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Important properties of differential privacy
• Post processing:

• If A is 𝜀-dp then 𝐵 ∘ 𝐴 is also 𝜀-dp for all B

• Composition:

• Adaptive executions of differentially private mechanisms 
results in differential privacy [DMNS06, …]

• Why do we care?

• For privacy:  A definition that does not post process/compose is (to the 
least) problematic

• For DP algorithm design: Allows a modular design of an analysis from 
simpler analyses

• For data analysis (even when privacy is not a goal): Statistical validity 
under adaptive querying [DFHPRR’15, …]

Special case of 
composition
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Basic composition
• Setting:

• 𝑀𝑖 be (𝜖𝑖 , 𝛿𝑖)-differentially private

• 𝑀 applies 𝑀1, … ,𝑀𝑡 on its input (the inner 𝑀1, … ,𝑀𝑡 use independent 
randomness).  

• Basic composition theorem [DMNS06, DL09]: 

• 𝑀 is (σ𝑖 𝜖𝑖 , σ𝑖 𝛿𝑖)-differentially private

• Basic composition suggests that 𝜖 (and to a lesser account 𝛿) can be treated as a 
‘privacy budget’:

• Split ‘privacy budget’ 𝜖 into smaller budget σ𝑖 𝜖𝑖 ; allocate portion 𝜖𝑖 to 
mechanism 𝑀𝑖

• Spend your budget carefully!

• More refined theorems (later):

• Advanced composition [DRV10]

• Optimal composition [KOV15, MV15]



Answering all threshold queries
• Data domain: 𝑋 = {1,… , 𝑇} (ordered domain with T elements)

• Database: 𝑑 ∈ 𝑋𝑛

• Want (approx.) answers to all queries of the form: 𝑞𝑡 𝑑 =
| 𝑖 ∶ 1≤𝑥𝑖≤𝑡 |

𝑛

• 𝐺𝑆 𝑞𝑡 =
1

n
(changing a data point in 𝑑 can increase/decrease 𝑞𝑡(𝑑) by at 

most one)

• Idea: answer all T queries by adding noise 𝐿𝑎𝑝(
1

𝜖′
) where 𝜖′ =

𝜖

𝑇

• Using (simple) composition, this provides 𝜖-differential privacy

• Problem: noise magnitude linear in T; can we do better?
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Answering all threshold queries
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Answering all threshold queries
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idea: compute log 𝑇 histograms



Answering all threshold queries

• What we get (using basic composition):

• Computing log 𝑇 histograms, each with 𝜖′ =
𝜖

log 𝑇

• E.g., add noise Lap(2𝜖/ log 𝑇) to each count 

• Noise variance ~
log 𝑇

𝜖

2

• Each answer to threshold query is sum of (at most) log 𝑇 noisy 
estimates

• Overall noise variance ~ log 𝑇
log 𝑇

𝜖

2

• Whp noise magnitude = 
𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑇

𝜖



Application: online counting
• Individual values 𝑥1, 𝑥2, … , 𝑥𝑇 appear in an online manner; 𝑥𝑖 ∈ {0,1}

• Goal: online estimation of  𝑠 𝑡 = σ𝑖=1
𝑡 𝑥𝑖

• Observation: (≡ threshold queries)  use tree algorithm!

• Assign individual values to tree leaves as they arrive

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16



Application: online counting [DNPR10, CSS10]
• Think: which databases are neighboring in this setting?

• Observation: Nodes ‘fill up’ before they need to be used

• Suffices to hold O(log T) counts

• Add Laplace noise once a node fills up

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16



Advanced composition



Composition in differential privacy

• How do we define it?

• Both choice of databases and algorithms is adaptive and adversarial 
[DRV10]
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What is privacy loss? 

