
1

Differentially Private Analysis
of Graphs
Adam	Smith

Pennsylvania	State	University

Publishing information about graphs
Many	types	of	data	can	be	represented	as	graphs	where
• nodes	correspond	to	individuals
• edges	capture	relationships

• “Friendships”	in	online	social	network
• Financial	transactions
• Email	communication
• Health	networks	(of	doctors	and	patients)
• Romantic	relationships

2

image source http://community.expressor-
software.com/blogs/mtarallo/36-extracting-data-
facebook-social-graph-expressor-tutorial.html

Such graphs contain
potentially sensitive

information.

image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/

3

• False	dichotomy:	personally	identifying	vs.	non-personally	identifying	information.
• Links	and	any	other	information	about	individual	can	be	used	for	de-anonymization.

``Anonymized’’ graphs still pose privacy risk

Bearman, Moody, Stovel. Chains of affection: The structure of adolescent romantic and sexual networks, American J. Sociology, 2008

In	a	typical	real-life	network,	many	
nodes	have	unique	neighborhoods.

Alex

Bob
JenTal

De-anonymization attacks

4

– Movie	ratings [Narayanan, Shmatikov 08]

– Social	networks
[Backstrom Dwork	Kleinberg	07,	
Narayanan	Shmatikov 09,	Narayanan	Shi	Rubinstein	12]

– Computer	networks
[Coull Wright	Monrose Collins	Reiter	07,		
Ribeiro	Chen	Miklau Townsley 08]

Can reidentify individuals based on external sources.

internet social networks anonymized datasets

5

What information can be released
without violating privacy?

Two variants of differential privacy for graphs

• Edge differential	privacy

Two	graphs	are	neighbors if	they	differ	in	one	edge.

• Node differential	privacy

Two	graphs	are	neighbors if	one	can	be	obtained	from	the	other	by	
deleting	a	node	and	its	adjacent	edges.

6

G: G′:

G: G′:

Work on weaker/incomparable privacy definitions

• Edge	differential	privacy
Ø Number	of	triangles,	MST	cost	[Nissim	Raskhodnikova Smith	07]
Ø Degree	distribution	[Hay	Rastogi Miklau Suciu 09,	

Hay	Li	Miklau Jensen	09,	Karwa Slavkovic 12,	Kifer Lin	13]
Ø Small	subgraph counts	[Karwa Raskhodnikova Smith	Yaroslavtsev 11]
Ø Cuts	[Hardt Rothblum 10,	Gupta	Roth	Ullman	12,	

Blocki Blum	Datta Sheffet 12]
Ø Kronecker graph	model	parameters	[Mir	Wright	12]

• Edge-private	against	Bayesian	adversary	(weaker	privacy)
Ø Small	subgraph counts	[Rastogi Hay	Miklau Suciu 09]

• Node	zero-knowledge	private
Ø Privacy	only	for	bounded-degree	graphs
Ø Average	degree,	distances	to	graph	families	[Gehrke Lui Pass	12]

7

8

What graph statistics can be
computed accurately

with node differential privacy?

Important: small error on sparse graphs.

• [Blocki Blum	Datta Sheffet 13,		Kasiwiswanathan Nissim	Raskhodnikova Smith	13,	
Chen	Zhou	13]
ØNumber	of	edges
ØCounts	of	small	subgraphs (e.g.,	triangles,	𝒌-triangles,	𝒌-stars)

• Degree	distribution	[Kasiwiswanathan Nissim	Raskhodnikova Smith	13,	
Raskhodnikova Smith	16]

Our	algorithms	for	these	statistics
• node	differentially	private for	all	graphs

ØAccurate for	a	large	subclass	of	graphs	(including	sparse	
graphs,	scale-free	graphs	and	Erdos-Renyi graphs)

Ø (1+𝒐𝒏(1))-approximation

Graph statistics

9

… …

Fraction of nodes of degree d

Degree d

…
…

• Previous	work
• Sensitivity	analysis	of	simple	projections	[BBDS’13,	KNRS’13]
Ø yielded	generic	reductions	to	privacy	over	bounded-degree	graphs
• Lipschitz	extensions	[BBDS’13,	KNRS’13,	CZ’13]
Ø yielded	much	more	accurate	algorithms,	but	worked	only	for	releasing	

1-dimensional	statistics (edge	/	small	subgraph	counts).

• This	work:	new	techniques	that	improve	accuracy
• Lipschitz	extensions	for	high-dimensional	statistics
• Generalized	exponential	mechanism for	both	methods

Techniques for node-private algorithms

10

11

Lipschitz extensions

Basic question: how to compute a statistic f
Graph G

12image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/

Algorithm

Data processing

Approximation
to 𝑓(𝐺)

How	accurately	
can	an	𝝐-differentially	private algorithm	compute	f(G)?

