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So far: global sensitivity

* Looked at releasing, or optimizing over, vector of
queries 4 = (q4, ..., ) With low sensitivity
» In £4,%, norms (noise addition)

» In £, norms (algorithms for releasing counting queries)

* What do we do when sensitivity is not the same
everywhere!

* How can we get higher accuracy on instances where
sensitivity is lower?

* Technical point




Laplace Mechanism

function f
J—=
4 Alx) = f(x) + nozse
i local random
coins
[ * Global Sensitivity : GS; = neiglﬁal(?fsc:ﬂ . I f(z) — f(z")]1 )
1
» Example Gsproportion — n
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Laplace Mechanism

function f
=
4 Alx) = f(x) + nozse
i local random
[ * Global Sensitivity: GSy = ne1gl'{%31(?fs{m i (=z) - £z )

. _ 1
> Example: Gsproportion = n

Theorem: If A(x) = f(x) + Lap (%ﬁ) then A is e-differentially private.

> Laplace distribution Lap(4) has density

h(y) oc e~ 1¥1/2 h(y + GS5) pAA(Y)
» Changing one point translates curve /\




Variants in other metrics

* Consider f : D" — RR¢
* Global Sensitivity:[GSf _

max ||f(z) — f($’)||i2\

neighbors x,x’

[Theorem: If A(x) = f(x) —I—LJ-B'\“GTSP)J, then A is gdifferentially private.)

2
2GSs/In(1/6 (€,9)
o ExampI;N(O,( f\/en( / )) ) .cates

» f(x) = vector of counus.
> GS; =d
JdIn(1/8)

€
» Also possible with Laplace noise and strong composition

» Tight by “membership testing” attacks [BUV]

» Add noise

: d
per entry instead of —



noise A(x)

d .
R Distributions on R4

* Global sensitivity is worst case over inputs

* Local sensitivity:
T (s =, w19~ 16

x’ neighbor of x

* Reminder: GS;(z) = max LS;(z)
[INRS'07,DL’'09, ...] Techniques with error = local sensitivity
» Basis of best algorithms for graph data



Extreme case: piece-wise constant functions

________ f(x’)
e,
X d

* Consider mode function:

» given x = (Xq,...,x,) € X",
return the most frequent value
(breaking ties lexicographically)

» Pre-images are contiguous in
Hamming space




Extreme case: piece-wise constant functions

°* What is the sensitivity of mode!?
» Can we “add” noise to mode?

* DP Mechanisms!?

» Release the entire histogram
* Noise 1/€ per entry

« Report mode = argmax(noisy histogram) °x

» Use reportNoisyMax (exponential
mechanism)?

* Same as previous option
° Lemma: count(mode)
> count(mode) — O (loge(d))
w.p. 1 —o(1).
* Can we avoid dependency on | X|?
» (Not in worst case)
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Extreme case: piece-wise constant functions

* What is the sensitivity of mode?

» Can we “add” noise to mode?

* How far am | from the nearest
data set with a different mode?

> dist(x)
= max(x) — secondmax(x)

* How sensitive is GS5¢!
> GSdlSt —_ 1
» We can release dist(x) + Lap (é)




Stability-based mode

e dist(x)
= Hamming distance to nearest database with a different
mode
= max(x) — secondmax(x) Ve mode

}d)

¢ Adlst (x): 300 |
~ . 1
» D =dist(x) + Lap (E)

>1fD > In(5) /e
e Return D and exact mode(x) .|

> Else: ol
e Return D and 1

* Proposition: A, (x) is (¢,0)-DP
* Proposition: If dist(x) > t/e, then
Pr(A,;s;(x) releases mode) = 1 — e~

t



Proposition: Ag;s:(x) 1S (€,6)-DP



Proposition: If dist(x) > t/e, then

Pr(A,;.(x) releases mode) > 1 —e™t



Stability mechanism

* Works for any function f

°* We can release f(x)
when x is far from
input with different
answer

» Regardless of domain
size

XTl
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Propose-Test-Release [Dwork, Lei 2009]

General principle: Let

® B be an algorithm that satisfies (¢, 0)-DP on a subset
Y € X" of data sets

» Specifically, for all neighboring data sets x,x’ €Y,
Pr(B(x) €T) < ePr(B(x') ET)+ 68 (VT SR)

® disty(x) = Hamming distance to complement of Y

* Ay p(x):
> D = disty(x) + Lap (E) -------------------

>If5>ln(%)/e:

e Return D and B(x)

> Else: n °x
e Return D and L



Application: Sampling stability [S, Thakurtal3]

* Common computational technique to achieve
robustness/stability:

» compute a function on random subsamples from input

* Given p € [0,1], a p-subsample from x is a uniformly random
subset of x of size pn

* Definition: an function f is p-subsampling-stable on x if there
exists a value z* such that

55/ (f (x ‘5) - Z*) 2%

°* How can we exploit this type of stability?



Subsample and aggregate nissim raskhodnikova s 20071
* For any (€,8) — DP algorithm A:

/CN’
X X X X ‘
S1 S, S3 Sk
ool |
Z Z Z Z

Get
(kpe, kpd)-DP

output




Sample and aggregate

* Definition: an function f is p-subsampling-stable on x
if there exists a value z™ such that

S=I51‘)|£pn (f (x ‘5) B Z*) = %

* Sample and aggregate: if p < €t, then sample and
aggregate with stable mode returns z”
with probability > 1 —e™*



Getting the whole histogram

* Say we want to release a histogram of data from a huge

domain.
» Not just the mode!

» Want counts of all bins n; forj=1,..,d

* First attempt: just add noise

» A(x): For all bins: 7i; = n; + Lap G)

» Problem: huge output!

* Return only {(j, ﬁj): n; > T}

» Problem: if domain is large,
many spurious bins!

> If log(d) > n, then get
more noise than signal

250 |

200 |

150 +

100 +

50
0

350 r T T T T T T

300 B

250 1

200 1

150 1

100 1

50 i

074 -2 0 2 4 6 8 10 12

Il Il Il
—400 -300 -200 -100 0

Il Il 1
100 200 300 400 |9



Truncated Histrogram

o A(x):
» For all bins with nonzero counts: 7i; = n; + Lap (i)

» Return only {(j, ﬁj): n; > T} with T = In (%) /€
* Prop: Ais (¢,6)-DP

* Prop: Withprob1—e~t, [ | -
A returns all bins with |

In(n 2001
le > ( )t
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Separating definitions

* Gap-based histogram shows that (¢, §)-DP algorithms
can have

I(X;A(X)) ~ enlog(d)
» Unbounded!

» Requires very different proof mechanisms
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Gap-based mechanisms

* These ideas applied to a variety of problems
» “Exponential mechanism with gaps”
» Learning point functions

» Releasing ’robust” statistics

* Basic idea: look for conditions under which the output
is stable, test for those conditions
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