Differentially Private Analysis of Graphs

Adam Smith

Pennsylvania State University

Publishing information about graphs

Many types of data can be represented as graphs where

- nodes correspond to individuals
- edges capture relationships
 - "Friendships" in online social network
 - Financial transactions
 - Email communication
 - Health networks (of doctors and patients)
 - Romantic relationships

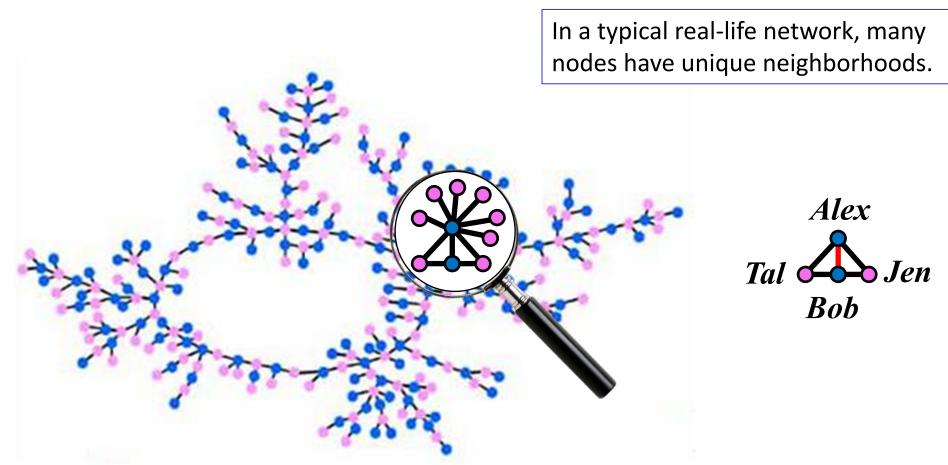
image source http://community.expressorsoftware.com/blogs/mtarallo/36-extracting-datafacebook-social-graph-expressor-tutorial.html

Such graphs contain potentially sensitive information.

image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/

``Anonymized'' graphs still pose privacy risk

- False dichotomy: personally identifying vs. non-personally identifying information.
- Links and any other information about individual can be used for de-anonymization.



Bearman, Moody, Stovel. Chains of affection: The structure of adolescent romantic and sexual networks, American J. Sociology, 2008

De-anonymization attacks

- Movie ratings [Narayanan, Shmatikov 08]
- Social networks

[Backstrom Dwork Kleinberg 07,

Narayanan Shmatikov 09, Narayanan Shi Rubinstein 12]

Computer networks

[Coull Wright Monrose Collins Reiter 07,

Ribeiro Chen Miklau Townsley 08]

Can reidentify individuals based on external sources.

What information can be released

without violating privacy?

Two variants of differential privacy for graphs

Edge differential privacy

Two graphs are neighbors if they differ in one edge.

Node differential privacy

Two graphs are **neighbors** if one can be obtained from the other by deleting *a node and its adjacent edges*.

Work on weaker/incomparable privacy definitions

- Edge differential privacy
 - Number of triangles, MST cost [Nissim Raskhodnikova Smith 07]
 - ➤ Degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13]
 - Small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]
 - Cuts [Hardt Rothblum 10, Gupta Roth Ullman 12, Blocki Blum Datta Sheffet 12]
 - Kronecker graph model parameters [Mir Wright 12]
- Edge-private against Bayesian adversary (weaker privacy)
 - Small subgraph counts [Rastogi Hay Miklau Suciu 09]
- Node zero-knowledge private
 - Privacy only for bounded-degree graphs
 - > Average degree, distances to graph families [Gehrke Lui Pass 12]

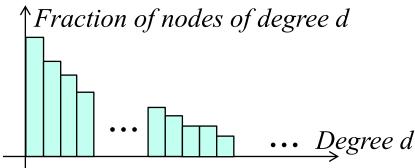
What graph statistics can be computed accurately

with node differential privacy?

Important: small error on sparse graphs.

