Gap-based mechanisms in differential privacy

Adam Smith

Penn State

Bar-Ilan Winter School February 14, 2017

So far: global sensitivity

- Looked at releasing, or optimizing over, vector of queries $\vec{q}=(q_1,\dots,q_k)$ with low sensitivity
 - \triangleright In ℓ_1 , ℓ_2 norms (noise addition)
 - \triangleright In ℓ_{∞} norms (algorithms for releasing counting queries)
- What do we do when sensitivity is not the same everywhere?

 How can we get higher accuracy on instances where sensitivity is lower?

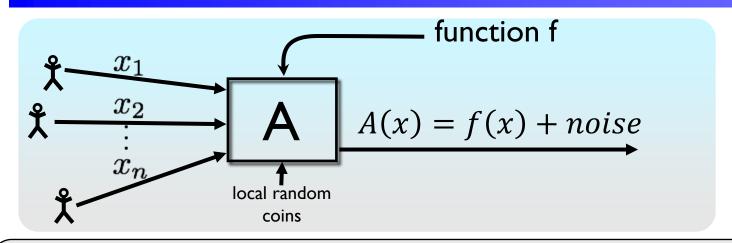
 ϵ^2 -CDP

 $(\epsilon, 0)$ -DP

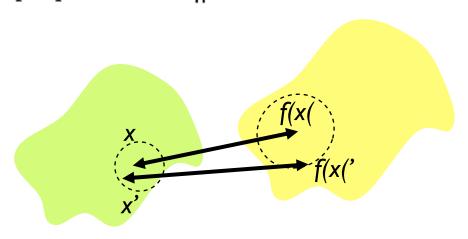
Technical point

 (ϵ, δ) -DP

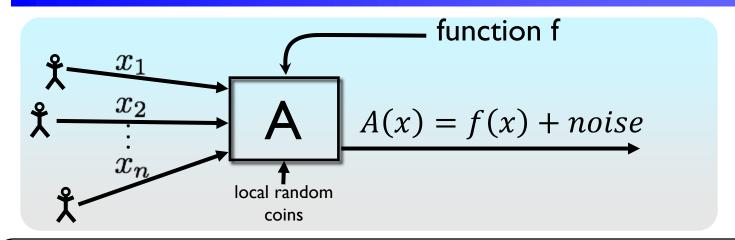
Laplace Mechanism



- Global Sensitivity : $\mathsf{GS}_f = \max_{\mathrm{neighbors}\ x,x'} \|f(x) f(x')\|_1$
 - \triangleright Example $GS_{proportion} = \frac{1}{n}$



Laplace Mechanism



• Global Sensitivity:
$$\mathsf{GS}_f = \max_{\mathrm{neighbors}\ x,x'} \|f(x) - f(x')\|_1$$

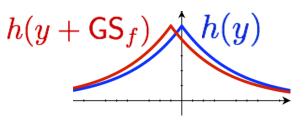
 \triangleright Example: $GS_{\text{proportion}} = \frac{1}{n}$

Theorem: If
$$A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$$
, then A is ϵ -differentially private.

 \triangleright Laplace distribution Lap(λ) has density

$$h(y) \propto e^{-|y|/\lambda}$$

> Changing one point translates curve



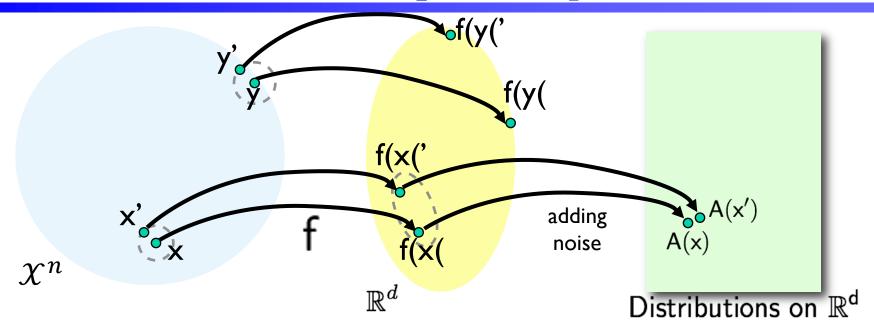
Variants in other metrics

- Consider $f: \mathcal{D}^n \to \mathbb{R}^d$
- Global Sensitivity: $GS_f = \max_{\text{neighbors } x, x'} \|f(x) f(x')\|_{\frac{1}{2}}$

Theorem: If $A(x) = f(x) + Lap(\frac{Cs}{x})^d$, then A is differentially private.

