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Outline
• Model

Ø Implementations
• Question: what computations can we carry out in this 

model?
• Example: randomized response (again!)

Ø SQ computations
• Simulating local algs via SQ

Ø An exponential separation
• Averaging vectors
• Heavy hitters: succinct averaging
• Lower bounds: information

Ø Example: selection
• Compression
• Learning and adaptivity
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Local Model for Privacy

• Person 𝑖 randomizes their own data, say on their own 
device

• Requirement: Each 𝑄# is (𝜖, 𝛿)-differentially private.
ØWe will ignore 𝛿
ØAggregator may talk to each person multiple times
Ø For every pair of values of person 𝑖’s data, for all events 𝑇:

Pr 𝑅 𝑥 ∈ 𝑇 ≤ 𝑒1 ⋅ Pr 𝑅 𝑦 ∈ 𝑇 .
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Local Model for Privacy

• Pros
ØNo trusted curator
ØNo single point of failure
ØHighly distributed

• Cons
ØLower accuracy
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Local differential privacy in practice
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https://developer.apple.com/
videos/play/wwdc2016/709/

https://github.com/google/rappor



Local Model for Privacy

• Open questions
ØEfficient, network-friendly MPC protocols 

for simulating “exponential mechanism” in local model
Ø Interaction in optimization (tomorrow)
ØOther tasks?
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Local Model for Privacy

What can and can’t we do 
in the local model?
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Example: Randomized response
• Each person has data 𝑥# ∈ 𝒳

Ø Analyst wants to know average of 𝑓:𝒳 → −1,1 over 𝒙
• Randomization operator takes 𝑦 ∈ {−1,1}:

𝑄 𝑦 =
+𝑦𝐶1					𝑤. 𝑝.

𝑒1

𝑒1 + 1

−𝑦𝐶1					𝑤. 𝑝.
1

𝑒1 + 1

			𝑤ℎ𝑒𝑟𝑒				𝐶1 =
𝑒1 + 1
𝑒1 − 1 .

• Observe: 
Ø 𝑬 𝑄 1 = 1 and 𝑬 𝑄 −1 = −1.

Ø 𝑄 takes values in −𝐶1, 𝐶1
• How can we estimate a proportion?

Ø 𝐴 𝑥5, … . , 𝑥7 = 5
7
∑ 𝑄 𝑓 𝑥#�
#

• Proposition: 𝐴 𝒙 − 5
7
∑ 𝑓 𝑥#�
# = 𝑂P

5
1 7�
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Centralized DP:

𝑂 5
71

via 
Laplace 
mechanism

(à la [Duchi Jordan 
Wainwright 2013])

optimal



SQ algorithms
• An “SQ algorithm” interacts with a data set by asking a 

series of statistical queries
ØQuery:   𝑓:𝒳 → [−1,1]

ØResponse:  𝑎T ∈ 5
7
∑ 𝑓(𝑥#)�
# ± 𝛼 where 𝛼 is the error

• Huge fraction of basic learning/optimization algorithms 
can be expressed in SQ form [Kearns 93] 
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SQ algorithms
• An “SQ algorithm” interacts with a data set by asking a 

series of statistical queries
Ø “Statistical Query:”   𝑓:𝒳 → [−1,1]

ØResponse:  𝑎T ∈ 5
7
∑ 𝑓(𝑥#)�
# ± 𝛼 where 𝛼 is the error

• Huge fraction of basic learning/optimization algorithms 
can be expressed in SQ form [Kearns 93] 

• Theorem: Every sequence of 𝑘 SQ queries can be 

computed with local DP with error 𝛼 = 𝑂 X YZ[ X
1\7

�
.

• Proof: 
ØRandomly divide 𝑛 people into 𝑘 groups of size 7

X
ØHave each group answer 1 question. 10

Central:

𝑂
𝑘
𝑛𝜖



SQ algorithms and Local Privacy
• Every SQ algorithm can be simulated by a LDP protocol. 

• Can every centralized DP algorithm be simulated by LDP?
Ø No! 

• Theorem: Every LDP algorithm can be simulated by SQ 
with polynomial blow-up in 𝑛.

• Theorem: No SQ algorithm can learn parity with 
polynomially many samples (𝑛 = 2_ ` ).

• Theorem: Centralized DP algorithms can learn parity with 
𝑛 = 𝑂 `

1
samples.

• Is research on local privacy over?
Ø No! Polynomial factors matter…
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Outline

• Some stuff we can do 
ØHeavy hitters

• Some stuff we cannot do 
ØLDP and SQ

• 1-bit randomizers suffice!

Ø Information-theoretic lower bounds
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Histograms
• Every participant has 

𝑥# ∈ {1,2, … , 𝑑}.
• Histogram is ℎ 𝑥 = 𝑛5, 𝑛6, … , 𝑛`

where 𝑛b = # 𝑖: 𝑥# = 𝑗
• Straightforward protocol: Map each 𝑥#

to indicator vector 𝑒ef
Ø So ℎ 𝑥 = ∑ 𝑒ef

�
#

Ø𝑸h 𝒙𝒊 : Apply 𝑄 ⋅ to each 
entry of 𝑒ef .

