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Publishing information about graphs

Many types of data can be represented as graphs where
e nodes correspond to individuals

e edges capture relationships
* “Friendships” in online social network
* Financial transactions
* Email communication _
e Health networks (of doctors and patients) ....% i commmiepreor”

software.com/blogs/mtarallo/36-extracting-data-

e RO m a nt I C re I at I 0 n S h | p S facebook-social-graph-expressor-tutorial html

Such graphs contain
potentially sensitive
information.

image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper.



“Anonymized’’ graphs still pose privacy risk

e False dichotomy: personally identifying vs. non-personally identifying information.
e Links and any other information about individual can be used for de-anonymization.

In a typical real-life network, many
nodes have unique neighborhoods.




De-anonymization attacks

— Movie ratings [Narayanan, Shmatikov 08]

— Social networks

[Backstrom Dwork Kleinberg 07,
Narayanan Shmatikov 09, Narayanan Shi Rubinstein 12]

— Computer networks
[Coull Wright Monrose Collins Reiter 07,
Ribeiro Chen Miklau Townsley 08]

Can reidentity individuals based on external sources.
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What information can be released

without violating privacy?



Two variants of differential privacy for graphs
e Edge differential privacy
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Two graphs are nelghbors if they dlffer in one edg\é:

e Node differential privacy

G: 1‘1"" %" G: ahe 1?

Two graphs are neighbors if one can be obtained from the other by
deleting a node and its adjacent edges.



Work on weaker/incomparable privacy definitions

e Edge differential privacy
» Number of triangles, MST cost [Nissim Raskhodnikova Smith 07]

» Degree distribution [Hay Rastogi Miklau Suciu 09,
Hay Li Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13]

» Small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]

» Cuts [Hardt Rothblum 10, Gupta Roth Ullman 12,
Blocki Blum Datta Sheffet 12]

» Kronecker graph model parameters [Mir Wright 12]

e Edge-private against Bayesian adversary (weaker privacy)
» Small subgraph counts [Rastogi Hay Miklau Suciu 09]

e Node zero-knowledge private
» Privacy only for bounded-degree graphs
» Average degree, distances to graph families [Gehrke Lui Pass 12]



What graph statistics can be
computed accurately

with node differential privacy?

Important: small error on sparse graphs.



Graph statistics

e [Blocki Blum Datta Sheffet 13, Kasiwiswanathan Nissim Raskhodnikova Smith 13,
Chen Zhou 13]

> Number of edges % %
» Counts of small subgraphs (e.g., triarzkl, k-tri s, k-star

e Degree distribution [Kasiwiswanathan Nissim Raskhodnikova Smith 13,

Raskhodnikova Smith 16]
Fraction of nodes of degree d

_HW ... Degreed

Our algorithms for these statistics
e node differentially private for all graphs

» Accurate for a large subclass of graphs (including sparse
graphs, scale-free graphs and Erdos-Renyi graphs)

» (1+0,,(1))-approximation



Techniques for node-private algorithms

e Previous work
* Sensitivity analysis of simple projections [BBDS’13, KNRS'13]
» yielded generic reductions to privacy over bounded-degree graphs
* Lipschitz extensions [BBDS’13, KNRS’13, CZ’13]

» yielded much more accurate algorithms, but worked only for releasing
1-dimensional statistics (edge / small subgraph counts).

e This work: new techniques that improve accuracy
* Lipschitz extensions for high-dimensional statistics
* Generalized exponential mechanism for both methods
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Lipschitz extensions



Basic question: how to compute a statistic [

Graph G Data processing Data release

» Approximation
to f(G)

Algorithm

How accurately
can an e-differentially private algorithm compute f(G)?

image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/ 12



Basic technique: noise proportional to sensitivity

e Global sensitivity of a function f is

of = max f(G) = f(G)]

(node)neighbors G,G’

Also called Lipschitz constant of f.

e GS Framework [DMNS]: For every real-valued function f,
there is an e-differentially private algorithm A such that

d
EAG) - F@)) =L

ot
of

e |ntuition: Adding noise = — makes G, G’ hard to distinguish

f(6H f(6)
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Challenge for node privacy: high sensitivity

e Global sensitivity of a function f is it g ,’
of = max |f(6) - f(6 t}tq‘.‘ﬁ
B B N\ | % AN
(nOde)HEighborS G’G, 1 B /\\\/1\\:{/1':'1—1\‘{!:\;:‘,\///“
_\!/\ \“ : H\ff '*"i ;’})J\
SN -

W

* Examples: for graphs on n nodes:
» fedge(G) is the number of edges in G. Of edge= M-

> [deg(G) is the degree list of G. Of geg= 21.