- Example $N\left(0, \left(\frac{2GS_f\sqrt{\ln(1/\delta)}}{\epsilon}\right)^2\right)$ cates
 - > f(x) = vector of counts.
 - $\triangleright GS_f = \sqrt{d}$
 - ightharpoonup Add noise $\frac{\sqrt{d \ln(1/\delta)}}{\epsilon}$ per entry instead of $\frac{d}{\epsilon}$.
 - > Also possible with Laplace noise and strong composition
 - > Tight by "membership testing" attacks [BUV]

Global versus local [NRS07]

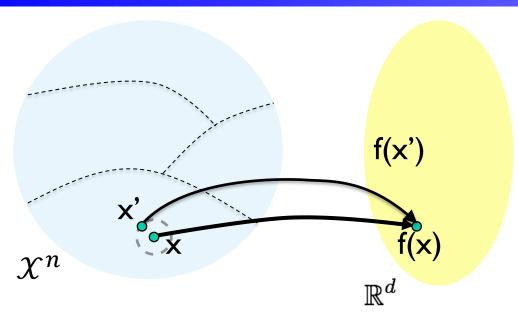


- Global sensitivity is worst case over inputs
- Local sensitivity:

$$\mathsf{LS}_f(x) = \max_{\mathbf{x'} \text{ neighbor of } x} \|f(x) - f(\mathbf{x'})\|_1$$

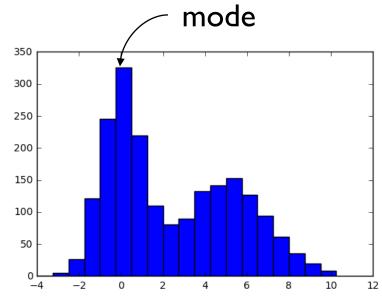
- Reminder: $GS_f(x) = \max LS_f(x)$
- [NRS'07,DL'09, ...] Techniques with error ≈ local sensitivity
 - > Basis of best algorithms for graph data

Extreme case: piece-wise constant functions



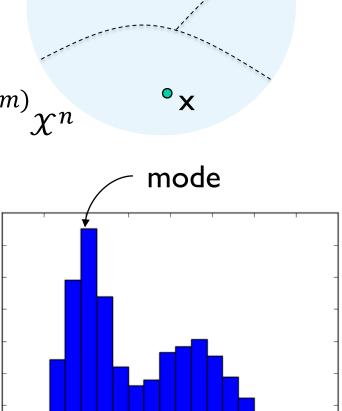
Consider mode function:

- Figure $x = (x_1, ..., x_n) \in \mathcal{X}^n$, return the most frequent value (breaking ties lexicographically)
- Pre-images are contiguous in Hamming space



Extreme case: piece-wise constant functions

- What is the sensitivity of mode?
 - > Can we "add" noise to mode?
- DP Mechanisms?
 - > Release the entire histogram
 - Noise $1/\epsilon$ per entry
 - Report $\widehat{mode} = argmax(noisy\ histogram)$
 - Use reportNoisyMax (exponential mechanism)?
 - Same as previous option
- Lemma: $count(\widehat{mode})$ $\geq count(mode) - O(\frac{\log(d)}{\epsilon})$ w.p. 1 - o(1).
- Can we avoid dependency on $|\mathcal{X}|$?
 - > (Not in worst case)



300

250

200

150

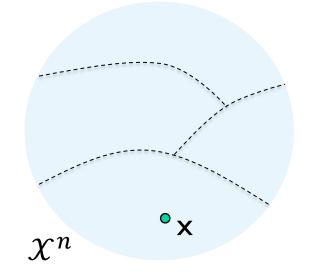
100

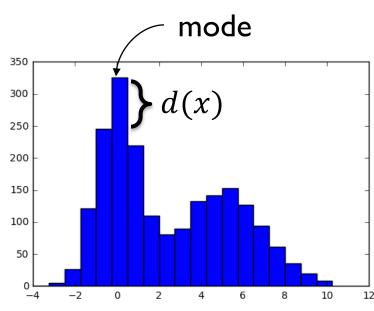
50

Extreme case: piece-wise constant functions

- What is the sensitivity of mode?
 - > Can we "add" noise to mode?

