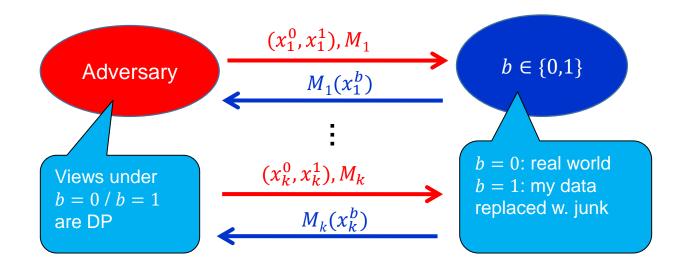
Using your privacy budget: Tree algorithm and Advanced Composition



Kobbi Nissim, Georgetown University

Bar-Ilan Winter School on Differential Privacy February 2017

Important properties of differential privacy

Post processing:

• If A is ε -dp then $B \circ A$ is also ε -dp for all B

Special case of composition

Composition:

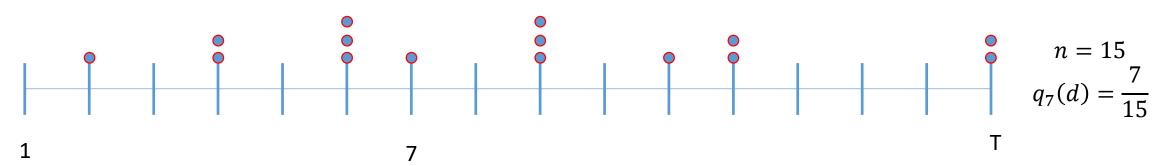
- Adaptive executions of differentially private mechanisms results in differential privacy [DMNS06, ...]
- Why do we care?
 - For privacy: A definition that does not post process/compose is (to the least) problematic
 - For DP algorithm design: Allows a modular design of an analysis from simpler analyses
 - For data analysis (even when privacy is not a goal): Statistical validity under adaptive querying [DFHPRR'15, ...]

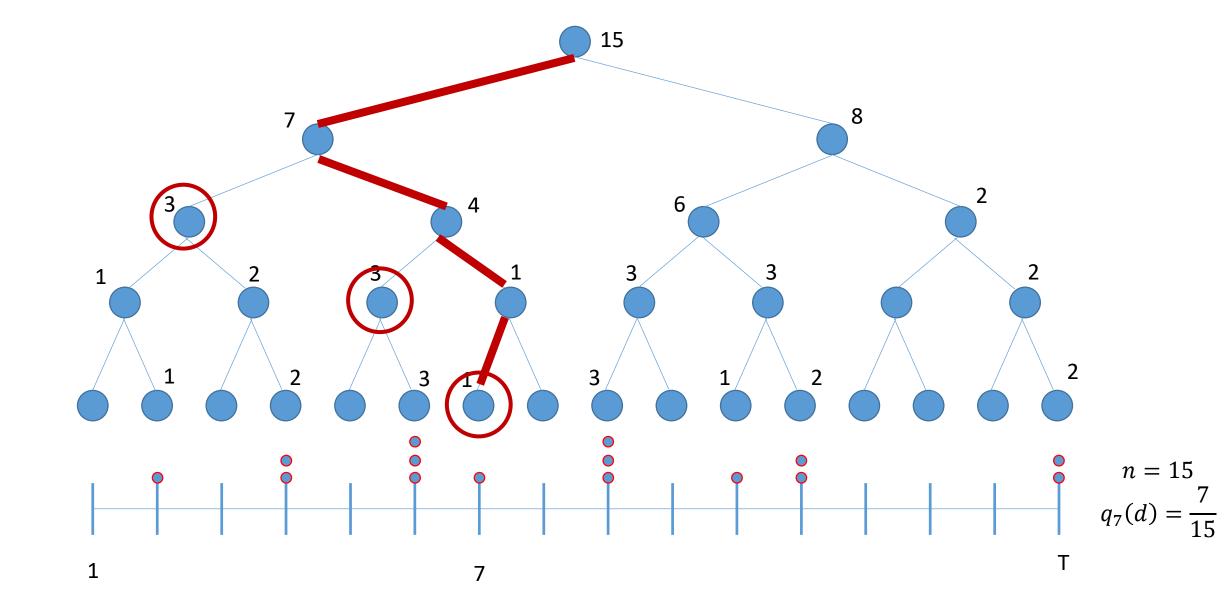
Basic composition

• Setting:

