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So far: global sensitivity 

• Looked at releasing, or optimizing over, vector of 

queries 𝑞 = (𝑞1, … , 𝑞𝑘) with low sensitivity  

 In ℓ1, ℓ2 norms (noise addition) 

 In ℓ∞ norms (algorithms for releasing counting queries) 

 

• What do we do when sensitivity is not the same 

everywhere?  

 

• How can we get higher accuracy on instances where 

sensitivity is lower? 

 

• Technical point 
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                                     (𝜖, 𝛿)-DP 

 

         𝜖2-CDP 

 

 
(𝜖, 0)-DP 



Laplace Mechanism 

• Global Sensitivity : 

Example   : 
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Laplace Mechanism 

• Global Sensitivity:  

Example:    

 

 

Laplace distribution Lap 𝜆  has density  

 

Changing one point translates curve 
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Variants in other metrics 

• Consider  

• Global Sensitivity:  

 
 

 

• Example:  Ask for counts of d predicates  

 f(x) = vector of counts.  

  𝐺𝑆𝑓 = 𝑑 

Add noise 
𝑑 ln 1/𝛿

𝜖
 per entry instead of 

𝑑

𝜖
.  

Also possible with Laplace noise and strong composition 

Tight by “membership testing” attacks [BUV] 
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Global versus local [NRS07] 

• Global sensitivity is worst case over inputs 

• Local sensitivity:  

 

• Reminder:  

• [NRS’07,DL’09, ...] Techniques with error ≈ local sensitivity  

 Basis of best algorithms for graph data 
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Extreme case: piece-wise constant functions 

• Consider 𝑚𝑜𝑑𝑒 function:  

 given 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 𝒳𝑛,  

return the most frequent value  

(breaking ties lexicographically) 

Pre-images are contiguous in  

Hamming space 
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Extreme case: piece-wise constant functions 

• What is the sensitivity of mode? 
 Can we “add” noise to mode? 

• DP Mechanisms? 
 Release the entire histogram 

• Noise 1/𝜖 per entry 

• Report 𝑚𝑜𝑑𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑛𝑜𝑖𝑠𝑦 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚) 

 Use reportNoisyMax (exponential 
mechanism)? 

• Same as previous option 

• Lemma:  𝑐𝑜𝑢𝑛𝑡 𝑚𝑜𝑑𝑒  

       ≥ 𝑐𝑜𝑢𝑛𝑡 𝑚𝑜𝑑𝑒 − O
log 𝑑

𝜖
  

      w.p. 1 − 𝑜 1 . 

• Can we avoid dependency on |𝒳|? 
 (Not in worst case) 
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Extreme case: piece-wise constant functions 

• What is the sensitivity of mode? 

Can we “add” noise to mode? 

 

• How far am I from the nearest 

data set with a different mode? 

𝑑𝑖𝑠𝑡 𝑥  
= max 𝑥 − 𝑠𝑒𝑐𝑜𝑛𝑑𝑚𝑎𝑥(𝑥) 

• How sensitive is 𝐺𝑆𝑓? 

𝐺𝑆𝑑𝑖𝑠𝑡 = 1 

We can release 𝑑𝑖𝑠𝑡 𝑥 + 𝐿𝑎𝑝
1

𝜖
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Stability-based mode 

• 𝑑𝑖𝑠𝑡 𝑥  
= Hamming distance to nearest database with a different 

mode 

= max 𝑥 − 𝑠𝑒𝑐𝑜𝑛𝑑𝑚𝑎𝑥(𝑥)   

• 𝐴𝑑𝑖𝑠𝑡(𝑥): 

 𝐷 = 𝑑𝑖𝑠𝑡 𝑥 + 𝐿𝑎𝑝
1

𝜖
 

 If 𝐷 > ln
1

𝛿
/𝜖 : 

• Return 𝐷  and exact 𝑚𝑜𝑑𝑒(𝑥)  

 Else: 

• Return 𝐷  and ⊥ 

• Proposition:  𝐴𝑑𝑖𝑠𝑡(𝑥) is (𝜖, 𝛿)-DP  

• Proposition: If 𝑑𝑖𝑠𝑡 𝑥 > 𝑡/𝜖, then  

Pr 𝐴𝑑𝑖𝑠𝑡(𝑥) 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠 𝑚𝑜𝑑𝑒 ≥  1 − 𝑒−𝑡 
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Proposition:  𝐴𝑑𝑖𝑠𝑡(𝑥) is (𝜖, 𝛿)-DP  
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Proposition: If 𝑑𝑖𝑠𝑡 𝑥 > 𝑡/𝜖, then  