Graph statistics

- [Blocki Blum Datta Sheffet 13, Kasiwiswanathan Nissim Raskhodnikova Smith 13, Chen Zhou 13]
 - ➤ Number of edges
 - Counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
- Degree distribution [Kasiwiswanathan Nissim Raskhodnikova Smith 13, Raskhodnikova Smith 16]



Our algorithms for these statistics

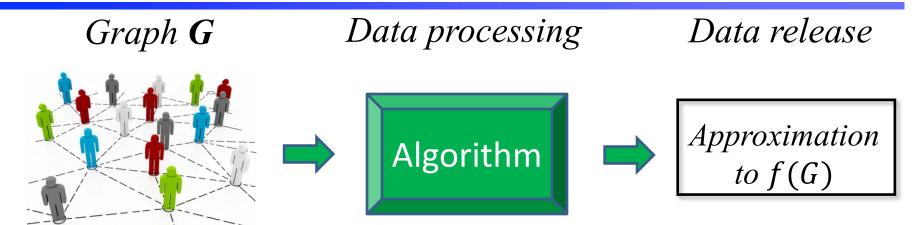
- node differentially private for all graphs
 - ➤ Accurate for a large subclass of graphs (including sparse graphs, scale-free graphs and Erdos-Renyi graphs)
 - \rightarrow (1+ o_n (1))-approximation

Techniques for node-private algorithms

- Previous work
 - Sensitivity analysis of simple projections [BBDS'13, KNRS'13]
 - > yielded generic reductions to privacy over bounded-degree graphs
 - Lipschitz extensions [BBDS'13, KNRS'13, CZ'13]
 - yielded much more accurate algorithms, but worked only for releasing 1-dimensional statistics (edge / small subgraph counts).
- This work: new techniques that improve accuracy
 - Lipschitz extensions for high-dimensional statistics
 - Generalized exponential mechanism for both methods

Lipschitz, extensions

Basic question: how to compute a statistic f



How accurately can an ϵ -differentially private algorithm compute f(G)?

Basic technique: noise proportional to sensitivity

• Global sensitivity of a function f is

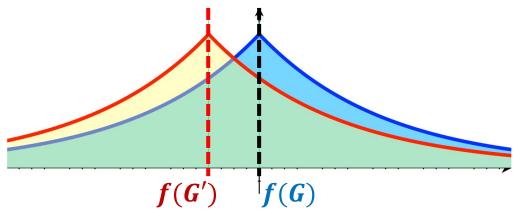
$$\partial f = \max_{\text{(node)neighbors } G,G'} |f(G) - f(G')|$$

Also called **Lipschitz constant** of f.

• **GS Framework** [DMNS]: For every real-valued function f, there is an ϵ -differentially private algorithm A such that

$$\mathbb{E}\left(|A(G) - f(G)|\right) = \frac{\partial f}{\epsilon}.$$

• Intuition: Adding noise $\approx \frac{\partial f}{\epsilon}$ makes G, G' hard to distinguish



Challenge for node privacy: high sensitivity

• Global sensitivity of a function f is

$$\partial f = \max_{\text{(node) neighbors } G,G'} |f(G) - f(G')|_1$$

- Examples:
- $\succ f_{\text{edge}}(G)$ is the number of edges in G.
- $\succ f_{\text{deg}}(G)$ is the degree list of G.

for graphs on n nodes:

$$\partial f_{\text{edge}} = n.$$

$$\partial f_{\text{deg}} = 2n.$$

Problem: high-degree nodes. <<

Graphs of small degree

Let G = family of all graphs,

 G_d = family of graphs of degree $\leq d$.

Notation. ∂f = global sensitivity of f over G.

 $\partial_d f$ = global sensitivity of f over G_d .

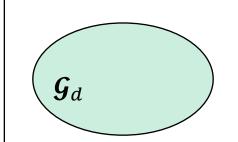
Observation. $\partial_d f$ is low for many useful f.

Examples:

- \rightarrow $\partial_d f_{\text{edge}} = d$ (compare to $\partial f_{\text{edge}} = n$)
- $\rightarrow \partial_d f_{\text{deg}} = 2d$ (compare to $\partial f_{\text{deg}} = 2n$)

Goal: privacy for all graphs

Idea: "Extend" f from G_d to G for a carefully chosen $d \in [n]$.



