Local differential privacy

Adam Smith

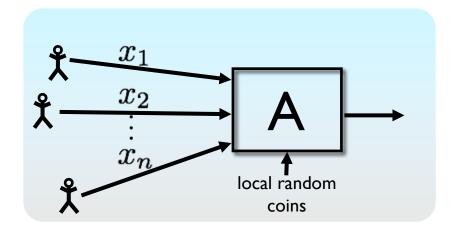
Penn State

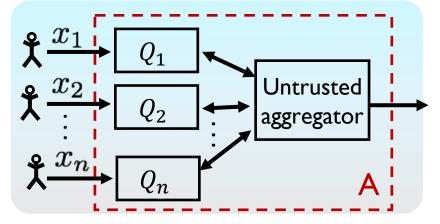
Bar-Ilan Winter School February 14, 2017

Outline

- Model
 - > Implementations
- Question: what computations can we carry out in this model?
- Example: randomized response (again!)
 - > SQ computations
- Simulating local algs via SQ
 - > An exponential separation
- Averaging vectors
- Heavy hitters: succinct averaging
- Lower bounds: information
 - > Example: selection
- Compression
- Learning and adaptivity

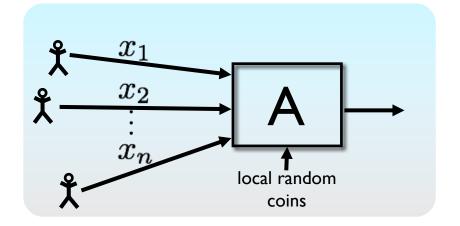
Local Model for Privacy

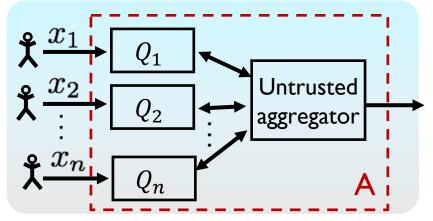




- Person i randomizes their own data, say on their own device
- Requirement: Each Q_i is (ϵ, δ) -differentially private.
 - \triangleright We will ignore δ
 - > Aggregator may talk to each person multiple times
 - For every pair of values of person *i*'s data, for all events T: $\Pr(R(x) \in T) \le e^{\epsilon} \cdot \Pr(R(y) \in T)$.

Local Model for Privacy





Pros

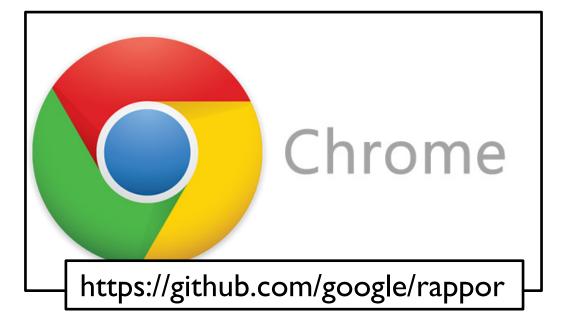
- ➤ No trusted curator
- ➤ No single point of failure
- > Highly distributed