Problem: high-degree nodes.

W
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Graphs of small degree

Let G = family of all graphs, G
G, = family of graphs of degree < d.
Notation. af = global sensitivity of f over §.

adf = global sensitivity of f over G,.
Observation. d,4f is low for many useful f.

Examples:

» 04feage=d (compareto dfcq5e= N)
» 04fdeg = 2d (compare to df 4o, = 21)

/
——— Goal: privacy for all graphs———

Idea: "Extend” f from G, to G for a carefully chosen d € [n].
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Lipschit; extensions

A function f' is a Lipschitz extension
of f from G, to G if
> f' agrees with f on G; and

e Release f' via GS framework [DMNS'06]

\__»0f =04f /

of ' =0aqf

e All real-valued functions have Lipschitz extensions [McShane 34]

e Lipschitz extensions for subgraph counts that can be computed

efficiently [Kasiviswanathan Nissim R Smith 13]
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Lipschitz extensions: vector-valued functions

A function f' is a Lipschitz extension

of f from G, to G with stretch s if
> f' agrees with f on G; and

\. »Of <s-0,4f %

e We can still release f' via GS framework

e There exist functions f: G4 — R?

9
af <s- 84f

(f: G4 — R?if £, is used as output metric instead of £,)

that do not admit st pschitz extensions

e Lipschitz extensions of degree list and degree distribution
(with small stretch) that can be computed efficiently

17



Lipschit; extension of f cqge: flow graph [KNRs'13]

For a graph G=(V, E), define flow graph of G:

| Add edge (u,v") iff (u,v) € E. )
V510w(G) is the value of the maximum flow in this graph.

Lemma. vy (G)/2 is a Lipschitz extension of f¢gge.
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Lipschit; extension of f cqge: flow graph [KNRs'13]

For a graph G=(V, E), define flow graph of G:

| Add edge (u,v") iff (u,v) € E. /
V510w(G) is the value of the maximum flow in this graph.

Lemma. V4 (G)/2 is a Lipschitz extension of feqge.
Proof: (1) vfow(G) = 2f edge(G) for all GE G4

(2) 0 veow =2 adfedge
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Lipschit; extension of f cqge: flow graph [KNRs'13]

For a graph G=(V, E), define flow graph of G:

V510w(G) is the value of the maximum flow in this graph.

Lemma. Vg4 (G)/2 is a Lipschitz extension of feqge-
Proof: (1) vfow(G) = 2f edge(G) for all GE G4
(2) 0 veow =2- adfedge= 2d
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Lipschitz extension of the degree list |[RS °16]

f

» = flow into
vertex v flow graph of G /

Can we use f;, as a proxy for degree of v?
Issue: max flow is not unique.

Want: unique flow that has low global sensitivity.
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Lipschit; extension of f qeg: convex programming

vertex v maximizing ), h(f,)
Idea: maximize Y., h(f,) instead of }.,.f,, , J
where h(x) is strictly concave.

2

e Let f~ be the vector of s-out-flows.

» ™ is unique, since h is strictly concave.
» Poly-time computable [Lee Rao Srivastava 13].
e Lemma. f~ is a Lipschitz extension of degree-list with stretch 3/2.
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Lipschit; extension of f qeg: combinatorial

e Subsequently simplified [W.-Y. Day, N. Li, M. Lyu, SIGNMOD 2016]

e DLL Algorithm: On input G = (V, E) and degree bound d
» Order the edges lexicographically: E = e_1,e,, ..., e,
> G'=(V,0) [/emptygraph
» Fori =1tom:

e If (adding e; to G’ would not push maximum degree over d)
— AddetoV

e Else

— lgnore ¢;

> Return sort(degree-list(G'))

e Lemma: For any two graphs G4, G, that differ in one node,
IDLL(G{) — DLL(G))|l{ <2d +1
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W e

Releasing degree list: summary

vertex v maximizing )., h(f,)

Construct flow graph of G.

Compute s-out-flows f~.

3d
€

Release vector f*, with Lap( ) per coordinate.

Use post-processing techniques by [Hay Rastogi Miklau Suciu 09, Hay Li
Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13] t0 remove some noise.
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Lipschit; extension of degree list

vid convex programming

vertex v ¢ = argmax ., h(fy). )
e |IfGE G4, then f,= deg(v) for all v,

since h is strictly increasing on [0,d].

e d, (degree list) = 2d:
can add a node of degree < d.

e Lemma. £ global sensitivity df" < 3d.
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Lipschit; extension of degree list
via convex programmin

Lemma. ¥4 global sensitivity df" < 3d.