Data release

Basic technique: noise proportional to sensitivity
• Global	sensitivity	of	a	function	𝑓 is

Also	called	Lipschitz	constant of	𝑓.

• GS	Framework	[DMNS]: For	every	real-valued	function	𝑓,																												
there	is	an	𝜖-differentially	private	algorithm	𝐴 such	that	

𝔼	 𝐴 𝐺 − 𝑓 𝐺 =
𝝏𝒇
𝜖 .

• Intuition:	Adding	noise	≈ 𝝏𝒇
𝝐
makes	𝑮,	𝑮’ hard	to	distinguish

13
𝒇(𝑮′) 𝒇(𝑮)

𝝏𝒇 = max
𝐧𝐨𝐝𝐞 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫B	𝑮,𝑮D

𝑓 𝑮 − 𝑓 𝑮E 𝟏

• Global	sensitivity	of	a	function	𝑓 is

• Examples:	
Ø 𝒇𝐞𝐝𝐠𝐞(G)	is	the	number	of	edges	in	G.
Ø 𝒇𝐝𝐞𝐠(G)	is	the	degree	list	of	G.	

14

𝝏𝒇𝐞𝐝𝐠𝐞=	𝑛.
𝝏𝒇𝐝𝐞𝐠=	2𝑛.

Challenge for node privacy: high sensitivity

for graphs on 𝑛 nodes:

𝝏𝒇 = max
𝐧𝐨𝐝𝐞 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫B	𝑮,𝑮D

𝑓 𝑮 − 𝑓 𝑮E 𝟏

Problem: high-degree nodes.

Graphs of small degree
Let	𝓖	=	family	of	all	graphs,

𝓖J =	family	of	graphs	of	degree		≤ 𝑑.
Notation.	𝝏𝒇 =	 global	sensitivity	of	𝒇 over	𝓖.

𝝏𝒅𝒇 = global	sensitivity	of	𝒇	over	𝓖J.
Observation.	𝝏𝒅𝒇 is	low	for	many	useful	𝑓.
Examples:	
Ø 𝝏𝒅𝒇𝐞𝐝𝐠𝐞= 𝒅 (compare	to 𝝏𝒇𝐞𝐝𝐠𝐞=		𝒏)
Ø 𝝏𝒅𝒇𝐝𝐞𝐠 =	𝟐𝒅 (compare	to	𝝏𝒇𝐝𝐞𝐠	=	𝟐𝒏)

Idea:	``Extend’’	𝒇 from	𝓖J to	𝓖 for	a	carefully	chosen	𝒅 ∈ [𝒏].

15

𝓖

𝓖J

Goal: privacy for all graphs

Lipschitz extensions

• Release	𝑓′ via	GS	framework [DMNS’06]

• All	real-valued	functions	have	Lipschitz	extensions	[McShane	34]

• Lipschitz	extensions	for	subgraph	counts	that	can	be	computed	
efficiently [Kasiviswanathan Nissim	R Smith	13]

16

𝓖

𝓖J 𝒇E = 𝒇

𝝏𝒇′	= 𝝏𝒅𝒇

A	function	𝑓′ is	a	Lipschitz extension
of	𝑓 from	𝓖J to		𝓖 if

Ø𝑓′ agrees	with	𝑓 on	𝓖J and
Ø𝝏𝒇′	= 𝝏𝒅𝒇

Lipschitz extensions: vector-valued functions

• We	can	still	release	𝑓E via	GS	framework

• There	exist	functions	𝑓: 𝓖J → ℝU

(𝑓: 𝓖J → ℝV if	ℓV is	used	as	output	metric	instead	of	ℓX)
that	do	not	admit	stretch-1 Lipschitz	extensions

• Lipschitz	extensions	of	degree	list	and degree	distribution
(with	small	stretch)	that	can	be	computed	efficiently

17

𝓖

𝓖J 𝒇E = 𝒇

𝝏𝒇E ≤ 𝒔 ⋅ 	𝝏𝒅𝒇

A	function	𝑓′ is	a	Lipschitz extension
of	𝑓 from	𝓖J to		𝓖 with	stretch	𝒔 if
Ø𝑓′ agrees	with	𝑓 on	𝓖J and
Ø𝝏𝒇E ≤ 𝒔 ⋅ 𝝏𝒅𝒇

Lipschitz extension of 𝒇𝐞𝐝𝐠𝐞: flow graph [KNRS’13]

For	a	graph	G=(V,	E),	define	flow	graph	of	G:

Add	edge	(𝑢, 𝑣′) iff 𝑢, 𝑣 ∈ 	𝐸.
𝒗𝐟𝐥𝐨𝐰(G)	is	the	value	of	the	maximum	flow	in	this	graph.
Lemma. 𝒗𝐟𝐥𝐨𝐰(G)/2 is	a	Lipschitz extension	of𝒇𝐞𝐝𝐠𝐞.