- M_i be (ϵ_i, δ_i) -differentially private
- M applies $M_1, ..., M_t$ on its input (the inner $M_1, ..., M_t$ use independent randomness).
- Basic composition theorem [DMNS06, DL09]:
 - M is $(\sum_i \epsilon_i, \sum_i \delta_i)$ -differentially private
- Basic composition suggests that ϵ (and to a lesser account δ) can be treated as a 'privacy budget':
 - Split 'privacy budget' ϵ into smaller budget $\sum_i \epsilon_i$; allocate portion ϵ_i to mechanism M_i
 - Spend your budget carefully!
- More refined theorems (later):
 - Advanced composition [DRV10]
 - Optimal composition [KOV15, MV15]

- Data domain: $X = \{1, ..., T\}$ (ordered domain with T elements)
- Database: $d \in X^n$
- Want (approx.) answers to all queries of the form: $q_t(d) = \frac{|\{i: 1 \le x_i \le t\}|}{n}$
- $GS(q_t) = \frac{1}{n}$ (changing a data point in d can increase/decrease $q_t(d)$ by at most one)
- Idea: answer all T queries by adding noise $Lap(\frac{1}{\epsilon'})$ where $\epsilon' = \frac{\epsilon}{T}$
 - Using (simple) composition, this provides ϵ -differential privacy
 - Problem: noise magnitude linear in T; can we do better?



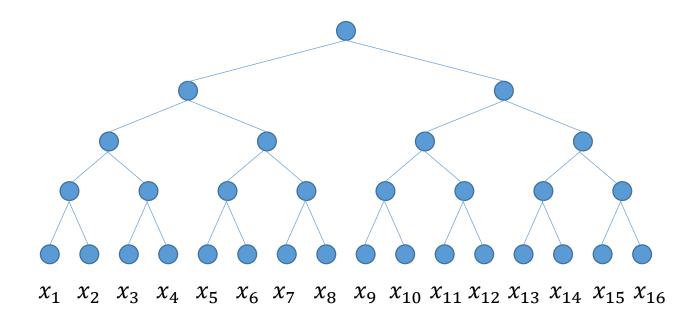




- What we get (using basic composition):
 - Computing $\log T$ histograms, each with $\epsilon' = \frac{\epsilon}{\log T}$
 - E.g., add noise $\text{Lap}(2\epsilon/\log T)$ to each count
 - Noise variance $\sim \left(\frac{\log T}{\epsilon}\right)^2$
 - Each answer to threshold query is sum of (at most) $\log T$ noisy estimates
 - Overall noise variance $\sim \log T \left(\frac{\log T}{\epsilon}\right)^2$
 - Whp noise magnitude = $\frac{polylog(T)}{\epsilon}$

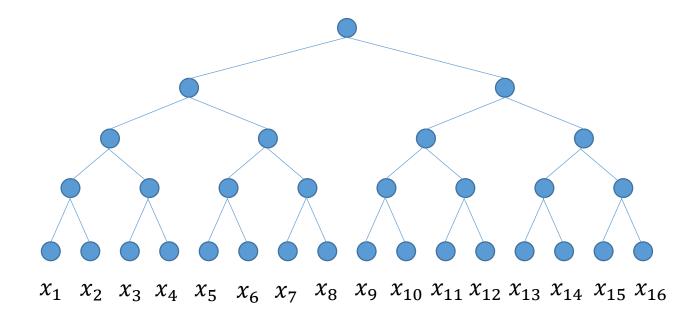
Application: online counting

- Individual values $x_1, x_2, ..., x_T$ appear in an online manner; $x_i \in \{0,1\}$
 - Goal: online estimation of $s(t) = \sum_{i=1}^{t} x_i$
 - Observation: (≡ threshold queries) → use tree algorithm!
 - Assign individual values to tree leaves as they arrive



