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Typical Task: Classification 



Deep Neural Networks 

input output 
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Deep Neural Networks 
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Learn parameters using  

Stochastic Gradient Descent (SGD) 

parameters 
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Find parameters that minimize the classification error 

Parameter Training using SGD 
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Parameter Training using SGD 
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Parameter Training using SGD 

2 ) Back-propagation 

error 

… 
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Parameter Training using SGD 

error E 
3 ) Gradient Descent 
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Parameter Training using SGD 

Parameter Update 

Repeat for new batches of training data 
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2014 

Users’ data Services 

Threats 

–Collection of sensitive personal data 

–Anonymization and re-identification 

–Inference attacks 

–Side channels 
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2018 

Users’ data Services 

Do trained models leak sensitive data? 

Machine learning 

Is it possible to train a “good” model 

while respecting privacy of training data? 

Is it possible to keep the model itself private ? 
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Given an output of a machine learning model, 

infer something about the input 

“unexpected attributes” 
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Fredrikson et al. 

Model Inversion 



Model 

given patient’s genome  …   …determine correct warfarin dosage 

Privacy breach : 

given patient’s warfarin dosage , 

infer information about patient’s genome 

What does this chart 

measure? 
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Model Inversion in Action 
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Does Inference Breach Privacy? 



Recommended Reading 

Frank McSherry . 

“Statistical inference considered harmful” 

 
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md 
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 Training API 
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Prediction API  

Input from  

users, apps  …  
Classification 

Sensitive! 

Transactions, preferences, 

online and offline behavior 

Machine Learning as a Service 
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Model 

 Training API 
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Prediction API  

Input from  

the training set 

Input not from  

the training set 
Classification 

Classification 

recognize the difference 

Exploiting Trained Models 
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Model 

 Training API 

DATA 

Prediction API  

Input from  

the training set 

Input not from  

the training set 
Classification 

Classification 

recognize the difference Train a model to… 

 …without knowing the 

specifics of the actual model! 

ML Against ML 
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Train the attack model 

to predict if an input was a member of the training set (in ) 

or a non-member (out) 
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• Real: must be similar to training data of the 

target model (drawn from same distribution) 

• Synthetic: sample feature values from 

   (known) marginal distributions 

• Synthetic: exploit target model  

Training Data for Shadow Models 
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target model with high confidence 



Synthesizing Shadow Training Data 
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Hill-climb the space of 

possible inputs to find those 

classified by the target model 

with high confidence 

Sample from these inputs to 

synthesize the training dataset 

for shadow models  

If many candidate inputs 

rejected by the target model, 

re-randomize some features 

and try again 



Membership Inference Attack 
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Was this image part of the training set? 

Input (data) 
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Was this record in 
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Membership Inference 

Attack 
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0.9 0.8 

Minimum Attack Accuracy on 

75% of classes 

Purchase Dataset — Classify Customers 
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Model 

 Training API 

DATA 

Prediction API  

Next Step: Reconstruction 

Example: store purchases or 

              mobile phone locations 

Partial record 

? ? ? ? ? 

Auxiliary information, 

public databases , 

accidentally revealed data 

INFER hidden parts 

of the customer record 
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Model 

 Training API 

DATA 

Prediction API  

Membership Inference 

Reconstruction 

Overfitted! 

Why Do These Attacks Work? 
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Attack Success vs. Test-Train Gap 
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More overfitted 



data universe 

training set 

Model 

Privacy : 

Does the model leak 

information about data  

in the training set? 

Learning : 

Does the model 

generalize to data 

outside the training set? 

Overfitting is  

the common enemy 
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training set 

Model 

Does Inference Breach “Privacy ”?  
SCIENCE! 

PRIVACY 

BREACH! 

Privacy breach = risk of membership: 

Gap between what can be inferred from the model 

about a member of the training set and an 

arbitrary input from the population 
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Purchase Dataset — Classify Customers — Google API 

Members of 

Training Set 

Baseline  

(use statistics) 
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Risk of 
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• Modern machine learning is both a threat and an 

opportunity for data privacy 

• For once, privacy and utility are not in conflict: 

overfitting is the common enemy 

• Overfitted models leak training data 

• Overfitted models lack predictive power 

• Need generalizability and accuracy 

Future 
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Privacy 

Utility 

Privacy-preserving 

machine learning 
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