7th BIU Winter School: Differential Privacy February 2017
Further examples/problem solving Katrina Ligett, Kobbi Nissim, Adam Smith

1 Bounding global sensitivity
1. Let f: X" — R% Let A be a (deterministic) algorithm with the following properties:

e On input x € X™, A operates on a subsample T of x where each entry of x appears in &
with probability at most a < 1, and

o Pr|A®@) - f(2) < o] > 1.

Show that GS; < 20.

Hint: consider two neighboring databases x, 2’ that differ on location 7 and let £ be the event
that entry 7 is not selected to be in the subsample. Note that conditioned on £, subsamples of x
and 2’ are identically distributed. Write Pr[||A(Z)— f(z)|l1 > o] as Pr[€]-Pr[||A(Z) — f(x)||1 >
ol€] + Pr[=€] - Pr[[|A(Z) — f(z)[1 > o] =€].

2. Let median : [0,1]" — [0, 1] be the function that on input x € [0,1]" returns the [n/2]-th

element in a sorting of x. What is GSoqian”’

2 Group privacy

Prove that differential privacy provides protection not only to individuals but also to groups of size
t.

1. Pure privacy: Let M : X" — R be (¢, 0)-differentially private. Show that for all z,2’ € X"
that differ on ¢ elements and for all T'C R

Pr[M(z) € T] < e - Pr[M(z') € T).

2. Approximate privacy: Let M : X™ — R be (¢, d)-differentially private. Show that for all
z,x’ € X" that differ on ¢ elements and for all T C R

Pr[M(z) € T) < e -Pr[M(z) € T] +t- €' 6.

In both parts, the probability is over the randomness of the mechanism M. We say that z, 2’ differ
on t elements if |{i : x; # =}| = t. (In particular, z, 2’ that differ on one position are neighboring.)

3 Noise magnitude for count queries, Laplace mechanism

Let « € {0,1}" and consider the function f(x) = > ", x;.

1. We saw that the randomized algorithm A(z) = f(x)+Y where Y ~ Lap(1/e) is e-differentially
private. Show that for all z € {0,1}",

Pr

A() - f(2)] 1“(6)] <5

. | S
2. Prove that for any (e, 0)-differentially private (approximation) algorithm A there exists = €
{0,1}™ for which

Pr
2¢

A@) — f(@)] 2 1“(135)] S5

In both parts of the question, the probability is taken over the randomness of the approximation
algorithm, A.

In(152)

2~ apart. Assume that

Hint for part 2: consider instances z,z’ that are at Hamming distance

Pr|[A(z) - (%)
r (|A(z) = f(z)] > =

} < ¢ and conclude that the inequality in part 2 holds for z’.

4 Randomization

Show that a non-trivial differentially private algorithm has to be randomized. More specifically, that
if a deterministic algorithm A does not output the same answer on all inputs, it is not differentially
private.

5 Differentially Private Elections

A function magjority on 0/1 inputs is defined as follows: fi,q;(21,...,2,) is 1 when > n/2 arguments
are 1, and 0 otherwise. Give an e-differentially private algorithm with the following property: if the
input contains > n/2+ k occurrences of bit b then your algorithm should output b with probability
at least 1 — e='k/4, (Hint: Use the global sensitivity framework.)

6 Median-finding using sum queries

Given a set X of n real numbers 1, ..., z, in [0, 1], the rank of a value y is the number of indices

i such that z; < y. We say y is a median of X if it has rank [n/2]. Give a differentially private

algorithm which takes X as input and approximates the median in the following sense: after asking

t questions with global sensitivity 1, with probability at least 2/3, the algorithm should output an
tlog(t)

interval of width 27t that contains a value with rank % + .

You may want to use (and first prove!) the following lemma:

Lemma 1 Let Zy,Zs,...,7Z; be a collection of independent Laplace random variables with scale
parameter 1, and let M = max(Z1, ..., Zy,). Then

(Vz > 0) Pr(M > z) < Ltexp(—z) and E(M)<Int.

7 Balanced cut

Given an undirected graph G with n vertices, a balanced cut is a partition of G into two disjoint
sets of size at least [n/2| each. The weight of a cut is the number of edges that cross between the
two sets. Let OPT(G) denote the weight of the lightest balanced cut.

1. Give an (inefficient time 2°() randomized algorithm A that outputs a cut with expected
weight OPT(G) + O(n/e). Your algorithm should satisfy “edge privacy”, that is, for any
two graphs G and G’ that differ in a single edge, and for every event E, Pr(A(G) € FE) <
e“ Pr(A(G') € E).

2. Suppose we create a graph GG on n vertices by adding an edge between every pair of vertices
independently with probability 1/2. Show that the expected size of the OPT(G) is Q(n?).