Application: online counting [DNPR10, CSS10]

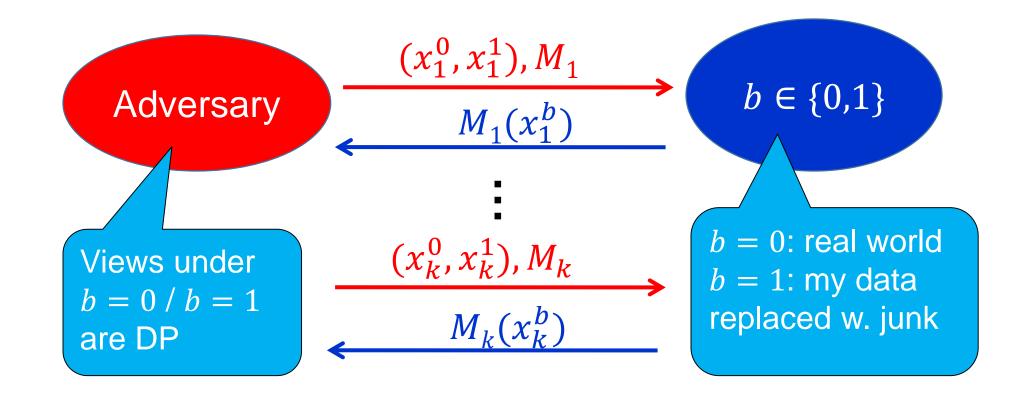
- Think: which databases are neighboring in this setting?
- Observation: Nodes 'fill up' before they need to be used
- Suffices to hold O(log T) counts
- Add Laplace noise once a node fills up



Advanced composition

Composition in differential privacy

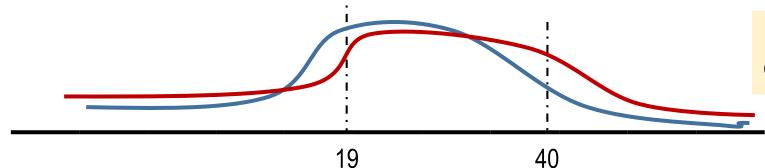
- How do we define it?
 - Both choice of databases and algorithms is adaptive and adversarial [DRV10]



Thx: Guy Rothblum

What is privacy loss?

- Measured by the 'privacy loss' parameter ϵ
- Fix adjacent x^0 , x^1 , draw $C \leftarrow M(x_0)$
 - Is C more likely to come from x^0 or x^1



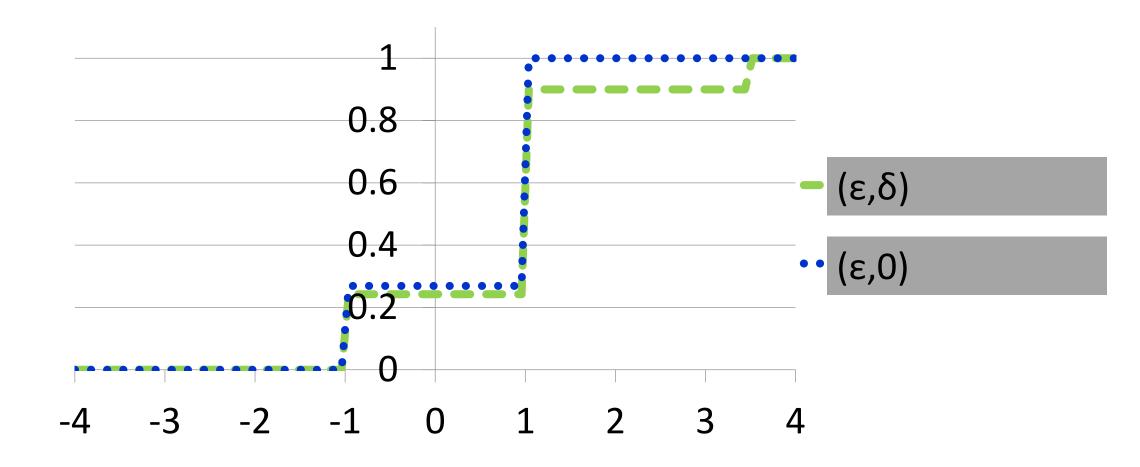
"19" more likely as output on x^0 than on x^1