• Proposition: 𝑄′(⋅) is 𝜖-LDP and 

𝑬 k𝑄h 𝑥#

�

#

− ℎ 𝑥
l

≤
𝑛 log 𝑑�

𝜖 													
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𝑒ef = (0,0, … , 0,1,0, … , 0)

𝑥#

Central:

𝑂
log 1/𝛿

𝜖

𝑄′(𝑒ef) = (𝑄(0), … , 𝑄(1), … , 𝑄(0))

optimal

[Mishra Sandler 2006, Hsu Khanna Roth 2012, 
Erlingsson, Pihur, Korolova 2014, Bassily Smith 2015, …]



Succinctness
• Randomized response has optimal error 

7 YZ[ `�

1
ØProblem: Communication and server-side storage 𝑂(𝑑)
ØHow much is really needed?

• Theorem [Thakurta et al]: 𝑂q 𝜖 𝑛 log 𝑑� space.
• Lower bound (for large 𝑑)

ØHave to store all the elements with counts at least 𝜖 7
YZ[ `

� . 

ØEach one takes log	𝑑 bits. 
• Upper bound idea: 

Ø [Hsu, Khanna, Roth ‘12, Bassily, S’15] Connection to “heavy 
hitters” algorithms from streaming

ØAdapt CountMin sketch of [Cormode Muthukrishnan]
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Succinct “Frequency Oracle”
• Data structure that allow us to estimate 𝑛b for any 𝑗

Ø Can get whole histogram in time 𝑂(𝑑)

• Select 𝑘 ≈ log 𝑑 hash functions 𝑔t: 	𝑑	 → 		 1 7�

YZ[ `
		

Ø Divide users into 𝑘 groups
Ø𝑚-th group constructs histogram for 𝑔t(𝑥#)

• Aggregator stores 𝑘 histograms
Ø 𝑐𝑜𝑢𝑛𝑡z 𝑗 = median 𝑐𝑜𝑢𝑛𝑡z t 𝑗 ∶ 		𝑚 = 1,… , 𝑘
Ø Corresponds to ”CountMin” hash [Cormode Muthukrishnan]
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Efficient Histograms
• When 𝑑 is large, want list of large counts

ØExplicit query for all items: O 𝑑 time

• Time-efficient protocols with (near-)optimal error 
exist based on 
Øerror-correcting codes [Bassily S ‘15]
ØPrefix search (à la [Cormode Muthukrishnan ‘03])

• “All unattributed heuristics are probably due to Frank McSherry”
--A. Thakurta

• Worse error, better space

• Open question: exactly optimal error, optimal space
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Other things we can do
• Estimating averages in other norms [DJW ‘13]

ØUseful special cases: 
• Histogram with small ℓ5 error (in small domains)
• ℓ6 bounded vectors (problem set)

• Convex optimization [DJW ’13, S Thakurta Uphadhyay ‘17]

ØVia gradient descent (tomorrow)

• Selection problems [other papers]
Ø Find most-liked Facebook page 
Ø Find most-liked Facebook pages with ≤ 𝑘 likes per user 
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Outline

• Some stuff we can do 
ØHeavy hitters

• Some stuff we cannot do 
ØLDP and SQ

• 1-bit randomizers suffice!

Ø Information-theoretic lower bounds
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SQ Algorithms simulate LDP protocols
• Roughly: 

Every LDP algorithm with 𝑛 data points can be 
simulated by an SQ algorithm with 𝑂(𝑛�) data points.
ØActually a distributional statement: assume that data drawn 

i.i.d from some distribution 𝑃

• Key piece: 
Transform the randomizer so only 1 bit is sent to 
aggregator by each participant.
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One-bit randomizer

• Theorem: There is a 𝜖-DP 𝑅′ such that for every 𝑥:
Ø Conditioned on 𝐵 = 1, output 𝑍 distributed as 𝑅(𝑥)
Ø Pr 𝐵 = 1 = 1/2

• Replacing 𝑅 by 𝑅′…
Ø Lowers communication from participant to 1 bit;
Ø Randomly drops an 1/2 fraction of data points
Ø No need to send 𝑧: Use pseudorandom generator.
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𝑥
𝑅 AggregatorParticipant

𝑥
𝑅′ AggregatorParticipant

𝑧 ∼ 𝑅(0)
𝑏 ∈ {0,1}

Outputs 𝑧
iff 𝑏 = 1

[Nissim Raskhodnikova S 2007, McGregor, Mironov, 
Pitassi, Reingold, Talwar, Vadhan 2010, Bassily S 15]



Proof

• Algorithm 𝑹′(𝑥, 𝑧):
ØCompute 𝑝e,� =

5
6
⋅ �� � e ��
�� � � ��

ØReturn 𝐵 = 1 with probability 𝑝𝐱,𝐳

• Notice that  𝑝 is always in �
��

6
, �

�

6
, so 𝑅′ is 𝜖-DP 

• Pr 𝑠𝑒𝑙𝑒𝑐𝑡	𝑧	𝑎𝑛𝑑	𝐵 = 1

=
1
2Pr 𝑅 0 = 𝑧 ⋅

Pr 𝑅 𝑥 = 𝑧
Pr 𝑅 0 = 𝑧 =

1
2Pr	(𝑅 𝑥 = 𝑧)