• Measured by the ‘privacy loss’ parameter 𝜖

• Fix adjacent 𝑥0, 𝑥1, draw 𝐶 ← 𝑀 𝑥0
• Is C more likely to come from 𝑥0 or 𝑥1

• Define 𝐿𝑜𝑠𝑠 𝐶 = ln
Pr 𝑀 𝑥0 =𝐶

Pr[𝑀 𝑥1 =𝐶]
• 𝜀, 0 − 𝐷𝑃:𝑤. 𝑝. 1 𝑜𝑣𝑒𝑟 𝐶, 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜀

• 𝜀, 𝛿 − 𝐷𝑃∗: 𝑤. 𝑝. 1 − 𝛿 𝑜𝑣𝑒𝑟 𝐶, 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜀

4019

“19” more likely as 
output on 𝑥0 than on 𝑥1

“40” more likely as 
output on 𝑥1 than on 𝑥0

Log of likelihood ratio



Comparison: Privacy Loss (cdf)
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What is privacy loss? 

• Fix adjacent 𝑥0, 𝑥1, draw 𝐶 ← 𝑀 𝑥0

𝐿𝑜𝑠𝑠 𝐶 = ln
Pr 𝑀 𝑥0 = 𝐶

Pr[𝑀 𝑥1 = 𝐶]

• In multiple independent executions loss accumulates

• Worst case: Loss= 𝜀 for every execution (as in analysis of basic 
composition)

• This is pessimistic: Loss can be positive, negative  cancellations

• Random variable, has a mean ([DDN03, DRV10]…)



Composition in differential privacy

• Challenger has a bit b

• In every round i, Adversary specifies a differentially private  encoding of b:
• If b=0 : send me 𝑀𝑖(𝑥𝑖

0)

• If b=1 : send me 𝑀𝑖(𝑥𝑖
1)
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Privacy loss in randomized response

• Enough to understand how randomized response composes 
[KOV15, MV16]:

• 𝑅𝑅𝜖 𝑥 = ൞
𝑥 𝑤. 𝑝.

𝑒𝜖

𝑒𝜖+1

¬𝑥 𝑤. 𝑝.
1

𝑒𝜖+1

• Expected Loss =𝜖
𝑒𝜖

𝑒𝜖+1
− 𝜖

1

𝑒𝜖+1
= 𝜖

𝑒𝜖−1

𝑒𝜖+1
≈ 𝜖

1+𝜖−1

2+𝜖
≈

𝜖2

2

𝐿𝑜𝑠𝑠 𝑥 = 𝜖

𝐿𝑜𝑠𝑠 ¬𝑥 = −𝜖

With almost equal 
probability (if 𝜖 small) 



Advanced composition - proof idea

• If 𝑀 is 𝜖-DP, then the Loss random variable has:
• 𝐸 𝐿𝑜𝑠𝑠 𝐶 = 𝑂 𝜀2 (down to 𝜀2/2 [DR15])

• 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜀

• Model cumulative loss from 𝑀1…𝑀𝑘 as Martingale

Pr ෍

𝑖=1

𝑘

𝐿𝑜𝑠𝑠 𝐶𝑖 > 𝑘𝜀2 + 𝑘𝜀 ⋅ 𝑡 ≤ exp(−𝑡2/2)

• Choosing 𝑡~ log
1

𝛿
results in (𝑘𝜖2 + 𝑘 log

1

𝛿
𝜀, 𝛿)-DP*



Advanced Composition [DRV10]

Composing 𝑘 pure-DP algorithms (each 𝜀0-DP):

𝜀𝑔 = 𝑂 𝑘 ⋅ ln
1

𝛿𝑔
⋅ 𝜀0 + 𝑘 ⋅ 𝜀0

2 with all but 𝛿𝑔 probability.

For all 𝛿𝑔 simultaneously

Dominant if 𝑘 ≪
1

𝜖0
2

Dominant if 𝑘 ≫
1

𝜖0
2



Advanced Composition [DRV10]

Composing 𝑘 algorithms, each 𝜀0-DP:

𝜀𝑔 = 𝑂 𝑘 ⋅ ln
1

𝛿𝑔
⋅ 𝜀0 + 𝑘 ⋅ 𝜀0

2 with all but 𝛿𝑔 probability.

• Compare with: 𝜀𝑔 = 𝑘 ⋅ 𝜀0 (basic composition)

• Better composition, better DP algorithms:

• Answer 𝑛 count queries, error Õ( 𝑛 ⋅ ln(1/𝛿𝑔))
(independent Laplace noise)

Composing 𝑘 algorithms, each (𝜀0, 𝛿0)-DP:

𝜀𝑔 = 𝑂 𝑘 ⋅ ln
1

𝛿𝑒𝑟𝑟
⋅ 𝜀0 + 𝑘 ⋅ 𝜀0

2 with all but 𝛿𝑔 = 𝛿𝑒𝑟𝑟 + 𝑘 ⋅ 𝛿0 probability.

