypting 𝑥𝜎  with ℎ𝜎, and encrypting 

garbage (e.g., 0) with ℎ1−𝜎 
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Choose 𝐚𝝈; compute 𝒉𝝈 = 𝒈𝒂𝝈  
Choose random 𝒉𝟏−𝝈 ∈ 𝔾 𝒉𝟎, 𝒉𝟏 

Encrypt 𝒙𝟎 with 𝒉𝟎 
Encrypt 𝒙𝟏 with 𝒉𝟏 𝒄𝟎, 𝒄𝟏 

Decrypt 𝒄𝝈 with 𝒂𝝈 



More Efficient Semi-Honest OT 
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𝒙𝟎, 𝒙𝟏 
𝝈 

Choose 𝐚𝝈; compute 𝒉𝝈 = 𝒈𝒂𝝈 
Choose random 𝒉𝟏−𝒃 ∈ 𝔾 𝒉𝟎, 𝒉𝟏 

Choose 𝑟 ← ℤ𝑞 

Compute 𝑢 = 𝑔𝑟 
Compute 𝑣0 = ℎ0

𝑟 ⋅ 𝑥0 
Compute 𝑣1 = ℎ1

𝑟 ⋅ 𝑥1 
 𝒖, 𝒗𝟎, 𝒗𝟏 

Output 𝒙𝝈 =
𝒗𝝈

𝒖𝒂𝝈
 



Malicious Adversaries 

• Corrupted sender: 

– Sender cannot cheat 

– Simulator can “extract” both 𝑥0, 𝑥1 by choosing 
both ℎ0 and ℎ1 so that it knows the secret keys 

• Corrupted receiver: 

– Receiver can choose both ℎ0 and ℎ1 so that it 
knows the secret keys 
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Preventing Malicious 

• The idea: 
– Alice sends a random group element 𝑤 

– Bob chooses ℎ0, ℎ1 so that ℎ0 ⋅ ℎ1 = 𝑤 
• Bob can easily do this by choosing 𝑎𝜎, computing ℎ𝜎 = 𝑔𝑎𝜎 

and setting ℎ1−𝜎 = 𝑤/ℎ𝜎 

• Bob cannot know both DLOGs of ℎ0, ℎ1 or it can compute 
the DLOG of 𝐻 

• Encryption uses a random oracle since “not 
completely knowing” a secret key doesn’t 
suffice 
– Encrypt by 𝑔𝑟 , 𝐻𝐴𝑆𝐻 (ℎ0

𝑟 ⊕ 𝑥0),… 
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State of the Art – OT 

• Semi-honest adversaries 

– Receiver: 2 exponentiations + send 2 group elements 

– Sender: 3 exponentiations + send 3 group elements 

• Malicious adversaries (Random Oracle) 

– Same as semi-honest 

• Malicious adversaries (PVW) 

– Receiver: 3 exponentiations + send 2 group elements 

– Sender: 8 exponentiations (effectively 6) + send 4 
group elements 
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Proving Malicious Security 

• Proving security in the malicious model is tricky 
and subtle 

• The ideal/real model paradigm 

– Need a simulator who internally runs the real 
adversary and externally interacts with the trusted 
party (sending input and getting output) 

– The simulator needs to “extract” the real adversary’s 
input, get output, and make the output match 

• We demonstrate the ideal/real proof technique 
for the problem of coin tossing 
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Proving Malicious Security 
• Blum’s protocol (with ElGamal): 

– Party 𝑃1: 

• Choose random 𝑏 ∈ 0,1  and 𝑟, 𝑠 ← ℤ𝑞 

• Compute ℎ = 𝑔𝑟, 𝑢 = 𝑔𝑠, 𝑣 = ℎ𝑠 ⋅ 𝑔𝑏 

• Send ℎ, 𝑢, 𝑣  to 𝑃2 

– Party 𝑃2: 
• Choose random 𝑏′ ∈ 0,1   

• Send 𝑏′ to 𝑃1 

– Party 𝑃1 sends 𝑟, 𝑠, 𝑏 to 𝑃2 

– Party 𝑃2 verifies that ℎ = 𝑔𝑟, 𝑢 = 𝑔𝑠, 𝑣 = ℎ𝑠 ⋅ 𝑔𝑏 

– Both parties output 𝑏 ⊕ 𝑏′ 
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Intuition 

• Consider a corrupt 𝑷𝟐 

– By the security of El Gamal encryption, it knows 
nothing about 𝑏 when it chooses 𝑏′ 

• Consider a corrupt 𝑷𝟏 

– The values (ℎ, 𝑢, 𝑣) fully define 𝑏 

• There exists a single pair (𝑟, 𝑠) so that ℎ = 𝑔𝑟 , 𝑢 = 𝑔𝑠 

• The value 𝑣 can either be ℎ𝑠 or ℎ𝑠 ⋅ 𝑔, but not both 

– 𝑃2 chooses 𝑏′ after 𝑃1 sends 𝑏; by the above, 𝑃1 
cannot change 𝑏 and so 𝑃1 cannot bias the output 
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Proving Security - 𝑷𝟏 corrupted 
• Let A be an adversary; S works as follows 
• S receives a random bit 𝛽 from the trusted party 
• S invokes A and receives (ℎ, 𝑢, 𝑣) 
• S works as follows: 

– S internally hands A the value 𝑏′ = 0 

– S rewinds A and internally hands A the value 𝑏′ = 1 

– If A replies correctly both times, S learns the value 𝑏, sets 
𝑏′ = 𝑏 ⊕ 𝛽, and outputs this as A’s view. In addition, A 
externally sends continue to the TTP 

– If A does not reply correctly either time, S sends abort to the 
TTP and outputs a random 𝑏′ as A’s view 

– If A aborts once, then S learns the value 𝑏, sets 𝑏′ = 𝑏 ⊕ 𝛽, and 
outputs this as A’s view. If A aborts on this 𝑏′ then S sends sends 
abort to the TTP; else it sends continue to the TTP 
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Proving Security - 𝑷𝟐 corrupted 
• Let A be an adversary; S works as follows 
• S receives a random bit 𝛽 from the trusted party 
• S invokes A and works as follows: 

– S chooses a random 𝑏 and internally hands A the tuple 
(ℎ, 𝑢, 𝑣) computed correctly for 𝑏 

– S receives 𝑏′ from A 

– If 𝑏 ⊕ 𝑏′ = 𝛽 then S outputs (ℎ, 𝑢, 𝑣) and (𝑟, 𝑠, 𝑏) as 
its view, and sends continue to the TTP 

– Else, S rewinds A and goes to the beginning again 

• Note: there is no abort here since we can just 
take 𝑏′ = 0 as default if 𝑃2 doesn’t respond 
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Summary 

• Oblivious transfer is a fundamental primitive 

– It is heavily used in most general secure 
computation protocols 

• Oblivious transfer is very efficient 

– But it does cost exponentiations every time! 

– This afternoon we will see how to improve this 
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