Cons

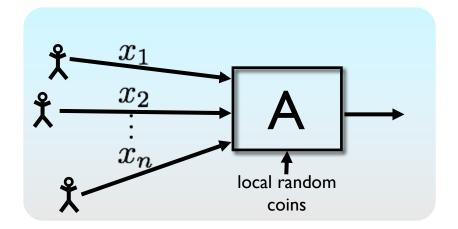
> Lower accuracy

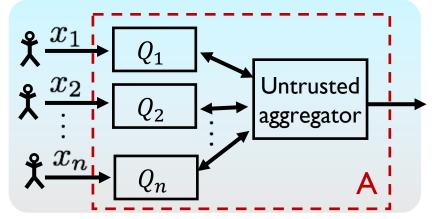
Local differential privacy in practice

https://developer.apple.com/videos/play/wwdc2016/709/



Local Model for Privacy

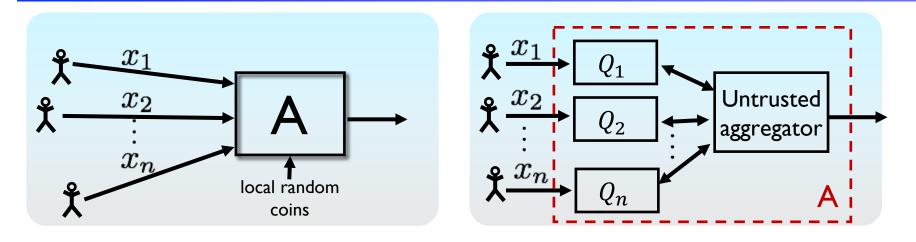




Open questions

- ➤ Efficient, network-friendly MPC protocols for simulating "exponential mechanism" in local model
- > Interaction in optimization (tomorrow)
- ➤ Other tasks?

Local Model for Privacy



What can and can't we do in the local model?

- Each person has data $x_i \in \mathcal{X}$
 - \triangleright Analyst wants to know average of $f: \mathcal{X} \to \{-1,1\}$ over x
- Randomization operator takes $y \in \{-1,1\}$:

$$Q(y) = \begin{cases} +yC_{\epsilon} & w.p. \frac{e^{\epsilon}}{e^{\epsilon} + 1} \\ -yC_{\epsilon} & w.p. \frac{1}{e^{\epsilon} + 1} \end{cases} \quad where \quad C_{\epsilon} = \frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}.$$

- Observe:
 - E(Q(1)) = 1 and E(Q(-1)) = -1.
 - $\triangleright Q$ takes values in $\{-C_{\epsilon}, C_{\epsilon}\}$
- How can we estimate a proportion?

$$\triangleright A(x_1, \dots, x_n) = \frac{1}{n} \sum_i Q(f(x_i))$$

• Proposition:
$$\left| A(x) - \frac{1}{n} \sum_{i} f(x_i) \right| = O_P\left(\frac{1}{\epsilon \sqrt{n}}\right)$$
 optimal

Centralized DP:

$$O\left(\frac{1}{n\epsilon}\right)$$
 via

Laplace mechanism

SQ algorithms

- An "SQ algorithm" interacts with a data set by asking a series of statistical queries
 - \triangleright Query: $f: \mathcal{X} \rightarrow [-1,1]$
 - \triangleright Response: $\hat{a} \in \frac{1}{n} \sum_{i} f(x_i) \pm \alpha$ where α is the **error**
- Huge fraction of basic learning/optimization algorithms can be expressed in SQ form [Kearns 93]

SQ algorithms

- An "SQ algorithm" interacts with a data set by asking a series of statistical queries
 - \triangleright "Statistical Query:" $f: \mathcal{X} \rightarrow [-1,1]$
 - \triangleright Response: $\hat{a} \in \frac{1}{n} \sum_{i} f(x_i) \pm \alpha$ where α is the **error**
- Huge fraction of basic learning/optimization algorithms can be expressed in SQ form [Kearns 93]
- **Theorem:** Every sequence of k SQ queries can be computed with local DP with error $\alpha = O\left(\sqrt{\frac{k \log k}{\epsilon^2 n}}\right)$.
- Proof:
 - Randomly divide n people into k groups of size $\frac{n}{k}$
 - > Have each group answer I question.

Central: $O\left(\frac{k}{nc}\right)$

SQ algorithms and Local Privacy

- Every SQ algorithm can be simulated by a LDP protocol.
- Can every centralized DP algorithm be simulated by LDP?
 No!
- Theorem: Every LDP algorithm can be simulated by SQ with polynomial blow-up in n.
- Theorem: No SQ algorithm can learn parity with polynomially many samples $(n = 2^{\Omega(d)})$.
- **Theorem:** Centralized DP algorithms can learn parity with $n = O\left(\frac{d}{\epsilon}\right)$ samples.
- Is research on local privacy over?
 ➤ No! Polynomial factors matter...