• So     Pr 𝐵 = 1 = 5
6

and       𝑍|��5 ∼ 𝑅(𝑥).
21

𝑥
𝑅′ AggregatorParticipant

𝑧 ∼ 𝑅(0)
𝑏 ∈ {0,1}

Outputs 𝑧
iff 𝑏 = 1



Connection to SQ
• An SQ query can evaluate the average of 𝑝ef,� over a 

large set of data points 𝑥#

• When 𝑥5, … , 𝑥7 drawn i.i.d. from 𝑃,
we can sample 𝑍 ∼ 𝑅(𝑋) where 𝑋 ∼ 𝑃

𝑬e 𝑝e,� =
1
2 ⋅
Pr 𝑅 𝑋 = 𝑧			where			𝑋 ∼ 𝑃

Pr 𝑅 0 = 𝑧

• This allows us to simulate each message to the LDP 
algorithm. 
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Information-theoretic lower bounds
• As with (𝜖, 0)-DP, lower bounds for (𝜖, 𝛿)-DP are 

relatively easy to prove via packing arguments

• For local algorithms, easier to use information-
theoretic framework [BNO’10, DJW’13]
ØApplies to 𝛿 > 0 case.

• Idea: Suppose 𝑋5,… , 𝑋7 ∼ 𝑃 i.i.d., show that protocol 
leaks little information about 𝑃
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Information-theoretic framework
• Lemma: If 𝑅 is 𝜖-DP, then 𝐼 𝑋; 𝑅 𝑋 ≤ 𝑂(𝜖6)
• Proof: For any two distributions with 𝑝 𝑦 ∈ 𝑒±1𝑞(𝑦),
𝐾𝐿(𝑝| 𝑞 =

• Stronger Lemma: If 𝑅 is 𝜖-DP, and 

𝑊 𝑥 = ¦
𝑥					𝑤. 𝑝. 							𝛼
0. 			𝑤. 𝑝. 1 − 𝛼 ,

then 𝐼 𝑋; 𝑅 𝑊(𝑋) ≤ 𝑂 𝛼6𝜖6 .
• Proof: Show 𝑅 ∘𝑊 is 𝑂(𝛼𝜖)-DP. 
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Bounding the information about the data
• Suppose we sample 𝑉 from some distribution 𝑃

and consider 𝑋5 = 𝑋6 = ⋯ = 𝑋7 = 𝑉
ØLet 𝑍# = 𝑅(𝑋#) for some 𝜖-DP randomizer 𝑅

• Then 𝐼 𝑉; 𝑍5, … , 𝑍7 ≤

• Theorem: 𝐼 𝑉; 𝐴(𝑍5, … , 𝑍7) ≤ 𝜖6𝑛
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Lower bound for mode (and histograms)
• Every participant has 

𝑥# ∈ {1,2, … , 𝑑}.
• Consider 𝑉 uniform in {1, … , 𝑑}

Ø𝑋 = (𝑉, 𝑉,… . , 𝑉)

ØA histogram algorithm with relative error 𝛼 ≤ 5
6

will output 𝑉 (with high probability)

• Fano’s inequality: If 𝐴 = 𝑉 with constant probability 
and 𝑉 uniform on {1, … , 𝑑}, then 𝐼 𝑉; 𝐴 = Ω(log 𝑑)

• But 𝐼 𝑉; 𝐴 ≤ 𝜖6𝑛, so we need  𝑛 = Ω YZ[ `
1\

to get 
nontrivial error.

ØUpper bound 𝑂 YZ[ `
1\7

�
is tight for constant 𝛼
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Subconstant 𝜶
• Let 𝑉 be uniform in {1, … , 𝑑}, and

consider data set  𝑌# = 𝑊 𝑉 (erase with prob 1 − 𝛼)
ØEach data set has ≈ 𝛼𝑛 copies of 𝑉, the rest is 0. 
ØAn algorithm with error 𝛼/2 will output 𝑉 with high prob

• 𝐴 sees 𝑍# = 𝑅(𝑊 𝑉 )
ØBy “stronger lemma”, 𝐼 𝑉; 𝐴 ≤ 𝑂(𝛼6𝜖6𝑛)

Ø So Ω log 𝑑 ≤ 𝑂(𝛼6𝜖6𝑛), or 𝛼 = Ω YZ[ `
1\7

�
, as desired.
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Outline

• Some stuff we can do 
Ø SQ learning
ØHeavy hitters

• Some stuff we cannot do 
ØLDP and SQ

• 1-bit randomizers suffice!

Ø Information-theoretic lower bounds
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Local Model for Privacy

• Apple, Google deployments use local model
• Open questions

ØEfficient, network-friendly MPC protocols 
for simulating “exponential mechanism” in local model

Ø Interaction in optimization (tomorrow)
ØOther tasks?
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