Lipschitz extensions

A function f' is a Lipschitz extension of f from G_d to G if

 $\succ f'$ agrees with f on $\boldsymbol{\mathcal{G}}_d$ and

$$> \partial f' = \partial_d f$$

• Release f' via GS framework [DMNS'06]

$$g$$

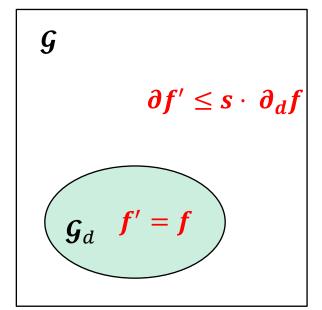
$$\partial f' = \partial_d f$$

$$g_d \quad f' = f$$

- All real-valued functions have Lipschitz extensions [McShane 34]
- Lipschitz extensions for subgraph counts that can be computed efficiently [Kasiviswanathan Nissim R Smith 13]

Lipschitz extensions: vector-valued functions

A function f' is a Lipschitz extension of f from \mathcal{G}_d to \mathcal{G} with stretch s if f' agrees with f on \mathcal{G}_d and $f' \leq s \cdot \partial_d f$



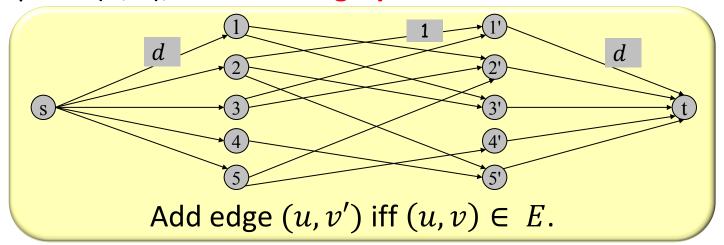
- We can still release f' via GS framework
- There exist functions $f: \mathcal{G}_d \to \mathbb{R}^3$

 $(f: \mathbf{G}_d \to \mathbb{R}^2 \text{ if } \ell_2 \text{ is used as output metric instead of } \ell_1)$ that do not admit st pschitz extensions

 Lipschitz extensions of degree list and degree distribution (with small stretch) that can be computed efficiently

Lipschitz extension of f_{edge} : flow graph [KNRS'13]

For a graph G=(V, E), define **flow graph of G**:

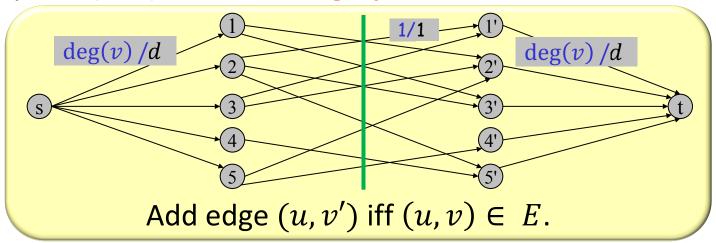


 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{edge} .

Lipschitz extension of f_{edge} : flow graph [KNRS'13]

For a graph G=(V, E), define **flow graph of G**:



 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

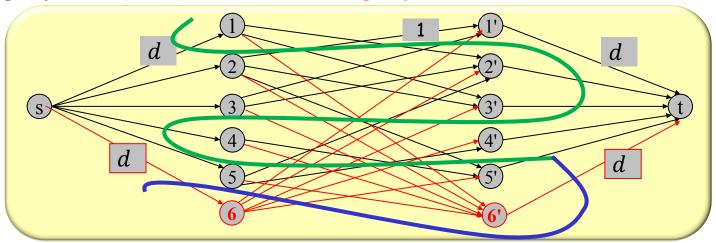
Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{edge} .

Proof: (1)
$$v_{\text{flow}}(G) = 2f_{\text{edge}}(G)$$
 for all $G \in \mathcal{G}_d$

(2)
$$\partial v_{\text{flow}} = 2 \cdot \partial_d f_{\text{edge}}$$

Lipschitz extension of f_{edge} : flow graph [KNRS'13]

For a graph G=(V, E), define **flow graph of G**:



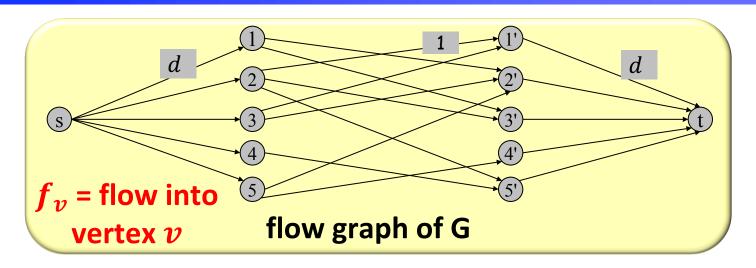
 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{edge} .