18

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

Lipschitz extension of 𝒇𝐞𝐝𝐠𝐞: flow graph [KNRS’13]

For	a	graph	G=(V,	E),	define	flow	graph	of	G:

Add	edge	(𝑢, 𝑣′) iff 𝑢, 𝑣 ∈ 	𝐸.
𝒗𝐟𝐥𝐨𝐰(G)	is	the	value	of	the	maximum	flow	in	this	graph.
Lemma. 𝒗𝐟𝐥𝐨𝐰(G)/2 is	a	Lipschitz	extension	of	𝒇𝐞𝐝𝐠𝐞.
Proof:	(1)		𝒗𝐟𝐥𝐨𝐰(G)	=	𝟐𝒇𝐞𝐝𝐠𝐞(G) for	all	G∈ 𝓖J

(2)		𝝏	𝒗𝐟𝐥𝐨𝐰 =	2⋅𝝏𝒅𝒇𝐞𝐝𝐠𝐞

19

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑 𝑑
1

deg 𝑣 / deg 𝑣 /
1/

Lipschitz extension of 𝒇𝐞𝐝𝐠𝐞: flow graph [KNRS’13]

For	a	graph	G=(V,	E),	define	flow	graph	of	G:

𝒗𝐟𝐥𝐨𝐰(G)	is	the	value	of	the	maximum	flow	in	this	graph.
Lemma. 𝒗𝐟𝐥𝐨𝐰(G)/2 is	a	Lipschitz	extension	of	𝒇𝐞𝐝𝐠𝐞.
Proof:	(1)		𝒗𝐟𝐥𝐨𝐰(G)	=	𝟐𝒇𝐞𝐝𝐠𝐞(G) for	all	G∈ 𝓖J

(2)		𝝏	𝒗𝐟𝐥𝐨𝐰 =	2⋅𝝏𝒅𝒇𝐞𝐝𝐠𝐞=	2𝒅

20

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑 𝑑
1

6'

𝑑 𝑑

6

flow	graph	of	G

Can	we	use	𝑓f as	a	proxy	for	degree	of	𝑣?
Issue:max	flow	is	not	unique.
Want: unique	flow	that	has	low	global	sensitivity.

21

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒇𝒗 =	flow	into	
vertex	𝒗

Lipschitz extension of the degree list [RS ‘16]

Idea:maximize	∑fℎ(𝑓f)	instead	of	∑f𝑓f ,
where	ℎ(𝑥)	is	strictly	concave.

• Let	𝑓∗ be	the	vector	of	𝑠-out-flows.
Ø𝑓∗ is	unique,	since	ℎ is	strictly	concave.
ØPoly-time	computable	[Lee	Rao	Srivastava	13].

• Lemma.	𝒇∗ is	a	Lipschitz	extension	of	degree-list	with	stretch	3/2.

22

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒙

𝒅

𝒅𝟐

𝒇𝒗∗ =	flow	into	
vertex	𝒗

𝒉 𝒙
= 𝒙(𝟐𝒅 − 𝒙)

maximizing ∑fℎ(𝑓f)	

Lipschitz extension of 𝒇𝐝𝐞𝐠:	convex programming

Lipschitz extension of 𝒇𝐝𝐞𝐠:	combinatorial

• Subsequently	simplified	[W.-Y.	Day,	N.	Li,	M.	Lyu,	SIGNMOD	2016]	
• DLL	Algorithm:	On	input	𝐺 = (𝑉, 𝐸) and	degree	bound	𝑑

Ø Order	the	edges	lexicographically:	𝐸 = 𝑒_1, 𝑒V, … , 𝑒�
Ø 𝐺E = (𝑉, ∅) //empty	graph
Ø For 𝑖 = 1 to	𝑚:

• If (adding	𝑒� to	𝐺′ would	not	push	maximum	degree	over	𝑑)
– Add	𝑒 to	𝑉

• Else
– Ignore	𝑒�

Ø Return sort(degree-list(𝐺′))

• Lemma: For	any	two	graphs	𝐺X, 𝐺V that	differ	in	one	node,
𝐷𝐿𝐿 𝐺X − 𝐷𝐿𝐿(𝐺V) X ≤ 2𝑑 + 1

23

Releasing degree list: summary

1. Construct	flow	graph	of	G.
2. Compute	𝑠-out-flows	𝑓∗.

3. Release	vector	𝑓∗,	with	Lap UJ
�

per	coordinate.

