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No Data Released = 

No Privacy Problems? 
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Welcome To The Machine 
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(Dynamically  

changing) inputs 

Information leaks  

out gradually, 

through unexpected 

system interfaces 
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Reading Material 

Calandrino, Kilzer, Narayanan, Felten, Shmatikov 

“You Might Also Like:” Privacy Risks of Collaborative Filtering  

   Oakland 2011 
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Recommender Systems 
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Collaborative Filtering 

Recommender 

System 

Recommendations: 
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Can We Invert This? 

Recommender 

System 

Alice 

Recommendations: 
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Item-to-Item Recommendations 

…versus user-to-item recommendations 

This allows for passive adversaries 
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Our Tools 

Auxiliary information  

and  

dynamics of public outputs 
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Auxiliary Information 

An attacker can sometimes learn partial history 
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Alice’s TV Taste 

Transaction history tends to be  

(relatively) unique 
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Selecting an item makes it and past choices more similar 

Thus, output changes in response to transactions 

Modern Collaborative Filtering 

Recommender 

System 

Item-Based and Dynamic 

slide 12 



Based on these changes, we infer transactions 

We can see the recommendation lists for auxiliary items 

Today,  Alice watches a new show (we don’t know this) 

Inferring Alice’s Transactions 

...and we can see changes in these lists 
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Predictions (recommendations) seek to impose order 

3. 

Prediction vs. Inference 

2. 

1. 
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Inferences are based on temporal changes in order 

3. 

Prediction vs. Inference 

2. 

1. 
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More Recent Work 

McPherson, Shokri, Shmatikov 

“Defeating Image Obfuscation with Deep Learning” 

   arXiv 2016 
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What does this 

revolution mean for 

a privacy researcher? 
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Truck Truck? ??? ???????? 

Truck Truck Truck Truck 

Does this extend to obfuscated images? 

Outperform Humans, Eh? 
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Image Obfuscation Techniques 

Pixelation Blurring P3 

As deployed  

by YouTube 
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P3: Privacy-Preserving Photo Sharing 

Add privacy to online 

image storage by 

encrypting “significant” 

JPEG coefficients 

Ra et al. (NSDI 2013) 
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Privacy/Size Tradeoff in P3 

Threshold of 10 for encrypting JPEG coefficients 

)P3 recommends threshold of 10-20(  

More privacy Smaller images 

77% of original size 43% of original size 
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Training a Neural Network to  

Classify P3-Protected Images 

60,000 colored images  
in 10 categories  
(e.g. ship, car, frog, cat) 

70,000 handwritten digits 
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Which Digit Is This? 

)32 x32 pixels( 

The neural network knows… 
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More Targets 

Handwritten digits, objects, faces… 
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Results for Object Recognition 

MNIST 

handwritten digits 

CIFAR-10 

animals and vehicles 
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Results for Face Recognition 

AT&T 

database 

FaceScrub 

database 
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