"40" more likely as output on x^1 than on x^0

- Define $Loss(C) = \ln \left[\frac{\Pr[M(x^0) = C]}{\Pr[M(x^1) = C]} \right]$
 - $(\varepsilon, 0) DP$: w.p. 1 over C, $|Loss(C)| \le \varepsilon$
 - $(\varepsilon, \delta) DP^*$: $w.p.1 \delta \ over \ C$, $|Loss(C)| \le \varepsilon$

Log of likelihood ratio

Comparison: Privacy Loss (cdf)



Thx: Guy Rothblum

What is privacy loss?

• Fix adjacent x^0 , x^1 , draw $C \leftarrow M(x_0)$

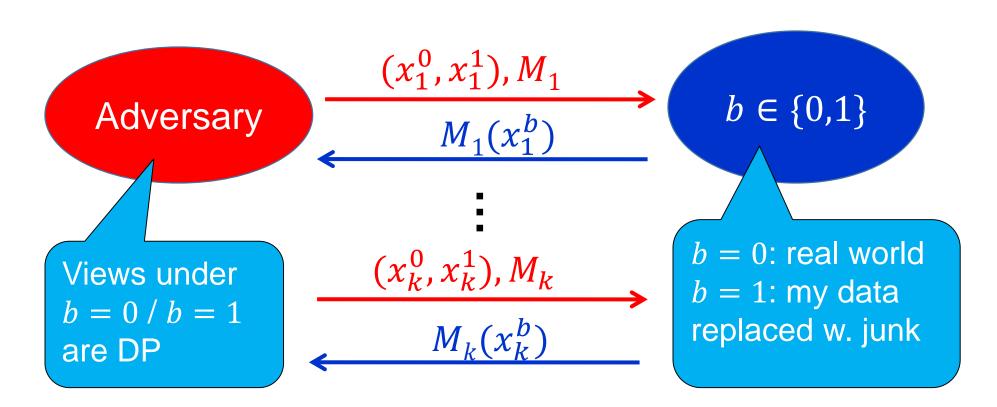
$$Loss(C) = \ln \left[\frac{\Pr[M(x^0) = C]}{\Pr[M(x^1) = C]} \right]$$

- In multiple independent executions *loss* accumulates
 - Worst case: $Loss = \varepsilon$ for every execution (as in analysis of basic composition)
 - This is pessimistic: Loss can be positive, negative \rightarrow cancellations
 - Random variable, has a mean ([DDN03, DRV10]...)

Composition in differential privacy

- Challenger has a bit b
- In every round *i*, Adversary specifies a differentially private encoding of *b*:
 - If b=0: send me $M_i(x_i^0)$
 - If b=1 : send me $M_i(x_i^1)$

Adversary would use "best" differentially private encoding of *b*



Privacy loss in randomized response

• Enough to understand how randomized response composes [KOV15, MV16]:

• Expected Loss =
$$\epsilon \frac{e^{\epsilon}}{e^{\epsilon}+1} - \epsilon \frac{1}{e^{\epsilon}+1} = \epsilon \frac{e^{\epsilon}-1}{e^{\epsilon}+1} \approx \epsilon \frac{1+\epsilon-1}{2+\epsilon} \approx \frac{\epsilon^2}{2}$$

Advanced composition - proof idea

- If M is ϵ -DP, then the Loss random variable has:
 - $E[Loss(C)] = O(\varepsilon^2)$ (down to $\varepsilon^2/2$ [DR15])
 - $|Loss(C)| \le \varepsilon$

• Model cumulative loss from
$$M_1 \dots M_k$$
 as Martingale
$$\Pr\left[\left(\sum_{i=1}^k Loss(C_i)\right) > k\varepsilon^2 + \sqrt{k\varepsilon} \cdot t\right] \leq \exp(-t^2/2)$$

• Choosing $t \sim \sqrt{\log \frac{1}{\delta}}$ results in $(k\epsilon^2 + \sqrt{k \log \frac{1}{\delta}} \varepsilon, \delta)$ -DP*

Advanced Composition [DRV10]

Composing k pure-DP algorithms (each ε_0 -DP):

$$\varepsilon_g = O\left(\sqrt{k \cdot \ln \frac{1}{\delta_g}} \cdot \varepsilon_0 + k \cdot \varepsilon_0^2\right)$$
 with all but δ_g probability.