LDP = SQ

Central DP

Outline

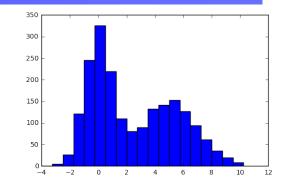
- Some stuff we can do
 - > Heavy hitters

- Some stuff we cannot do
 - > LDP and SQ
 - I-bit randomizers suffice!
 - > Information-theoretic lower bounds

Histograms

[Mishra Sandler 2006, Hsu Khanna Roth 2012, Erlingsson, Pihur, Korolova 2014, Bassily Smith 2015, ...]

- Every participant has $x_i \in \{1,2,...,d\}$.
- Histogram is $h(x) = (n_1, n_2, ..., n_d)$ where $n_j = \#\{i: x_i = j\}$



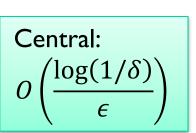
- Straightforward protocol: Map each x_i to indicator vector e_{x_i}
 - \triangleright So $h(x) = \sum_i e_{x_i}$
 - $\triangleright Q'(x_i)$: Apply $Q(\cdot)$ to each entry of e_{x_i} .

$$e_{x_i} = (0,0, ..., 0,1,0, ..., 0)$$

$$\mathbb{Q}'(e_{x_i}) = (Q(0), ..., \frac{Q(1)}{Q(1)}, ..., Q(0))$$

• **Proposition:** $Q'(\cdot)$ is ϵ -LDP and

$$E\left\|\sum_{i}Q'(x_{i})-h(x)\right\|_{\infty}\leq \frac{\sqrt{n\log d}}{\epsilon}$$



Succinctness

- Randomized response has optimal error $\frac{\sqrt{n \log d}}{\epsilon}$
 - \triangleright Problem: Communication and server-side storage O(d)
 - ➤ How much is really needed?
- **Theorem** [Thakurta et al]: $\tilde{O}(\epsilon \sqrt{n \log d})$ space.
- Lower bound (for large d)
 - \triangleright Have to store all the elements with counts at least $\epsilon \sqrt{\frac{n}{\log d}}$.
 - \triangleright Each one takes $\log d$ bits.
- Upper bound idea:
 - ➤ [Hsu, Khanna, Roth '12, Bassily, S'15] Connection to "heavy hitters" algorithms from streaming
 - Adapt CountMin sketch of [Cormode Muthukrishnan]

Succinct "Frequency Oracle"

- Data structure that allow us to estimate n_i for any j
 - \triangleright Can get whole histogram in time O(d)

- Select $k \approx \log(d)$ hash functions $g_m: [d] \to \left[\frac{\epsilon \sqrt{n}}{\log d}\right]$
 - \triangleright Divide users into k groups
 - \triangleright m-th group constructs histogram for $g_m(x_i)$
- Aggregator stores k histograms
 - $\triangleright \widehat{count}(j) = \text{median}\{\widehat{count}_m(j): m = 1, ..., k\}$
 - > Corresponds to "CountMin" hash [Cormode Muthukrishnan]

Efficient Histograms

- When d is large, want list of large counts
 - \triangleright Explicit query for all items: O(d) time

- Time-efficient protocols with (near-)optimal error exist based on
 - > error-correcting codes [Bassily S '15]
 - > Prefix search (à la [Cormode Muthukrishnan '03])
 - "All unattributed heuristics are probably due to Frank McSherry"
 --A. Thakurta
 - Worse error, better space
- Open question: exactly optimal error, optimal space

Other things we can do

- Estimating averages in other norms [DJW '13]
 - ➤ Useful special cases:
 - Histogram with small ℓ_1 error (in small domains)
 - ℓ_2 bounded vectors (problem set)
- Convex optimization [DJW '13, S Thakurta Uphadhyay '17]
 - Via gradient descent (tomorrow)
- Selection problems [other papers]
 - > Find most-liked Facebook page
 - \triangleright Find most-liked Facebook pages with $\leq k$ likes per user