Proof: (1)
$$v_{\text{flow}}(G) = 2f_{\text{edge}}(G)$$
 for all $G \in \mathcal{G}_d$

(2)
$$\partial v_{\text{flow}} = 2 \cdot \partial_d f_{\text{edge}} = 2d$$

Lipschitz extension of the degree list [RS '16]

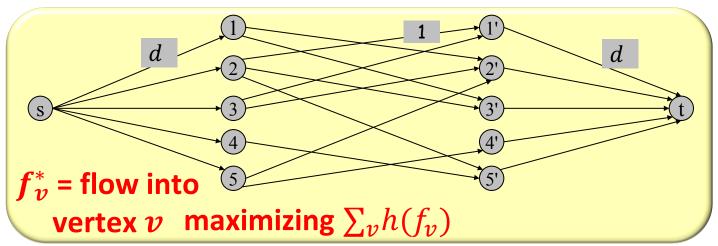


Can we use f_v as a proxy for degree of v?

Issue: max flow is not unique.

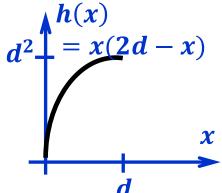
Want: unique flow that has low global sensitivity.

Lipschitz extension of f_{deg} : convex programming



Idea: maximize $\sum_{v} h(f_v)$ instead of $\sum_{v} f_v$, where h(x) is strictly concave.

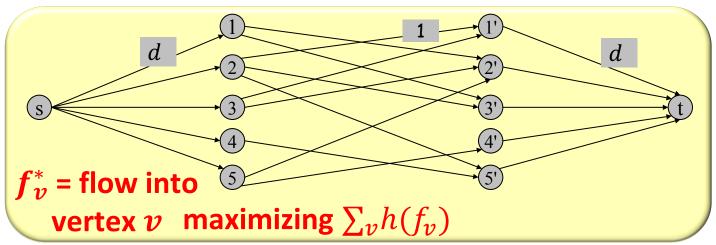
- Let f* be the vector of s-out-flows.
 - $\triangleright f^*$ is unique, since h is strictly concave.
 - Poly-time computable [Lee Rao Srivastava 13].
- Lemma. f^* is a Lipschitz extension of degree-list with stretch 3/2.



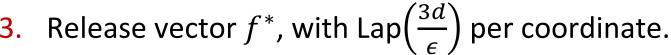
Lipschitz extension of f_{deg} : combinatorial

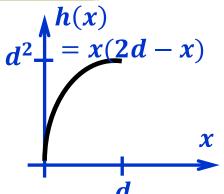
- Subsequently simplified [W.-Y. Day, N. Li, M. Lyu, SIGNMOD 2016]
- **DLL Algorithm**: On input G = (V, E) and degree bound d
 - \triangleright Order the edges lexicographically: $E=e_1,e_2,\ldots,e_m$
 - $\succ G' = (V, \emptyset)$ //empty graph
 - \triangleright For i=1 to m:
 - If (adding e_i to G' would not push maximum degree over d)
 - Add e to V
 - Else
 - Ignore e_i
 - \triangleright **Return** sort(degree-list(G'))
- **Lemma:** For any two graphs G_1 , G_2 that differ in one node, $\|DLL(G_1) DLL(G_2)\|_1 \le 2d + 1$

Releasing degree list: summary

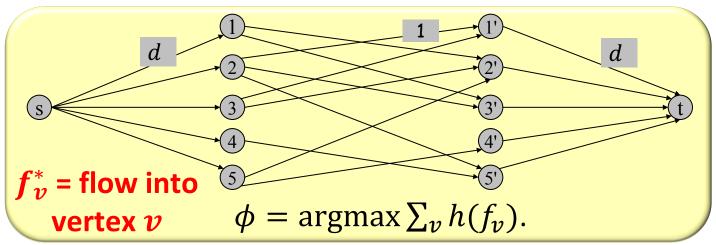


- 1. Construct flow graph of G.
- 2. Compute s-out-flows f^* .