Dominant if $k \ll \frac{1}{\epsilon_0^2}$

Dominant if $k \gg \frac{1}{\epsilon_0^2}$

For all δ_a simultaneously

Advanced Composition [DRV10]

Composing k algorithms, each ε_0 -DP:

$$\varepsilon_g = O\left(\sqrt{k \cdot \ln \frac{1}{\delta_g}} \cdot \varepsilon_0 + k \cdot \varepsilon_0^2\right)$$
 with all but δ_g probability.

For all δ_g simultaneously

- Compare with: $\varepsilon_g = k \cdot \varepsilon_0$ (basic composition)
- Better composition, better DP algorithms:
 - Answer n count queries, error $\tilde{O}(\sqrt{n \cdot \ln(1/\delta_g)})$ (independent Laplace noise)

Almost tight: Reconstruction attacks [DN03]: Must have error $\Omega(\sqrt{n})$

Composing k algorithms, each $(\varepsilon_0, \delta_0)$ -DP:

$$\varepsilon_g = O\left(\sqrt{k \cdot \ln \frac{1}{\delta_{err}}} \cdot \varepsilon_0 + k \cdot \varepsilon_0^2\right)$$
 with all but $\delta_g = \delta_{err} + k \cdot \delta_0$ probability.

 δ grows linearly in k

Can we do better? optimal DP composition

Goal: Find best $(\varepsilon_g, \delta_g)$ for given $((\varepsilon_1, \delta_1), ..., (\varepsilon_k, \delta_k))$

Best worst-case result

I.e., best result— over all mechanisms, databases, events

- Homogeneous case [KOV15]
 - Tight bounds when $\forall i, \varepsilon_i = \varepsilon, \delta_i = \delta$

Improves over [DRV10] (may be of practical significance)

- Heterogeneous case [MV16]
 - Tight bounds for general ε_i , δ_i
 - Exactly computing ε_g is #P-complete (unlikely to take less than $\exp(k)$ time)
 - Approximate ε_g up to additive η in time $poly(k, 1/\eta)$

Concentrated Differential Privacy [DR15,BS16]

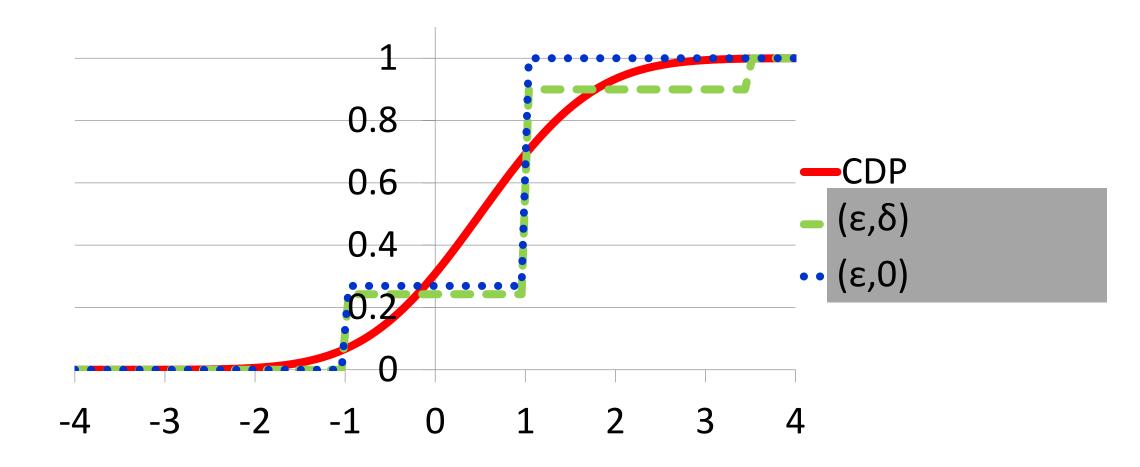
• Fix adjacent x^0 , x^1 , draw $C \leftarrow M(x_0)$