Outline

- Some stuff we can do
 - > Heavy hitters

- Some stuff we cannot do
 - > LDP and SQ
 - 1-bit randomizers suffice!
 - > Information-theoretic lower bounds

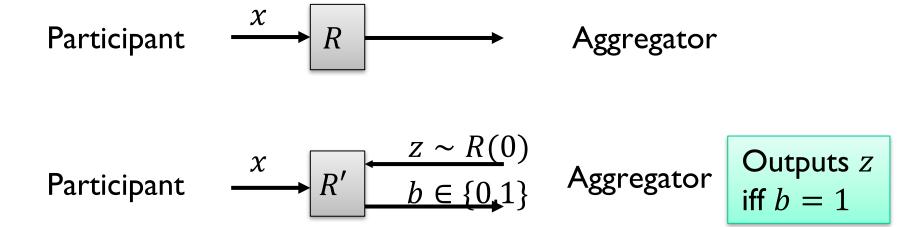
SQ Algorithms simulate LDP protocols

- Roughly:
 - Every LDP algorithm with n data points can be simulated by an SQ algorithm with $O(n^3)$ data points.
 - Actually a distributional statement: assume that data drawn i.i.d from some distribution *P*

Key piece:

Transform the randomizer so only I bit is sent to aggregator by each participant.

[Nissim Raskhodnikova S 2007, McGregor, Mironov, One-bit randomizer [INISSIM Kaskilodilikova 3 2007, Ficologo, Filifologo Pitassi, Reingold, Talwar, Vadhan 2010, Bassily S 15]



- **Theorem:** There is a ϵ -DP R' such that for every x:
 - \triangleright Conditioned on B=1, output Z distributed as R(x)
 - $ightharpoonup \Pr(B=1) = 1/2$
- Replacing R by R'...
 - > Lowers communication from participant to 1 bit;
 - \triangleright Randomly drops an 1/2 fraction of data points
 - \triangleright No need to send z: Use pseudorandom generator.

Proof

Participant
$$x \rightarrow R'$$
 $x \sim R(0)$ Aggregator $x \sim R(0)$ Outputs $x \sim R(0)$ iff $b \in \{0,1\}$

- Algorithm R'(x,z):
 - ightharpoonup Compute $p_{x,z} = \frac{1}{2} \cdot \frac{\Pr(R(x)=z)}{\Pr(R(0)=z)}$
 - \triangleright Return B=1 with probability $p_{x,z}$
- Notice that p is always in $\left[\frac{e^{-\epsilon}}{2}, \frac{e^{\epsilon}}{2}\right]$, so R' is ϵ -DP
- $Pr(select\ z\ and\ B=1)$

$$= \frac{1}{2} \Pr(R(0) = z) \cdot \frac{\Pr(R(x) = z)}{\Pr(R(0) = z)} = \frac{1}{2} \Pr(R(x) = z)$$

• So
$$\Pr(B=1) = \frac{1}{2}$$
 and $Z|_{B=1} \sim R(x)$.

Connection to SQ

• An SQ query can evaluate the average of $p_{x_i,z}$ over a large set of data points x_i

• When $x_1, ..., x_n$ drawn i.i.d. from P, we can sample $Z \sim R(X)$ where $X \sim P$

$$E_{x}(p_{x,z}) = \frac{1}{2} \cdot \frac{\Pr(R(X) = z \text{ where } X \sim P)}{\Pr(R(0) = z)}$$

This allows us to simulate each message to the LDP algorithm.