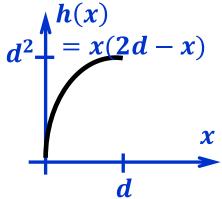




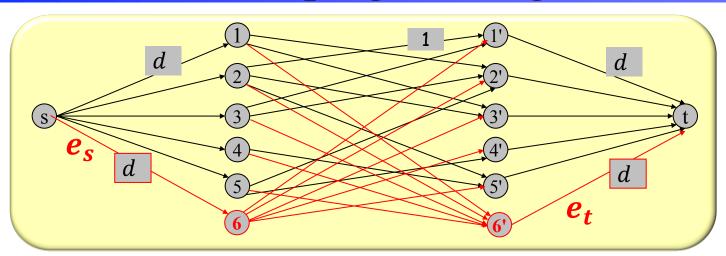
Lipschitz, extension of degree list via convex programming



- If $G \in \mathcal{G}_d$, then $f_v^* = \deg(v)$ for all v, since h is strictly increasing on [0,d].
- $\partial_d(degree\ list) = 2d$: can add a node of degree $\leq d$.
- Lemma. ℓ_1 global sensitivity $\partial f^* \leq 3d$.



Lipschitz extension of degree list via convex programming



Lemma. ℓ_1 global sensitivity $\partial f^* \leq 3d$.

Proof sketch: Consider $g = \phi_{new} - \phi_{old}$.

g is a union of simple s-t-paths and cycles of several types:

- s-t-paths using e_t .
- 3. Cycles using e_t .
- 4. Remaining paths and cycles.

1.
$$s$$
- t -paths and cycles using e_s . Contribute $\leq 2d$ to $|f_{new}^* - f_{old}^*|_1$
2. s - t -paths using e_t . $\leq d$
3. Cycles using e_t .

Do not exist. Use strict concavity of h

Generalized Exponential Mechanism

Choosing the cutoff degree d

Evaluating Cutoff Degrees

Given: candidate real-valued Lipschitz extensions f_d and their sensitivities ∂f_d (Specifically, we will try d= powers of 2 in [n])

• If we approximate f by releasing f_d in GS framework, the expected error is roughly $f(G) - f_d(G) + \frac{\partial f_d}{\epsilon}$

Want: f_d with (approximately) smallest

score
$$q_d(G) := -f_d(G) + \frac{\partial f_d}{\epsilon}$$

Differentially private algorithms for choosing the item with the smallest score

- Exponential Mechanism [McSherry Talwar 07]
 - ➤ Initial motivation: auction design.
 - Subsequent applications:
 - ➤ Learning discrete classifiers [KLNRS'08]
 - ➤ Synthetic data generation [BLR'08,...,HLM'10]
 - ➤ Convex Optimization [CM'08,CMS'10]
 - Frequent Pattern Mining [BLST'10]
 - ➤ Genome-wide association studies [FUS'11]
 - ➤ High-dimensional sparse regression [KST'12]
 - >...

Differentially private algorithms for choosing the item with the smallest score

- Exponential Mechanism [McSherry Talwar 07]
 - ➤ Additive error in the score is proportional to **maximum** (over items) **sensitivity of a score** function

- Our Generalized Exponential Mechanism
 - ➤ Additive error in the score is proportional to the **sensitivity of the optimal score** function

Exponential Mechanism [McSherry Talwar 07]

Given: database x from universe U, parameter $\epsilon > 0$, score functions $q_i \colon U \to \mathbb{R}$ with $\delta_i = \partial q_i$ for $i \in [k]$

Want: index $i^* = \arg\min_i q_i(x)$

Algorithm EM

- 1. Set $\delta = \max_i \delta_i$
- 2. Output \hat{i} , set to i with probability $\propto \exp(\epsilon \cdot q_i(x)/\delta)$, normalized so that probabilities sum to 1, for $i \in [k]$.

