
1
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Session 1: Definitions and
Oblivious Transfer

Yehuda Lindell

Bar-Ilan University

Secure Multiparty Computation

• A set of parties with private inputs

• Parties wish to jointly compute a function of
their inputs so that certain security
properties are preserved

• Properties must be ensured even if some of
the parties maliciously attack the protocol

• Can model any cryptographic task

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 2

Applications

• Elections

• Auctions

• Private database search

• Privacy-preserving data mining

• Secure set intersection

• Much much more…

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 3

Security Requirements

• Consider a secure auction (with secret bids):

– An adversary may wish to learn the bids of all parties
– to prevent this, require PRIVACY

– An adversary may wish to win with a lower bid than
the highest – to prevent this, require CORRECTNESS

– But, the adversary may also wish to ensure that it
always gives the highest bid – to prevent this, require
INDEPENDENCE OF INPUTS

– An adversary may try to abort the execution if its bid
is not the highest – require FAIRNESS

 Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 4

General Security Properties

• Privacy: only the output is revealed

• Correctness: the function is computed
correctly

• Independence of inputs: parties cannot
choose inputs based on others’ inputs

• Fairness: if one party receives output, all
receive output

• Guaranteed output delivery

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 5

Defining Security

• Option 1: analyze security concerns for each
specific problem

– Auctions: as in previous slide

– Elections: privacy, correctness and fairness only (?)

• Problems:

– How do we know that all concerns are covered?

– Definitions are application dependent and need to
be redefined from scratch for each task

Secure Computation and Efficiency

Bar-Ilan University, Israel 2015 6

Defining Security

• Option 2: general definition that captures all
(most) secure computation tasks

• Properties of any such definition

– Well-defined adversary model

– Well-defined execution setting

– Security guarantees are clear and simple to
understand

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 7

Modeling Adversaries

• Adversarial behavior
– Semi-honest: follows the protocol specification

• Tries to learn more than allowed by inspecting transcript

– Malicious: follows any arbitrary strategy

– Covert: follows any arbitrary strategy, but is averse to
being caught…

• Adversarial power
– Polynomial-time: computational security

– Computationally unbounded: information-theoretic
security

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 8

Modeling Adversaries

• Corruption strategy
– Static: the set of corrupted parties is fixed before

the execution begins

– Adaptive: the adversary can corrupt parties
during the execution, based on what has
happened
• Models modern “hacking”

• Cannot use strategies that choose a small set of
representatives to compute for all

• In general, much harder!

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 9

Execution Setting

• Stand-alone
– Consider a single protocol execution only (or that only

a single execution is under attack)

• Concurrent general composition
– Arbitrary protocols executed concurrently

– Realistic setting, very important model

• Stand-alone vs composition
– Stand-alone: a good place to start studying secure

computation, techniques and tools are helpful

– Composition: true goal for constructions

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 10

Feasibility of Secure Computation

• Assuming an honest majority, any
functionality can be securely computed

– Even information theoretically, and with adaptive
security

• Without an honest majority, it is impossible
to achieve fairness in general

• Without an honest majority, any functionality
can be securely computed without fairness

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 11

Preliminaries

• Notations:

– Security parameter 𝒏

– We wish security to hold for all inputs of all
lengths, as long as 𝒏 is large enough

• Function 𝝁 is negligible: if for every polynomial 𝑝(𝑛)

there exists an 𝑁 such that for all 𝑛 > 𝑁 we have 𝜇 𝑛 <
1

𝑝(𝑛)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 12

Preliminaries

• Probability ensemble 𝑿 = {𝑿 𝒂, 𝒏 }

– Infinite series, indexed by a string 𝒂 and natural 𝒏

– Each 𝑿(𝒂, 𝒏) is a random variable

• In our context: output of protocol execution with input
𝒂 and security parameter 𝒏