LDP = SQ

Central DP

Information-theoretic lower bounds

- As with $(\epsilon, 0)$ -DP, lower bounds for (ϵ, δ) -DP are relatively easy to prove via packing arguments
- For local algorithms, easier to use informationtheoretic framework [BNO'10, DJW'13]
 - \triangleright Applies to $\delta > 0$ case.
- Idea: Suppose $X_1, \dots, X_n \sim P$ i.i.d., show that protocol leaks little information about P

Information-theoretic framework

- **Lemma:** If R is ϵ -DP, then $I(X; R(X)) \le O(\epsilon^2)$
- Proof: For any two distributions with $p(y) \in e^{\pm \epsilon}q(y)$, KL(p||q) =

• Stronger Lemma: If R is ϵ -DP, and

$$W(x) = \begin{cases} x & w.p. & \alpha \\ 0. & w.p.1 - \alpha \end{cases}$$

- then $I(X; R(W(X))) \leq O(\alpha^2 \epsilon^2)$.
- **Proof:** Show $R \circ W$ is $O(\alpha \epsilon)$ -DP.

Bounding the information about the data

- Suppose we sample V from some distribution P and consider $X_1 = X_2 = \cdots = X_n = V$
 - \triangleright Let $Z_i = R(X_i)$ for some ϵ -DP randomizer R
- Then $I(V; Z_1, ..., Z_n) \le$

• Theorem: $I(V; A(Z_1, ..., Z_n)) \le \epsilon^2 n$

Lower bound for mode (and histograms)

- Every participant has $x_i \in \{1,2,...,d\}$.
- Consider V uniform in $\{1, ..., d\}$
 - $\triangleright X = (V, V, \dots, V)$
 - A histogram algorithm with relative error $\alpha \leq \frac{1}{2}$ will output V (with high probability)
- Fano's inequality: If A = V with constant probability and V uniform on $\{1, ..., d\}$, then $I(V; A) = \Omega(\log d)$
- But $I(V;A) \le \epsilon^2 n$, so we need $n = \Omega\left(\frac{\log d}{\epsilon^2}\right)$ to get nontrivial error.
 - ightharpoonup Upper bound $O\left(\sqrt{\frac{\log d}{\epsilon^2 n}}\right)$ is tight for constant α

Subconstant \alpha

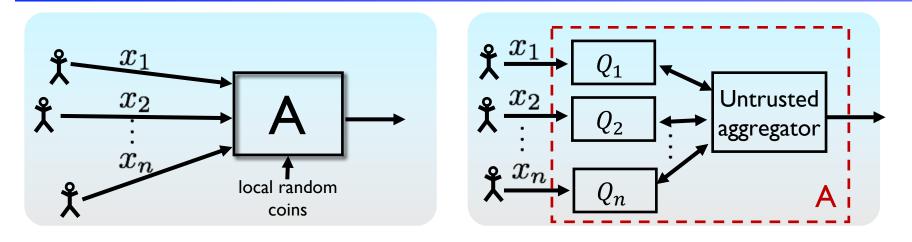
- Let V be uniform in $\{1, ..., d\}$, and consider data set $Y_i = W(V)$ (erase with prob 1α)
 - \triangleright Each data set has $\approx \alpha n$ copies of V, the rest is 0.
 - \triangleright An algorithm with error $\alpha/2$ will output V with high prob
- $A \operatorname{sees} Z_i = R(W(V))$
 - \triangleright By "stronger lemma", $I(V;A) \le O(\alpha^2 \epsilon^2 n)$
 - > So $\Omega(\log d) \leq O(\alpha^2 \epsilon^2 n)$, or $\alpha = \Omega\left(\sqrt{\frac{\log d}{\epsilon^2 n}}\right)$, as desired.

Outline

- Some stuff we can do
 - > SQ learning
 - > Heavy hitters

- Some stuff we cannot do
 - > LDP and SQ
 - I-bit randomizers suffice!
 - > Information-theoretic lower bounds

Local Model for Privacy



- Apple, Google deployments use local model
- Open questions
 - ➤ Efficient, network-friendly MPC protocols for simulating "exponential mechanism" in local model
 - > Interaction in optimization (tomorrow)
 - > Other tasks?