- How far am I from the nearest data set with a different mode?
- How sensitive is GS_f ?
 - $> GS_{dist} = 1$
 - \triangleright We can release $dist(x) + Lap\left(\frac{1}{\epsilon}\right)$





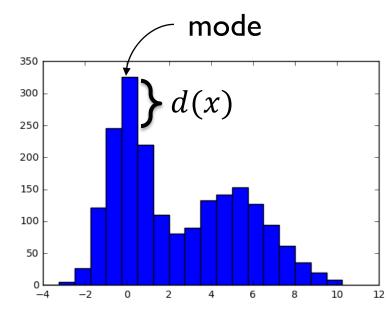
Stability-based mode

- dist(x)
 - = Hamming distance to nearest database with a different mode
 - $= \max(x) secondmax(x)$
- $A_{dist}(x)$:

$$\triangleright \widetilde{D} = dist(x) + Lap\left(\frac{1}{\epsilon}\right)$$

- $> \text{If } \widetilde{D} > \ln\left(\frac{1}{\delta}\right)/\epsilon$:
 - Return \widetilde{D} and exact mode(x)
- > Else:
 - Return \widetilde{D} and \bot

• **Proposition**: If $dist(x) > t/\epsilon$, then $Pr(A_{dist}(x) releases mode) <math>\geq 1 - e^{-t}$

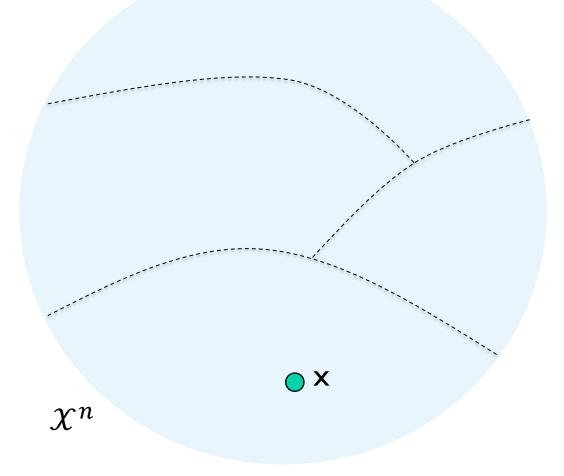


Proposition: $A_{dist}(x)$ is (ϵ, δ) -DP

Proposition: If $dist(x) > t/\epsilon$, then $Pr(A_{dist}(x) releases mode) <math>\geq 1 - e^{-t}$

Stability mechanism

- Works for any function f
- We can release f(x) when x is far from input with different answer
 - Regardless of domain size



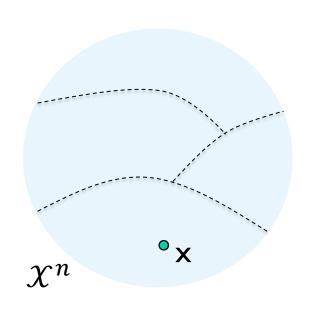
Propose-Test-Release [Dwork, Lei 2009]

General principle: Let

- B be an algorithm that satisfies (ϵ, δ) -DP on a subset $Y \subseteq \mathcal{X}^n$ of data sets
 - Specifically, for all neighboring data sets $x, x' \in Y$, $\Pr(B(x) \in T) \le e^{\epsilon} \Pr(B(x') \in T) + \delta \quad (\forall T \subseteq R)$
- $dist_Y(x) = Hamming distance to complement of Y$
- $A_{Y,B}(x)$:

$$\triangleright \widetilde{D} = dist_{Y}(x) + Lap\left(\frac{1}{\epsilon}\right)$$

- $> \operatorname{lf} \widetilde{D} > \ln \left(\frac{1}{\delta}\right)/\epsilon$:
 - Return \widetilde{D} and B(x)
- > Else:
 - Return \widetilde{D} and \bot



Application: Sampling stability [S, Thakurta13]