• Probability space: randomness of parties

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 13

Preliminaries

• Computational indistinguishability 𝑿 ≈ 𝒀

– For every (non-uniform) polynomial-time
distinguisher 𝐷 there exists a negligible function 
such that for every 𝒂 and all large enough 𝒏’s:
|Pr[𝐷 𝑋 𝑎, 𝑛 = 1 − Pr 𝐷 𝑌 𝑎, 𝑛 = 1 < 𝜇 𝑛

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 14

Notation

• Functionality

– 𝒇 = 𝒇𝟏, … , 𝒇𝒎 : for input vector 𝒙, each 𝒇𝒊(𝒙) is
a random variable (for probabilistic functionalities)

– Party 𝑷𝒊 receives 𝒇𝒊

– We denote 𝒙, 𝒚  𝒇𝟏 𝒙, 𝒚 , 𝒇𝟐 𝒙, 𝒚

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 15

Semi-Honest Adversaries

• Simulation:

– Given input and output, can generate the
adversary’s view of a protocol execution

– Important: since parties follow protocol, the
inputs are well defined

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 16

Semi-Honest Adversaries

• For every semi-honest 𝑨, there exists a
simulator 𝑺 such that for every set of
corrupted parties 𝑰 and every vector of inputs
𝒙, the following are computationally
indistinguishable

– The output of 𝑨, and the outputs of all parties
after a protocol execution

– The output of 𝑺 given 𝒙𝒊 and 𝒇𝒊(𝒙) for all 𝒊 ∈ 𝑰,
and all the values 𝒇𝟏(𝒙), … , 𝒇𝒎(𝒙)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 17

Semi-Honest Adversaries

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 18

Protocol 𝒚
𝒙

Arbitrary Output
(w.l.o.g.: adversary’s
 view in execution)

𝒇(𝒙, 𝒚)

The REAL execution Simulation

𝒙, 𝒇(𝒙, 𝒚)

𝒇(𝒙, 𝒚)
Simulator

Output

Properties

• Correctness, independence of inputs, fairness
are all non-issues in the semi-honest model

• Why is privacy guaranteed by this definition?

– The adversary’s view in an execution can be
generated from the input and output only

– If the adversary can compute something after a
real protocol execution, it can compute it just
from the input/output

– Very similar to zero-knowledge

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 19

Joint Distribution

• A crucial point: need to consider the joint
distribution of adversary’s output and honest
parties’ output

• In the definition:

– We compare the distribution of all inputs and outputs
together with the adversary’s output

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 20

Joint Distribution

• Example:

– Functionality: 𝑨 outputs random bit, 𝑩 outputs
nothing

• 𝑩 should clearly not learn 𝑨’s output bit

– Protocol: 𝑨 chooses a random bit, outputs it, and
sends the bit to 𝑩 (who ignores it)

• This is simulatable when separately looking
at distribution of 𝑩’s view and actual outputs

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 21

Deterministic Functionalities

• In the case of deterministic functionalities,
the outputs are fully determined by the
inputs

• It suffices to separately prove

– Correctness

– Simulation: can generate view of semi-honest
adversary (corrupted parties’ view), given inputs
and outputs only

• This is significantly easier!

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 22

Malicious Adversaries

• First attempt: require the existence of a
simulator that generates the adversary’s view
given the inputs/outputs of corrupted

• Problem: what are the inputs used by the
adversary?

– They are not necessarily those written on the
input tape

– They are not explicit: the adversary doesn’t run
the protocol but arbitrary code

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 23

Malicious Adversaries

• We also need to require independence of
inputs, correctness, fairness etc.
– These properties are not captured by “view

simulation” alone

• Can we separate correctness and privacy?
– Instead of computing 𝒇, compute a function that

reveals first input bit of other party

– Correctness or privacy???

• What about independence of inputs and
privacy?