$$Loss(C) = \ln \left[\frac{\Pr[M(x^0) = C]}{\Pr[M(x^1) = C]} \right]$$

- (μ, τ^2) -concentrated differential privacy [DR15]
 - Intuition: Loss(C) is concentrated
 - $E_{C \leftarrow M(D)}[Loss(C)] \le \mu$
 - concentration "no worse than" Gaussian (μ, τ^2)

Alternative: bound Renyi divergences [BS16]

Comparison: Privacy Loss (cdf)



Thx: Guy Rothblum

Concentrated Differential Privacy

Intuition: privacy loss "no worse than" $N(\mu, \tau^2)$

Formally: privacy loss is *Subgaussian* random variable, rich theory to draw on

- $E_{C \leftarrow M(D)}[Loss(C)] \le \mu$
- $(Loss(C) \mu)$ is "Subgaussian"
- $\Pr[|Loss(C) \mu| \ge t \cdot \tau] \le e^{-t^2/2}$

Maintains many advantages of differential privacy:

- Composes automatically Addition of Gaussians is Gaussian: μ and τ^2 add up
- Handles linkage / auxiliary data (similarly to standard differential privacy)

Concentrated Differential Privacy Summary: Improved Utility, Relaxed Privacy

Privacy (CDP vs. (ε, δ) -DP)

- Per study: somewhat weaker/relaxed guarantee
- Composition over many studies: (roughly) identical behavior!

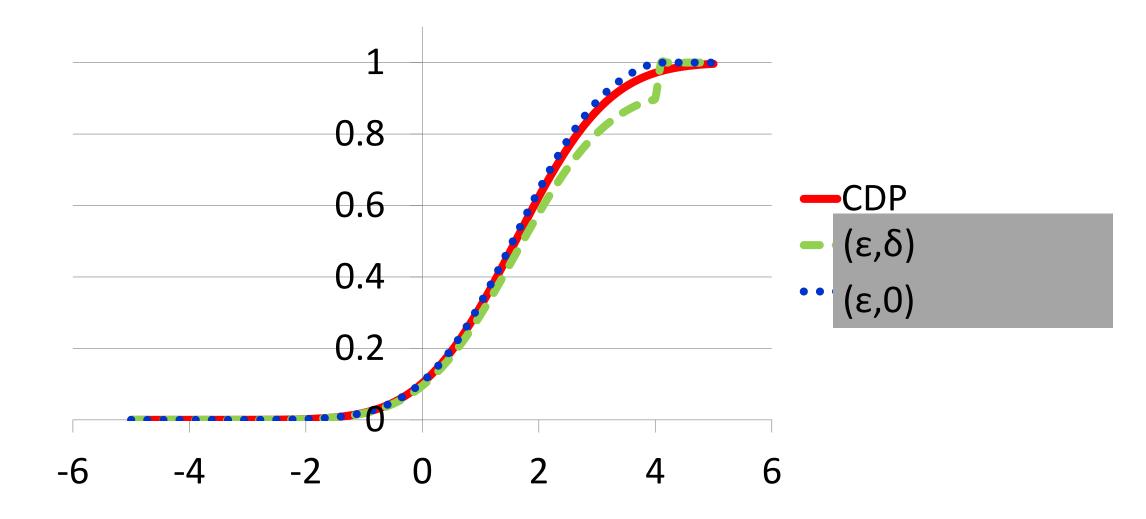
Accuracy (answering k queries, $\varepsilon = 1$)