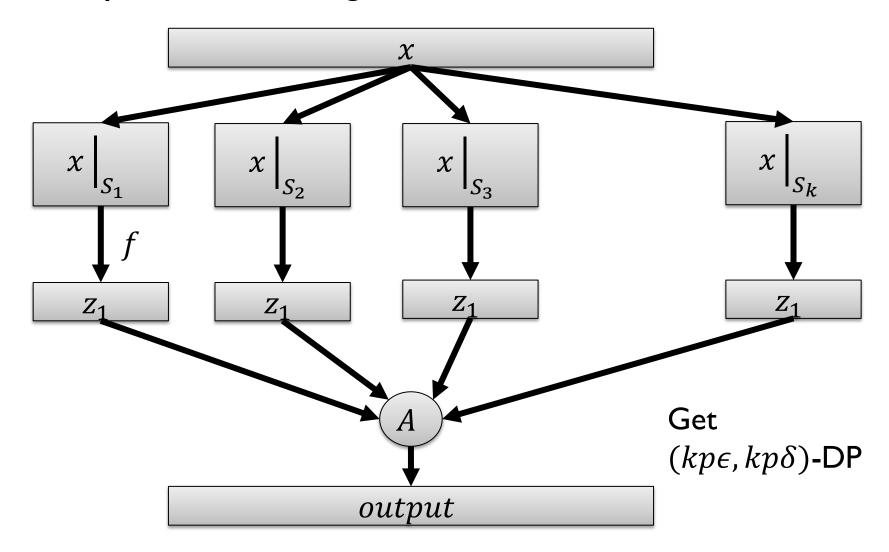
- Common computational technique to achieve robustness/stability:
 - > compute a function on random subsamples from input
- Given $p \in [0,1]$, a p-subsample from x is a uniformly random subset of x of size pn
- **Definition:** an function f is p-subsampling-stable on x if there exists a value z^* such that

$$\Pr_{S:|S|=pn}\left(f\left(x\mid_{S}\right)=z^{*}\right)\geq\frac{2}{3}$$

• How can we exploit this type of stability?

Subsample and aggregate [Nissim Raskhodnikova S 2007]

• For any $(\epsilon, \delta) - DP$ algorithm A:



Sample and aggregate

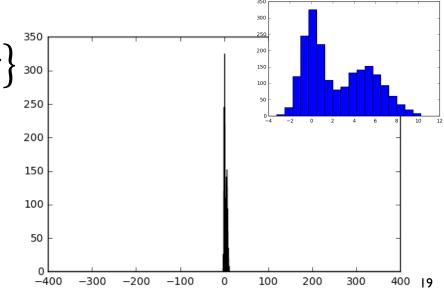
• **Definition:** an function f is p-subsampling-stable on x if there exists a value z^* such that

$$\Pr_{S:|S|=pn}\left(f\left(x\mid_{S}\right)=z^{*}\right) \geq \frac{2}{3}$$

• Sample and aggregate: if $p < \epsilon t$, then sample and aggregate with stable mode returns z^* with probability $\geq 1 - e^{-t}$

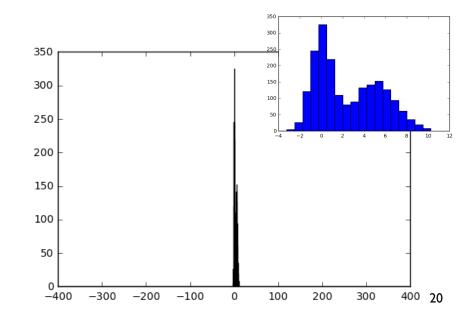
Getting the whole histogram

- Say we want to release a histogram of data from a huge domain.
 - > Not just the mode!
 - \triangleright Want counts of all bins n_i for j=1,...,d
- First attempt: just add noise
 - $\triangleright A(x)$: For all bins: $\tilde{n}_j = n_j + Lap\left(\frac{1}{\epsilon}\right)$
 - ➤ Problem: huge output!
- Return only $\{(j, \tilde{n}_j): \tilde{n}_j > \tau\}$
 - Problem: if domain is large, many spurious bins!
 - > If $log(d) \gg n$, then get more noise than signal



Truncated Histrogram

- A(x):
 - For all bins with nonzero counts: $\tilde{n}_j = n_j + Lap\left(\frac{1}{\epsilon}\right)$
 - ightharpoonup Return only $\{(j, \tilde{n}_j): \ \tilde{n}_j > \tau\}$ with $\tau = \ln\left(\frac{1}{\delta}\right)/\epsilon$
- **Prop:** A is (ϵ, δ) -DP
- **Prop:** With prob $1 e^{-t}$, A returns all bins with $n_j \ge \frac{\ln(n)}{\epsilon} t$



Separating definitions

• Gap-based histogram shows that (ϵ, δ) -DP algorithms can have

$$I(X; A(X)) \approx \epsilon n log(d)$$

- ➤ Unbounded!
- > Requires very different proof mechanisms

Gap-based mechanisms

- These ideas applied to a variety of problems
 - > "Exponential mechanism with gaps"
 - > Learning point functions
 - ➤ Releasing "robust" statistics
- Basic idea: look for conditions under which the output is stable, test for those conditions