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Outline
* Model

» Implementations

* Question: what computations can we carry out in this
model?

* Example: randomized response (again!)
» SQ computations

* Simulating local algs via SQ
» An exponential separation

* Averaging vectors
* Heavy hitters: succinct averaging

* |ower bounds: information
» Example: selection

* Compression
* Learning and adaptivity




Local Model for Privacy
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* Person i randomizes their own data, say on their own
device 0

* Requirement: Each Q; is (&,%)-differentially private.
» We will ignore §
» Aggregator may talk to each person multiple times

» For every pair of values of person i’s data, for all events T
Pr(R(x) eT)<e® -Pr(R(y) eT).



Local Model for Privacy
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* Pros
» No trusted curator

» No single point of failure
» Highly distributed

* Cons

» Lower accuracy
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Local differential privacy in practice

https://developer.apple.com/

e videos/play/wwdc2016/709/

Differential privacy
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https://github.com/google/rappor (-




Local Model for Privacy
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* Open questions
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»> Efficient, network-friendly MPC protocols
for simulating “exponential mechanism” in local model

> Interaction in optimization (tomorrow)

» Other tasks?



Local Model for Privacy
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What can and can’t we do
in the local model?



. (2 la [Duchi Jordan
Example: Randomized response  Wainwright 2013))

* Each person has data x; € X

» Analyst wants to know average of f: X — {—1,1} over x

* Randomization operator takes y € {—1,1}:
( €

e
+yC, w.p. e€ + 1
0(y) =4 eeil'l where Ce=———
—yC ..
\ Yee WePoe

* Observe: Centralized DP:
> E(Q(1) =1and E(Q(-1)) = —1. i\
0 ( ) via

> (Q takes values in {—C,, C.} ne

°* How can we estimate a proportion!?

ne
Laplace

mechanism

> ACxy, %) = =2 Q(f (%)
* Proposition: ‘A(x) — %Zif(xi)

= Op (ﬁﬁ) N optimal



SO algorithms

° An “SQ algorithm” interacts with a data set by asking a
series of statistical queries

» Query: f: X - [—1,1]

» Response: d € %Zif(xi) + a where a is the error

* Huge fraction of basic learning/optimization algorithms
can be expressed in SQ form [Kearns 93]



SO algorithms

° An “SQ algorithm” interacts with a data set by asking a

series of statistical queries
» “Statistical Query:” f: X - [—1,1]

» Response: d € %Zif(xi) + a where a is the error

* Huge fraction of basic learning/optimization algorithms

can be expressed in SQ form [Kearns 93]

°* Theorem: Every sequence of k SQ queries can be

computed with local DP with error a = 0 (

* Proof:

n

» Randomly divide n people into k groups of size P

» Have each group answer | question.

klogk
e2n |

Central:

0(ze)




SO algorithms and Local Privacy

Every SQ algorithm can be simulated by a LDP protocol.

Can every centralized DP algorithm be simulated by LDP?
» No!

Theorem: Every LDP algorithm can be simulated by SQ
with polynomial blow-up in n.

Theorem: No SQ algorithm can learn parity with
polynomially many samples (n = 2%()),

Theoredm: Centralized DP algorithms can learn parity with
n=0 (—) samples.

€

Central DP

. DP=5Q

Is research on local privacy over?
» No! Polynomial factors matter...
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* Some stuff we can do
» Heavy hitters

(&

* Some stuff we cannot do
» LDP and SQ

e |-bit randomizers suffice!

> Information-theoretic lower bounds



. [Mishra Sandler 2006, Hsu Khanna Roth 2012,
HlStOgl"amS Erlingsson, Pihur, Korolova 2014, Bassily Smith 2015, ...]

* Every participant has
Xi € {1,2, e d}

* Histogram is h(x) = (nq,n,, ...,ng)
where n; = #{i: x; = j}
* Straightforward protocol: Map each x; %,

to indicator vector ey, |
_y e, = (0,0,..,0,1,0, ...,0)
750 M) = Liex S W C
> Q' (xy): Apply Q(*) to each Q'(ex) = (Q(0), -, Q(1), .., (0)

entry of e,..

* Proposition: Q'(:) is €-LDP and

€ €

\/n log d Central:
E Z Q'(x;) —h()|] < - <log(1/5)>
i

” '

optimal g



Succinctness

Jnlogd

€
» Problem: Communication and server-side storage 0(d)

* Randomized response has optimal error

» How much is really needed?

°* Theorem [Thakurta et al]: 5(6\/n10g d) space.
* Lower bound (for large d)

n

> Have to store all the elements with counts at least € /log ~

» Each one takes log d bits.