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 24

The Ideal/Real Paradigm

• What is the best we could hope for?
– An incorruptible trusted party

– All parties send inputs to trusted party (over perfectly
secure communication lines)

– Trusted party computes output

– Trusted party sends each party its output (over
perfectly secure communication lines)

– This is an ideal world

• What can an adversary do?
– Just choose its input…

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 25

The Ideal/Real Paradigm

• The real protocol must be like the ideal world

• Formalizing this notion:
– For every adversary A attacking the real protocol,

there exists an adversary S in the ideal model such
that the output distributions (of all) are
computationally indistinguishable

– S simulates a real protocol execution while
interacting in the ideal world

– Here we always look at the joint output
distribution

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 26

𝒙
’ 𝒚

Ideal World

Trusted Party

𝒇
(𝒙

’,𝒚
) 𝒇

(𝒙
’,

𝒚
)

Real World

Protocol



arbitrary
output

output

arbitrary
output

𝒇(𝒙’, 𝒚)

𝒚
𝒙

27
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

“Formal” Security Definition

• Protocol 𝝅 securely computes a function 𝒇 if:

– For every non-uniform polynomial-time real-model
adversary 𝑨, there exists a non-uniform polynomial-time
ideal-model adversary 𝑺, such that for all input vectors
and auxiliary inputs:

– the joint outputs of 𝑨 and the honest parties in a real
execution of 𝝅 is computationally indistinguishable from
the joint outputs of 𝑺 and the honest parties in an ideal
execution where the trusted party computes 𝒇

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 28

Properties

• The following properties hold

– Privacy: from adversary’s outputs

– Correctness: from honest parties’ outputs

– Independence of inputs: from ideal execution

– Fairness and guaranteed output delivery: from
ideal execution

– More?

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 29

Relaxing the Ideal Model

• In some cases, this ideal model is too strong
and cannot be achieved

• Fairness cannot be achieved in general
without an honest majority

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 30

Relaxing the Ideal Model

• Change the instructions of the trusted party

– Trusted party receives input from all parties

– Trusted party sends corrupted parties’ outputs to
adversary

– Adversary says “continue” or “halt”

– If “continue”, trusted party sends output to honest
parties; else, it sends “abort”

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 31

Reactive Functionalities

• Functionalities that obtain inputs and provide
outputs in stages

• Examples:

– Mental poker

– Commitment schemes

• This is also useful for relaxing ideal
functionalities (give side information to 𝑆)

• The definition extends naturally to this as well

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 32

Advantages of This Approach

• General – it captures ALL applications

• The specifics of an application are defined by
its functionality, security is defined as above

• The security guarantees achieved are easily
understood (because the ideal model is easily
understood)

– We can be confident that we did not “miss” any
security requirements

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 33

Using Secure Computation

• The ideal-model paradigm

– You don’t need to understand anything about how
a protocol works to use it

– You just need to imagine an incorruptible trusted
party computing the functionality for you

• Very advantageous for usage

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 34

Sequential Modular Composition

• Sequential modular composition:
– Secure protocols are run sequentially, with arbitrary

messages sent in between them

• Why consider this?
– An important security goal within itself

– Very helpful (if not crucial) tool for analyzing the
security of protocols

• Formalization – Hybrid Model
– A trusted party helps to compute a sub-functionality

– REAL messages & IDEAL messages

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 35

Sequential Modular Composition

• Subprotocols 𝑖 securely compute functionalities 𝑓𝑖

• Protocol  securely computes 𝑔 in a hybrid model where a
trusted party is used to compute every 𝑓𝑖

– This is much easier to analyze since each 𝒇𝒊 is effectively “perfectly
secure”

• Theorem: assuming the above, the real protocol  that uses
real calls to each 𝑖 instead of a trusted party for 𝑓𝑖, securely
computes 𝑔.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 36

 Concurrent Composition

• We have considered the stand-alone model
– This implies sequential composition

• What about concurrent composition?
– An Internet-like setting where many (arbitrary, secure

and insecure) protocols are run concurrently, with the
adversary controlling the scheduling