Proof sketch: Consider g = ¢,,00 — Po14-

g is a union of simple s-t-paths and cycles of several types:

1. s-t-paths and cycles usinges.  Contribute < 2d to |frew — foral1
Z. s-t-paths using e;. <d

3. Cycles using e;. 0

4. Remaining paths and cycles. Do not exist.
o Use strict concavity of h

26



Generalized

Exponential Mechanism
Choosing the cutoff degree d



Evaluating Cutoff Degrees

Given: candidate real-valued Lipschitz extensions f; and
their sensitivities df 4

(Specifically, we will try d = powers of 2 in [n])

* If we approximate f by releasing f; in GS framework,
the expected error is roughly f(G) — f4(G) + — afd

Want: f; with (approximately) smallest

score q4(G) = —f4(G) + —= afd

28



Differentially private algorithms

Zor choosing the item with the smallest score

e Exponential Mechanism [McSherry Talwar 07]
» Initial motivation: auction design.

» Subsequent applications:
» Learning discrete classifiers [KLNRS’'08]
» Synthetic data generation [BLR’0S,...,HLM’10]
» Convex Optimization [CM’'08,CMS’10]
» Frequent Pattern Mining [BLST’10]
» Genome-wide association studies [FUS'11]

» High-dimensional sparse regression [KST'12]
> ...

29



Differentially private algorithms

Zor choosing the item with the smallest score

e Exponential Mechanism [McSherry Talwar 07]

» Additive error in the score is proportional to maximum (over
items) sensitivity of a score function

e Our Generalized Exponential Mechanism

» Additive error in the score is proportional to the sensitivity of
the optimal score function
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Exponential Mechanism [McSherry Talwar 07]

Given: database x from universe U, parameter € > 0,
score functions g;: U - R with 6; = dq; fori € [k]

Want: index i* = arg min q; (x)
l

/Algorithm EM

~

1. Setd = maXi(Y,-

2. Output i, set to i with probability o< exp(e - g;(x)/9d),
\ normalized so that probabilities sum to 1, for i € |k]. P

Guarantees: (1) EM is 2e-differentially private

(2) vB € (0,1), w.p. = B,

qi(x) < q;*(x) +6 -

2In(k/p)

€

/

—  ——  Goal: Guarantee with 0+ instead of 0.

——

_ .
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Generalized Exponential Mechanism [RS16]

Given: database x from universe U, € > 0, 5 € (0,1),
score functions g;: U - R with 6; = dq; fori € [k]

Want: index i* = arg min q; (x)
l

/" Algorithm GEM N\

1. t<2In(k/p) /€
2. q;(x) < q;i(x) +td; foralli € [k]

q;(x)—q;(x) .
X 5055, for all i € k]

3. sij(x) <« ma
j

4. Output i, set to i with probability o exp(e : s,-(x)),
K normalized so that probabilities sum to 1, for i € | k] /

Note: each g; has sensitivity §;
each s; has sensitivity 1
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Generalized Exponential Mechanism [RS16]

Given: database x from universe U, € > 0, 5 € (0,1),
score functions g;: U - R with 6; = dq; fori € [k]

Want: index i* = arg min q; (x)
l

Guarantees: (1) GEM is 2e-differentially private
(2) vp € (0,1), w.p. = p,
41In(k/pB)

000 < 4 (O + 8- ——
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Summary of techniques we saw

1. Lipschitz extensions [BBDS13, KNRS13]

» Releasing number of edges via max flow [KNRS13]

» Releasing degree list: via convex programming [RS16]

» The most accurate known method

2. Generalized exponential mechanism [SR16]

» For choosing among objects with score functions of different
sensitivities

» For choosing the cutoff degree
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Conclusions

e |tis possible to design node differentially private algorithms with
good utility for a large class of graphs
» One can choose a “good” value of d privately

e Directions for future work

» Understanding which functions have efficiently computable
Lipschitz extensions with small stretch

» Node-private algorithms for releasing other graph statistics
» Node-private synthetic graphs

e Open Question: Is there a node-differentially private algorithm
for releasing the cost of all graph cuts
with worst-case error o(n-max-degree(G)) ?
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Experiments for the flow and LP method |Lu]

Number of Edges Number of Triangles
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0.50 0.50

Epsilon Epsilon
degree # edges # As
CA-GrQc 5,242 28,992 0.02 7
CA-HepTh 9,877 51,996 65 0.68 0.5
CA-AstroPh 18,772 396,220 504 0.34 10,222
com-dblp-ungraph 317,080 2,099,732 343 2 2128
com-youtube-ungraph 1,134,890 5,975,248 28,754 9 94
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