Guarantees: (1) EM is
$$2\epsilon$$
-differentially private (2) $\forall \beta \in (0,1)$, w.p. $\geq \beta$, $q_{\hat{\imath}}(x) \leq q_{i^*}(x) + \delta \cdot \frac{2 \ln(k/\beta)}{\epsilon}$

Goal: Guarantee with δ_{i^*} instead of δ_{i^*}

Generalized Exponential Mechanism [RS16]

Given: database x from universe U, $\epsilon > 0$, $\beta \in (0,1)$, score functions $q_i \colon U \to \mathbb{R}$ with $\delta_i = \partial q_i$ for $i \in [k]$

Want: index $i^* = \arg\min_i q_i(x)$

Algorithm **GEM**

- 1. $t \leftarrow 2 \ln(k/\beta)/\epsilon$
- 2. $q'_i(x) \leftarrow q_i(x) + t\delta_i$ for all $i \in [k]$
- 3. $s_i(x) \leftarrow \max_j \frac{q_i'(x) q_j'(x)}{\delta_i + \delta_j}$ for all $i \in [k]$
- 4. Output \hat{i} , set to i with probability $\propto \exp(\epsilon \cdot s_i(x))$, normalized so that probabilities sum to 1, for $i \in [k]$.

Note: each q_i' has sensitivity δ_i each s_i has sensitivity 1

Generalized Exponential Mechanism [RS16]

Given: database x from universe U, $\epsilon > 0$, $\beta \in (0,1)$, score functions $q_i \colon U \to \mathbb{R}$ with $\delta_i = \partial q_i$ for $i \in [k]$

Want: index $i^* = \arg\min_i q_i(x)$

Guarantees: (1) GEM is
$$2\epsilon$$
-differentially private
$$(2) \ \forall \beta \in (0,1), \ \text{w.p.} \ \geq \beta,$$

$$q_{\hat{\imath}}(x) \leq q_{i^*}(x) + \delta_{i^*} \cdot \frac{4 \ln(k/\beta)}{\epsilon}$$

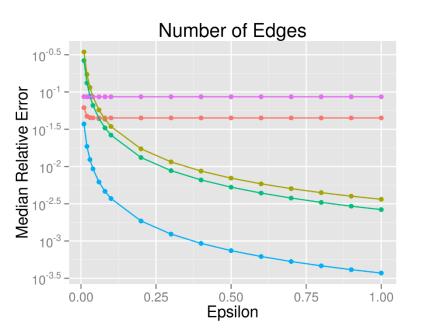
Summary of techniques we saw

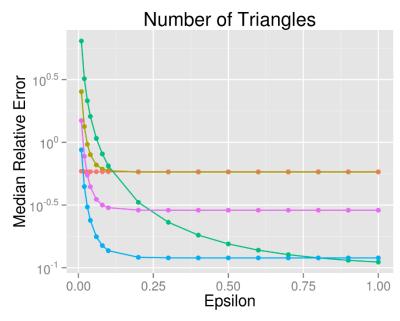
- 1. Lipschitz extensions [BBDS13, KNRS13]
- ➤ Releasing number of edges via max flow [KNRS13]
- > Releasing degree list: via convex programming [RS16]
- > The most accurate known method
- 2. Generalized exponential mechanism [SR16]
- ➤ For choosing among objects with score functions of different sensitivities
- > For choosing the cutoff degree

Conclusions

- It is possible to design node differentially private algorithms with good utility for a large class of graphs
 - \triangleright One can choose a "good" value of d privately
- Directions for future work
 - ➤ Understanding which functions have efficiently computable Lipschitz extensions with small stretch
 - ➤ Node-private algorithms for releasing other graph statistics
 - Node-private synthetic graphs
- Open Question: Is there a node-differentially private algorithm for releasing the cost of all graph cuts with worst-case error $o(n \cdot \text{max-degree}(G))$?

Experiments for the flow and LP method [Lu]





	Graph	# nodes	# edges	Max degree	Time, secs # edges	Time, secs # Δs
-	CA-GrQc	5,242	28,992	81	0.02	7
-	CA-HepTh	9,877	51,996	65	0.68	0.5
-	CA-AstroPh	18,772	396,220	504	0.34	10,222
-	com-dblp-ungraph	317,080	2,099,732	343	2	2128
-	com-youtube-ungraph	1,134,890	5,975,248	28,754	9	94