4. Use	post-processing	techniques	by	[Hay	Rastogi Miklau Suciu 09,	Hay	Li	
Miklau Jensen	09,	Karwa Slavkovic 12,	Kifer Lin	13]	to	remove	some	noise.

24

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒉 𝒙
= 𝒙(𝟐𝒅 − 𝒙)

𝒙

𝒅

𝒅𝟐

𝒇𝒗∗ =	flow	into	
vertex	𝒗 maximizing ∑fℎ(𝑓f)	

Lipschitz extension of degree list
via convex programming

𝜙 = argmax∑ ℎ(𝑓f)�
f .

• If	G∈ 𝓖J,	then 𝒇𝒗∗=	deg(𝒗)	for	all	𝒗,	
since	ℎ is	strictly	increasing	on	[0,𝑑].

• 𝝏𝒅 𝒅𝒆𝒈𝒓𝒆𝒆	𝒍𝒊𝒔𝒕 = 𝟐𝒅:
can	add	a	node	of	degree ≤ 𝑑.	

• Lemma.	ℓ𝟏 global	sensitivity	𝝏𝒇∗ ≤ 𝟑𝒅.

25

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒉 𝒙
= 𝒙(𝟐𝒅 − 𝒙)

𝒙

𝒅

𝒅𝟐

𝒇𝒗∗ =	flow	into	
vertex	𝒗

Lipschitz extension of degree list
via convex programming

Lemma.	ℓ𝟏 global	sensitivity	𝝏𝒇∗ ≤ 𝟑𝒅.
Proof	sketch:		Consider	𝑔 = 𝜙��� − 𝜙��J.
𝑔 is	a	union	of	simple	𝑠-𝑡-paths	and	cycles	of	several	types:
1. 𝑠-𝑡-paths	and	cycles	using	𝑒B.
2. 𝑠-𝑡-paths	using	𝑒�.
3. Cycles	using	𝑒�.
4. Remaining	paths	and	cycles.

26

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑 𝑑
1

6'

𝑑 𝑑

6

𝒆𝒔

𝒆𝒕

Contribute ≤ 2𝑑 to 𝑓���∗ − 𝑓��J∗ X
≤ 𝑑
0

Do not exist.
Use strict concavity of h

27

Generalized
Exponential Mechanism

Choosing the cutoff degree d

Evaluating Cutoff Degrees

Given:	candidate	real-valued	Lipschitz	extensions	𝑓J and														
their	sensitivities	𝝏𝑓J

(Specifically,	we	will	try	𝑑 = powers	of	2	in	[𝑛])

• If	we	approximate	𝑓 by	releasing	𝑓J in	GS	framework,	
the	expected	error	is	roughly	𝒇 𝑮 − 𝒇𝒅 𝑮 + 𝝏𝒇𝒅

𝝐

Want:	𝑓J with	(approximately)	smallest	

score	𝑞J 𝐺 ≔ −𝑓J 𝐺 + 𝝏��
�

28

Differentially private algorithms
for choosing the item with the smallest score

• Exponential	Mechanism	[McSherry	Talwar 07]
Ø Initial	motivation:	auction	design.
Ø Subsequent	applications:

ØLearning	discrete	classifiers [KLNRS’08]
ØSynthetic	data	generation [BLR’08,...,HLM’10]
ØConvex	Optimization [CM’08,CMS’10]
ØFrequent	Pattern	Mining	[BLST’10]
ØGenome-wide	association	studies	[FUS’11]
ØHigh-dimensional	sparse	regression	[KST’12]
Ø...

29

Differentially private algorithms
for choosing the item with the smallest score

• Exponential	Mechanism	[McSherry	Talwar 07]
ØAdditive	error	in	the	score	is	proportional	to	maximum	(over	
items)	sensitivity of	a	score	function

• Our	Generalized	Exponential	Mechanism
ØAdditive	error	in	the	score	is	proportional	to	the	sensitivity of	
the	optimal	score	function

30

Exponential Mechanism [McSherry Talwar 07]

Given:	database	𝑥 from	universe	𝑈,	parameter	𝜖 > 0,				
score	functions	𝑞�: 	𝑈 → ℝ with 𝛿� = 𝝏𝑞� for	𝑖 ∈ [𝑘]