Pr 𝐴𝑑𝑖𝑠𝑡(𝑥) 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠 𝑚𝑜𝑑𝑒 ≥  1 − 𝑒−𝑡 
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Stability mechanism 

• Works for any function 𝑓 

 

• We can release 𝑓(𝑥) 
when 𝑥 is far from  

input with different 

answer 

Regardless of domain  

size 
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Propose-Test-Release [Dwork, Lei 2009] 

General principle: Let  

• 𝐵 be an algorithm that satisfies (𝜖, 𝛿)-DP on a subset 

𝑌 ⊆ 𝒳𝑛 of data sets 

 Specifically, for all neighboring data sets  𝑥, 𝑥′ ∈ 𝑌,  

Pr 𝐵 𝑥 ∈ 𝑇 ≤ 𝑒𝜖Pr 𝐵 𝑥′ ∈ 𝑇 + 𝛿      (∀𝑇 ⊆ 𝑅) 

• 𝑑𝑖𝑠𝑡𝑌 𝑥 = Hamming distance to complement of 𝑌  

• 𝐴𝑌,𝐵(𝑥): 

𝐷 = 𝑑𝑖𝑠𝑡𝑌 𝑥 + 𝐿𝑎𝑝
1

𝜖
 

 If 𝐷 > ln
1

𝛿
/𝜖 : 

• Return 𝐷  and 𝐵(𝑥)  

Else: 

• Return 𝐷  and ⊥ 
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Application: Sampling stability [S, Thakurta13] 

• Common computational technique to achieve 

robustness/stability:  

 compute a function on random subsamples from input 

• Given 𝑝 ∈ [0,1], a 𝑝-subsample from 𝑥 is a uniformly random 

subset of 𝑥 of size 𝑝𝑛 

• Definition: an function 𝑓 is 𝑝-subsampling-stable on 𝑥 if there 

exists a value 𝑧∗ such that 

Pr
𝑆∶ 𝑆 =𝑝𝑛

𝑓 𝑥  
𝑆

= 𝑧∗ ≥
2

3
 

 

 

• How can we exploit this type of stability? 
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Subsample and aggregate [Nissim Raskhodnikova S 2007] 

• For any 𝜖, 𝛿 − 𝐷𝑃 algorithm A: 
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Sample and aggregate 

• Definition: an function 𝑓 is 𝑝-subsampling-stable on 𝑥 

if there exists a value 𝑧∗ such that 

Pr
𝑆∶ 𝑆 =𝑝𝑛

𝑓 𝑥  
𝑆

= 𝑧∗ ≥
2

3
 

• Sample and aggregate: if 𝑝 < 𝜖𝑡, then sample and 

aggregate with stable mode returns 𝑧∗  

with probability ≥ 1 − 𝑒−𝑡 
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Getting the whole histogram 

• Say we want to release a histogram of data from a huge 

domain.  

Not just the mode! 

Want counts of all bins 𝑛𝑗 for 𝑗 = 1, … , 𝑑 

• First attempt: just add noise 

𝐴(𝑥): For all bins: 𝑛 𝑗 = 𝑛𝑗 + 𝐿𝑎𝑝
1

𝜖
 

Problem: huge output! 

• Return only 𝑗, 𝑛 𝑗 :    𝑛 𝑗 > 𝜏  

Problem: if domain is large, 

many spurious bins! 

 If log 𝑑 ≫ 𝑛, then get  

more noise than signal  

 

 

19 



Truncated Histrogram 

• 𝐴(𝑥):  

 For all bins with nonzero counts: 𝑛 𝑗 = 𝑛𝑗 + 𝐿𝑎𝑝
1

𝜖
 

Return only 𝑗, 𝑛 𝑗 :    𝑛 𝑗 > 𝜏  with 𝜏 = ln
1

𝛿
/𝜖 

 

• Prop: 𝐴 is 𝜖, 𝛿 -DP 

 

• Prop: With prob 1 − 𝑒−𝑡, 

 𝐴 returns all bins with 

𝑛𝑗 ≥
ln 𝑛

𝜖
𝑡  
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Separating definitions 

• Gap-based histogram shows that 𝜖, 𝛿 -DP algorithms 

can have 

𝐼 𝑋; 𝐴 𝑋 ≈ 𝜖𝑛𝑙𝑜𝑔 𝑑  

Unbounded! 

Requires very different proof mechanisms 
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Gap-based mechanisms 

• These ideas applied to a variety of problems 

 “Exponential mechanism with gaps” 

Learning point functions 

Releasing ”robust” statistics 

 

• Basic idea: look for conditions under which the output 

is stable, test for those conditions 
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