• This models the real-world setting more
accurately
– We don’t know what the result is of running stand-

alone protocols concurrently with related inputs

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 37

Concurrent Composition

• Concurrent general composition
– Strictly harder than the stand-alone model

– Impossible without some trusted set-up
assumption (like a common reference string)

• The UC definition (universal composability)
guarantees security in this setting
– Efficient UC security is a special challenge…

• Recommended to study UC next, after
studying the stand-alone setting

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 38

Relaxed Definitions

• In order to achieve high efficiency,
sometimes can consider weaker definitions
– Semi-honest (but this is very weak)

– Covert adversaries: adversary may be malicious
but is guaranteed to be caught cheating with good
probability
• Suitable where adversaries can be penalized for being

caught cheating (e.g., business loss)

– Privacy only (malicious)
• Problematic…

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 39

Summary

• Semi-honest: simulator given input/output generates the
adversary’s view

– Probabilistic functionalities – must consider joint distribution of view
and outputs

– Deterministic functionalities: easier, suffices to separately consider
correctness and view simulation

• Malicious: ideal-real simulation

• Sequential composition

• Advanced topics

– Concurrent composition

– Relaxed definition

– Semi-honest vs malicious

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 40

General vs Specific Protocols

• Most of the school will focus on general
protocols

– Convert the function into a Boolean or arithmetic
circuit

– Compute the circuit securely

• It seems that for specific problems, specific
protocols should be more secure

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 41

General vs Specific Protocols

• General protocols – advantages

– Implement once

– Very flexible: almost no difference between

• Set intersection

• Size of set intersection

• Output 1 if set intersection size is greater than 𝑘

– In many cases is competitive, and in fact the
fastest solution known

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 42

OBLIVIOUS TRANSFER

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 43

Oblivious Transfer (OT)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 44

𝒙𝟎, 𝒙𝟏 𝝈

𝝈 𝒙𝟎, 𝒙𝟏

𝒙𝝈
𝝀

(learns nothing)

Called 1-out-of-2 oblivious transfer (𝑂𝑇1
2)

Fundamental Primitive

• OT is complete

– If can compute OT then can compute any
functionality

• Constructing OT

– OT cannot be constructed from PKE in a black box
manner

– Can be constructed from

• Enhanced trapdoor permutations

• DDH, RSA, Lattices

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 45

Just a Few Important OT Results

• OT is symmetric

• Can construct efficient 𝑶𝑻𝟏
𝑵 and 𝑶𝑻𝒌

𝑵 from 𝑶𝑻𝟏
𝟐

• Can construct malicious OT from semi-honest
OT in a black-box manner (inefficiently)

• Many variants of OT are equivalent

– Random OT

– Rabin OT

– Weak OT

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 46

Efficient OT from DDH

• Recall the DDH assumption over a group 𝔾 of
order 𝒒 with generator 𝑔

– The DDH assumption says that

 𝑔, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ≈ 𝑔, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑐

 where 𝑎, 𝑏, 𝑐 ← ℤ𝑞 are random

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 47

Semi-Honest OT

• Recall ElGamal encryption

– Secret key: random 𝑎 ← ℤ𝑞

– Public key: ℎ = 𝑔𝑎

– Encrypt 𝒎 ∈ 𝔾: c = 𝑢, 𝑣 = 𝑔𝑟 , ℎ𝑟 ⋅ 𝑚 , random 𝑟 ∈ ℤ𝑞

– Decrypt 𝒖, 𝒗 : compute 𝑚 =
𝑣

𝑢𝑎

• Note:
𝑣

𝑢𝑎 =
ℎ𝑟⋅𝑚

𝑔𝑟 𝑎
=

ℎ𝑟⋅𝑚

𝑔𝑎 𝑟
=

ℎ𝑟⋅𝑚

ℎ𝑟
= 𝑚

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 48

Semi-Honest OT

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 49

𝒙𝟎, 𝒙𝟏
𝒃

Choose 𝐚𝝈; compute 𝒉𝝈 = 𝒈𝒂𝝈
Choose random 𝒉𝟏−𝝈 ∈ 𝔾 𝒉𝟎, 𝒉𝟏

Encrypt 𝒙𝟎 with 𝒉𝟎
Encrypt 𝒙𝟏 with 𝒉𝟏

𝒄𝟎, 𝒄𝟏

Decrypt 𝒄𝝈 with 𝒂𝝈

Note:
• Encrypt 𝒙𝟎 with 𝒉𝟎: 𝑢0, 𝑣0) = (𝑔𝑟, ℎ0

𝑟 ⋅ 𝑥0
• Encrypt 𝒙𝟏 with 𝒉𝟏: (𝑢1, 𝑣1) = 𝑔𝑠, ℎ1

𝑠 ⋅ 𝑥1

Semi-Honest OT – Security

• Security:

– Alice sees only two public keys, which are two random

group elements (and so learns nothing about 𝜎)

• Formally, simulate by sending two random group elements

– Bob knows only one private key and so learns only 𝑥𝜎

• Formally, simulate by encrypting 𝑥𝜎 with ℎ𝜎, and encrypting

garbage (e.g., 0) with ℎ1−𝜎

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Choose 𝐚𝝈; compute 𝒉𝝈 = 𝒈𝒂𝝈
Choose random 𝒉𝟏−𝝈 ∈ 𝔾 𝒉𝟎, 𝒉𝟏

Encrypt 𝒙𝟎 with 𝒉𝟎
Encrypt 𝒙𝟏 with 𝒉𝟏 𝒄𝟎, 𝒄𝟏

Decrypt 𝒄𝝈 with 𝒂𝝈

More Efficient Semi-Honest OT

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 51

𝒙𝟎, 𝒙𝟏
𝝈

Choose 𝐚𝝈; compute 𝒉𝝈 = 𝒈𝒂𝝈
Choose random 𝒉𝟏−𝒃 ∈ 𝔾 𝒉𝟎, 𝒉𝟏

Choose 𝑟 ← ℤ𝑞

Compute 𝑢 = 𝑔𝑟
Compute 𝑣0 = ℎ0

𝑟 ⋅ 𝑥0
Compute 𝑣1 = ℎ1

𝑟 ⋅ 𝑥1
 𝒖, 𝒗𝟎, 𝒗𝟏

Output 𝒙𝝈 =
𝒗𝝈

𝒖𝒂𝝈

Malicious Adversaries

• Corrupted sender:

– Sender cannot cheat

– Simulator can “extract” both 𝑥0, 𝑥1 by choosing
both ℎ0 and ℎ1 so that it knows the secret keys

• Corrupted receiver:

– Receiver can choose both ℎ0 and ℎ1 so that it
knows the secret keys

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 52

Preventing Malicious

• The idea:
– Alice sends a random group element 𝑤

– Bob chooses ℎ0, ℎ1 so that ℎ0 ⋅ ℎ1 = 𝑤
• Bob can easily do this by choosing 𝑎𝜎, computing ℎ𝜎 = 𝑔𝑎𝜎

and setting ℎ1−𝜎 = 𝑤/ℎ𝜎

• Bob cannot know both DLOGs of ℎ0, ℎ1 or it can compute
the DLOG of 𝐻

• Encryption uses a random oracle since “not
completely knowing” a secret key doesn’t
suffice
– Encrypt by 𝑔𝑟 , 𝐻𝐴𝑆𝐻 (ℎ0

𝑟 ⊕ 𝑥0),…

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 53

State of the Art – OT

• Semi-honest adversaries

– Receiver: 2 exponentiations + send 2 group elements

– Sender: 3 exponentiations + send 3 group elements

• Malicious adversaries (Random Oracle)

– Same as semi-honest

• Malicious adversaries (PVW)