- $(\varepsilon, 0)$ -DP: noise $\approx k$
- (ε, δ) -DP: noise $\approx \sqrt{k \cdot \ln(1/\delta)}$
- $(\varepsilon^2/2, \varepsilon^2)$ -CDP: noise $\approx \sqrt{k}$

Reconstruction attacks [DN03]: Must have error $\Omega(\sqrt{n})$

Factor of $\sqrt{\ln 1/\delta}$ can be significant in applications

Comparison: Composed Privacy Loss (cdf)

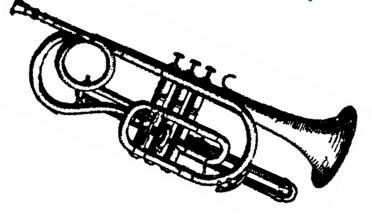


Thx: Guy Rothblum

Summary

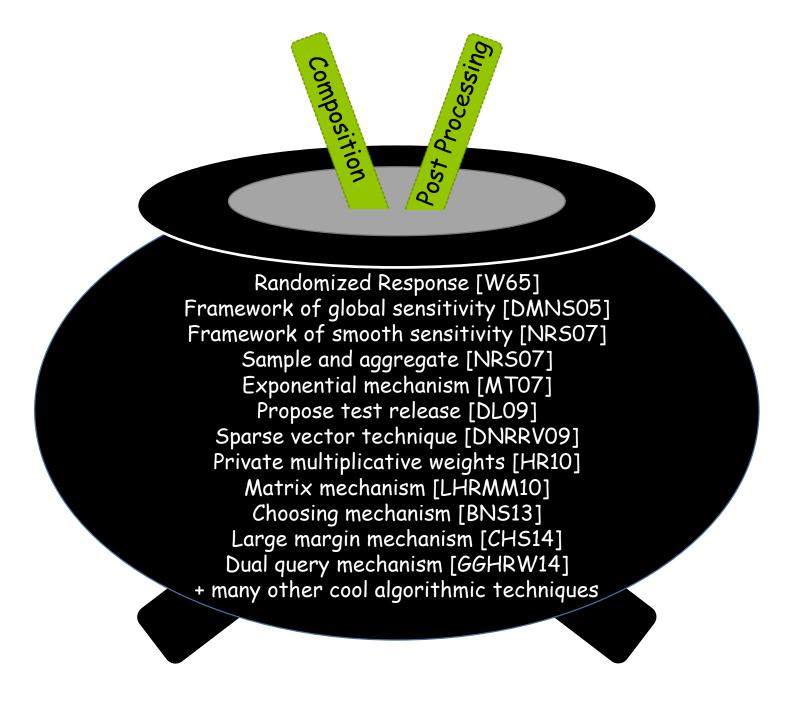
 Adaptive composition important for privacy, algorithm design, data analysis

Many Ways of Making (Less) Noise



Randomized Response [W65]
Framework of global sensitivity [DMNS06]
Framework of smooth sensitivity [NRS07]
 Sample and aggregate [NRS07]
 Exponential mechanism [MT07]
 Propose test release [DL09]
 Sparse vector technique [DNRRV09]
 Private multiplicative weights [HR10]
 Matrix mechanism [LHRMM10]
 Choosing mechanism [BNS13]
 Large margin mechanism [CHS14]
 Dual query mechanism [GGHRW14]
+ many other cool algorithmic techniques

A Programmable Framework:



Summary

- Adaptive composition important for privacy, algorithm design, data analysis
- Variety of composition theorems
 - Basic composition
 - Advances composition
 - Optimal composition
- € treated as a "privacy budget"
- Concentrated differential privacy

References

- Dwork, Naor, Pitassi, Rothblum: Differential privacy under continual observation. 2010
- Chan, Shi, Song: Private and Continual Release of Statistics. 2010
- Dwork, Rothblum, Vadhan: Boosting and dierential privacy. 2010
- Dwork, Rothblum: Concentrated Differential Privacy. 2016
- Kairouz, Oh, Viswanath: The Composition Theorem for Differential Privacy. 2015
- Murtagh, Vadhan: The Complexity of Computing the Optimal Composition of Differential Privacy. 2016
- Bun, Steinke: Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. 2016