Want:	index	𝑖∗ = argmin
�
𝑞�(𝑥)

Guarantees:	(1)	EM	is	2𝜖-differentially	private
																							(2)	∀𝛽 ∈ 0,1 , w.p.		≥ 𝛽,

𝑞§̂ 𝑥 ≤ 𝑞�∗ 𝑥 + 𝛿 ⋅
2 ln(𝑘/𝛽)

𝜖

31

Algorithm	EM
1. Set	𝜹 = 𝐦𝐚𝐱𝒊𝜹𝒊
2. Output	𝚤,̂	set	to	𝑖 with	probability	∝ exp 𝜖 ⋅ 𝒒𝒊 𝒙 /𝜹 ,		

normalized	so	that	probabilities	sum	to	1,	for	𝑖 ∈ 𝑘 .	

Goal: Guarantee with 𝜹𝒊∗ instead of 𝜹.

Generalized Exponential Mechanism [RS16]

Given:	database	𝑥 from	universe	𝑈,		𝜖 > 0,	𝛽 ∈ (0,1),
score	functions	𝑞�: 	𝑈 → ℝ with	𝛿� = 𝝏𝑞� for	𝑖 ∈ [𝑘]

Want:	index	𝑖∗ = argmin
�
𝑞�(𝑥)

Note: each	𝑞�E has	sensitivity	𝛿�
each	𝑠� has	sensitivity	1

32

Algorithm	GEM
1. 𝒕 ← 𝟐 𝐥𝐧(𝒌/𝜷) /𝝐
2. 𝒒𝒊E(𝒙) ← 𝒒𝒊(𝒙) + 𝒕𝜹𝒊 for all 𝒊 ∈ [𝒌]

3. 𝒔𝒊(𝒙) ← 𝐦𝐚𝐱
𝒋

𝒒𝒊
D(𝒙)´𝒒𝒋

D(𝒙)
𝜹𝒊µ𝜹𝒋

for all 𝒊 ∈ [𝒌]

4. Output	𝚤,̂	set	to	𝑖 with	probability	∝ exp 𝜖 ⋅ 𝒔𝒊 𝒙 ,		
normalized	so	that	probabilities	sum	to	1,	for	𝑖 ∈ 𝑘 .	

Generalized Exponential Mechanism [RS16]

Given:	database	𝑥 from	universe	𝑈,		𝜖 > 0,	𝛽 ∈ (0,1),
score	functions	𝑞�: 	𝑈 → ℝ with	𝛿� = 𝝏𝑞� for	𝑖 ∈ [𝑘]

Want:	index	𝑖∗ = argmin
�
𝑞�(𝑥)

Guarantees:	(1)	GEM	is	2𝜖-differentially	private
(2)	∀𝛽 ∈ 0,1 , w.p.		≥ 𝛽,

𝑞§̂ 𝑥 ≤ 𝑞�∗ 𝑥 + 𝛿�∗ ⋅
4 ln(𝑘/𝛽)

𝜖

33

1. Lipschitz	extensions	[BBDS13,	KNRS13]
ØReleasing	number	of	edges	 via	max	flow [KNRS13]
ØReleasing	degree	list:	via	convex	programming [RS16]
ØThe	most	accurate	known	method
2. Generalized	exponential	mechanism	[SR16]	
Ø For	choosing	among	objects	with	score	functions	of	different	
sensitivities

Ø For	choosing	the	cutoff	degree

Summary of techniques we saw

34

Conclusions
• It	is	possible	to	design	node	differentially	private	algorithms	with	

good	utility	for	a	large	class	of	graphs
Ø One	can	choose	a	“good”	value	of	𝑑 privately

• Directions	for	future	work
Ø Understanding	which	functions	have	efficiently	computable

Lipschitz	extensions	with	small	stretch
Ø Node-private	algorithms	for	releasing	other	graph	statistics
Ø Node-private	synthetic	graphs

• Open	Question: Is	there	a	node-differentially	private	algorithm	
for	releasing	the	cost	of	all	graph	cuts	
with	worst-case	error								𝑜(𝑛⋅max-degree(G))		?

35

Experiments for the flow and LP method [Lu]

36

Graph # nodes # edges Max
degree

Time, secs
edges

Time, secs
𝚫s

CA-GrQc 5,242 28,992 81 0.02 7
CA-HepTh 9,877 51,996 65 0.68 0.5
CA-AstroPh 18,772 396,220 504 0.34 10,222
com-dblp-ungraph 317,080 2,099,732 343 2 2128
com-youtube-ungraph 1,134,890 5,975,248 28,754 9 94