– Receiver: 3 exponentiations + send 2 group elements

– Sender: 8 exponentiations (effectively 6) + send 4
group elements

Secure Computation and Efficiency

Bar-Ilan University, Israel 2015 55

Proving Malicious Security

• Proving security in the malicious model is tricky
and subtle

• The ideal/real model paradigm

– Need a simulator who internally runs the real
adversary and externally interacts with the trusted
party (sending input and getting output)

– The simulator needs to “extract” the real adversary’s
input, get output, and make the output match

• We demonstrate the ideal/real proof technique
for the problem of coin tossing

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 56

Proving Malicious Security
• Blum’s protocol (with ElGamal):

– Party 𝑃1:

• Choose random 𝑏 ∈ 0,1 and 𝑟, 𝑠 ← ℤ𝑞

• Compute ℎ = 𝑔𝑟, 𝑢 = 𝑔𝑠, 𝑣 = ℎ𝑠 ⋅ 𝑔𝑏

• Send ℎ, 𝑢, 𝑣 to 𝑃2

– Party 𝑃2:
• Choose random 𝑏′ ∈ 0,1

• Send 𝑏′ to 𝑃1

– Party 𝑃1 sends 𝑟, 𝑠, 𝑏 to 𝑃2

– Party 𝑃2 verifies that ℎ = 𝑔𝑟, 𝑢 = 𝑔𝑠, 𝑣 = ℎ𝑠 ⋅ 𝑔𝑏

– Both parties output 𝑏 ⊕ 𝑏′

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 57

Intuition

• Consider a corrupt 𝑷𝟐

– By the security of El Gamal encryption, it knows
nothing about 𝑏 when it chooses 𝑏′

• Consider a corrupt 𝑷𝟏

– The values (ℎ, 𝑢, 𝑣) fully define 𝑏

• There exists a single pair (𝑟, 𝑠) so that ℎ = 𝑔𝑟 , 𝑢 = 𝑔𝑠

• The value 𝑣 can either be ℎ𝑠 or ℎ𝑠 ⋅ 𝑔, but not both

– 𝑃2 chooses 𝑏′ after 𝑃1 sends 𝑏; by the above, 𝑃1
cannot change 𝑏 and so 𝑃1 cannot bias the output

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 58

Proving Security - 𝑷𝟏 corrupted
• Let A be an adversary; S works as follows
• S receives a random bit 𝛽 from the trusted party
• S invokes A and receives (ℎ, 𝑢, 𝑣)
• S works as follows:

– S internally hands A the value 𝑏′ = 0

– S rewinds A and internally hands A the value 𝑏′ = 1

– If A replies correctly both times, S learns the value 𝑏, sets
𝑏′ = 𝑏 ⊕ 𝛽, and outputs this as A’s view. In addition, A
externally sends continue to the TTP

– If A does not reply correctly either time, S sends abort to the
TTP and outputs a random 𝑏′ as A’s view

– If A aborts once, then S learns the value 𝑏, sets 𝑏′ = 𝑏 ⊕ 𝛽, and
outputs this as A’s view. If A aborts on this 𝑏′ then S sends sends
abort to the TTP; else it sends continue to the TTP

59

Proving Security - 𝑷𝟐 corrupted
• Let A be an adversary; S works as follows
• S receives a random bit 𝛽 from the trusted party
• S invokes A and works as follows:

– S chooses a random 𝑏 and internally hands A the tuple
(ℎ, 𝑢, 𝑣) computed correctly for 𝑏

– S receives 𝑏′ from A

– If 𝑏 ⊕ 𝑏′ = 𝛽 then S outputs (ℎ, 𝑢, 𝑣) and (𝑟, 𝑠, 𝑏) as
its view, and sends continue to the TTP

– Else, S rewinds A and goes to the beginning again

• Note: there is no abort here since we can just
take 𝑏′ = 0 as default if 𝑃2 doesn’t respond

60

Summary

• Oblivious transfer is a fundamental primitive

– It is heavily used in most general secure
computation protocols

• Oblivious transfer is very efficient

– But it does cost exponentiations every time!

– This afternoon we will see how to improve this

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 61