* Upper bound idea:

» [Hsu, Khanna, Roth ‘12, Bassily, S’15] Connection to “heavy
hitters” algorithms from streaming

» Adapt CountMin sketch of [Cormode Muthukrishnan]



Succinct “Frequency Oracle”

* Data structure that allow us to estimate n; for any j
» Can get whole histogram in time 0(d)

* Select k = log(d) hash functions g,,: | - [ log d

» Divide users into k groups
» m-th group constructs histogram for g,,, (x;)

* Aggregator stores k histograms

> count(j) = median{count,,(j): m=1, ..., k}
» Corresponds to "CountMin” hash [Cormode Muthukrishnan]



Efficient Histograms

°* When d is large, want list of large counts
> Explicit query for all items: O(d) time

* Time-efficient protocols with (near-)optimal error
exist based on

» error-correcting codes [Bassily S ‘I5]
» Prefix search (a la [Cormode Muthukrishnan ‘03])

* “All unattributed heuristics are probably due to Frank McSherry”
--A. Thakurta

* Worse error, better space

* Open question: exactly optimal error, optimal space



Other things we can do

* Estimating averages in other norms [DJWV ‘13]

» Useful special cases:
* Histogram with small £, error (in small domains)

e £, bounded vectors (problem set)

* Convex optimization [DJW ’13, S Thakurta Uphadhyay ‘17]

» Via gradient descent (tomorrow)

* Selection problems [other papers]
» Find most-liked Facebook page

» Find most-liked Facebook pages with < k likes per user



Outline

* Some stuff we can do

» Heavy hitters

(&

e Some stuff we cannot do

» LDP and SQ

e |-bit randomizers suffice!

> Information-theoretic lower bounds

/




SO Algorithms simulate LDP protocols

* Roughly:
Every LDP algorithm with n data points can be
simulated by an SQ algorithm with O(n>) data points.

» Actually a distributional statement: assume that data drawn
i.i.d from some distribution P

* Key piece:
Transform the randomizer so only | bit is sent to
aggregator by each participant.



One-bit randomizer

X
Participant — R

>

z ~ R(0)

X
Participant — R’

 pef0l}

Aggregator

Aggregator

[Nissim Raskhodnikova S 2007, McGregor, Mironoy,
Pitassi, Reingold, Talwar, Vadhan 2010, Bassily S |5]

Outputs z
iff b =1

* Theorem: There is a €-DP R’ such that for every x:
» Conditioned on B = 1, output Z distributed as R(x)

»>Pr(B=1)=1/2
* Replacing R by R'...

» Lowers communication from participant to | bit;

» Randomly drops an 1/2 fraction of data points

» No need to send z: Use pseudorandom generator.

20




Proof

X

z ~ R(0)

Participant ~——»{R’ | b € {01}

Algorithm R'(x, z):

1 Pr(R(x)=z)
» Compute p, , = 2 Pr(R(0)=2)

» Return B = 1 with probability py,

Outputs z

A t
SEPE8TOT it = 1

Notice that p is always in [e; , 82 ], so R’ is e-DP

Pr(select zand B = 1)

So

2

1
Pr(R(0) =2z) -

Pr(R(x) = z) 1

Pr(R(0) =z2) 2

—Pr(R(x) = z)

Pr(B =1) =

and

ZIB=1 ~ R(X)

21



Connection to SQ

* An SQ query can evaluate the average of p,. , over a
large set of data points X;

°* When x4, ..., x,, drawn i.i.d. from P,

we can sample Z ~ R(X) where X ~ P
1 Pr(R(X) =z where X ~ P)

Ey(Pxz) = 2 Pr(R(0) = z)

* This allows us to simulate each message to the LDP
algorithm.

Central DP

. LDP=SQ

22



Information-theoretic lower bounds

* As with (¢€,0)-DP, lower bounds for (¢,)-DP are
relatively easy to prove via packing arguments

* For local algorithms, easier to use information-
theoretic framework [BNO’10, DJW’13]

» Applies to 6 > 0 case.

* ldea: Suppose Xi, ..., X;,; ~ P i.i.d., show that protocol
leaks little information about P

23



Information-theoretic framework

* Lemma: If R is €-DP, then I(X; R(X)) < 0(€?)

* Proof: For any two distributions with p(y) € e*¢q(y),
KL(pllg) =

* Stronger Lemma: If R is €-DP, and
X wW.p. «

Wix) = {O. w.p.l—a’

then I(X; R(W (X))) < 0(a?€?).
* Proof: Show R o W is O(ae)-DP.

24



Bounding the information about the data

* Suppose we sample I/ from some distribution P
and consider X; =X, ==X, =V
» Let Z; = R(X;) for some €-DP randomizer R
* Then I(V;Z4,...,Z,) <

* Theorem: [(V;A(Zy,...,Z,)) < €*n

25



Lower bound for mode (and histograms)
* Every participant has
Xi (S {1,2, ey d}

* Consider V uniformin {1, ..., d}
>X=,V,...,V)

» A histogram algorithm with relative error a <

N | =

will output I/ (with high probability)
°* Fano’s inequality: If A = V with constant probability
and V uniform on {1, ...,d}, then I(V; A) = Q(logd)

log d)
to get

* But [(V;A) < €°n,soweneed n = Q(

nontrivial error.

€2

logd

» Upper bound O ( ) is tight for constant a

€2n



Subconstant

° Let V be uniformin {1, ...,d}, and
consider data set Y; = W(V) (erase with prob 1 — )

» Each data set has = an copies of I/, the rest is 0.

» An algorithm with error a/2 will output V with high prob

e Asees Z; = R(W(V))
> By “stronger lemma”, I(V; A) < 0(a?€?n)

logd

€2n

> So Q(logd) < 0(a?e?n),or a = Q( ), as desired.

27



Outline

* Some stuff we can do
» SQ learning
» Heavy hitters

* Some stuff we cannot do
» LDP and SQ

e |-bit randomizers suffice!

> Information-theoretic lower bounds

28
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* Apple, Google deployments use local model

* Open questions

»> Efficient, network-friendly MPC protocols
for simulating “exponential mechanism” in local model

» Interaction in optimization (tomorrow)

» Other tasks?