For all 𝛿𝑔 simultaneously

Almost tight: Reconstruction 
attacks [DN03]: Must have error 
Ω( 𝑛)

𝛿 grows linearly in k



Can we do better? optimal DP composition

Goal: Find best (𝜀𝑔 , 𝛿𝑔) for given ( 𝜀1, 𝛿1 , … , (𝜀𝑘 , 𝛿𝑘))

• Homogeneous case [KOV15]
• Tight bounds when ∀𝑖, 𝜀𝑖= 𝜀, 𝛿𝑖 = 𝛿

• Heterogeneous case [MV16]
• Tight bounds for general 𝜀𝑖 , 𝛿𝑖
• Exactly computing 𝜀𝑔 is #𝑃-complete (unlikely to take less 

than exp(𝑘) time)

• Approximate 𝜀𝑔 up to additive 𝜂 in time 𝑝𝑜𝑙𝑦(𝑘, 1/𝜂)

Improves over [DRV10] (may 
be of practical significance)

Best worst-case 
result

I.e., best result– over all 
mechanisms, databases, events



Concentrated Differential Privacy [DR15,BS16]

• Fix adjacent 𝑥0, 𝑥1, draw 𝐶 ← 𝑀 𝑥0

𝐿𝑜𝑠𝑠 𝐶 = ln
Pr 𝑀 𝑥0 = 𝐶

Pr[𝑀 𝑥1 = 𝐶]

• (𝜇, 𝜏2)-concentrated differential privacy [DR15]
• Intuition: 𝐿𝑜𝑠𝑠 𝐶 is concentrated

• E𝐶←𝑀(𝐷) 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜇

• concentration “no worse than” Gaussian 𝜇, 𝜏2

Alternative : bound Renyi divergences [BS16]



Comparison: Privacy Loss (cdf)
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Concentrated Differential Privacy

Intuition: privacy loss “no worse than” 𝑁(𝜇, 𝜏2)

Formally: privacy loss is Subgaussian random variable, rich theory to 
draw on

• E𝐶←𝑀(𝐷) 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜇

• (𝐿𝑜𝑠𝑠(𝐶) − 𝜇) is “Subgaussian”

• Pr |𝐿𝑜𝑠𝑠(𝐶) − 𝜇 ≥ 𝑡 ⋅ 𝜏 ≤ 𝑒−𝑡
2/2

Maintains many advantages of differential privacy:

• Composes automatically
Addition of Gaussians is Gaussian: 𝜇 and 𝜏2 add up

• Handles linkage / auxiliary data
(similarly to standard differential privacy)



Concentrated Differential Privacy Summary: Improved Utility, 
Relaxed Privacy

Privacy (CDP vs. 𝜺, 𝜹 -DP)

• Per study: somewhat weaker/relaxed guarantee

• Composition over many studies:
(roughly) identical behavior!

Accuracy (answering 𝑘 queries, 𝜀 = 1)

• 𝜀, 0 -DP: noise ≈ 𝑘

• 𝜀, 𝛿 -DP: noise ≈ 𝑘 ⋅ l𝑛 1/𝛿

• 𝜀2/2, 𝜀2 −CDP: noise ≈ 𝑘

Reconstruction attacks [DN03]: 
Must have error Ω( 𝑛)

Factor of ln 1/𝛿 can be 
significant in applications



Comparison: Composed Privacy Loss (cdf)
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Summary

•Adaptive composition important for privacy, 
algorithm design, data analysis



Randomized Response [W65]
Framework of global sensitivity [DMNS06]
Framework of smooth sensitivity [NRS07]

Sample and aggregate [NRS07]
Exponential mechanism [MT07]

Propose test release [DL09]
Sparse vector technique [DNRRV09]
Private multiplicative weights [HR10]

Matrix mechanism [LHRMM10]
Choosing mechanism [BNS13] 

Large margin mechanism [CHS14]
Dual query mechanism [GGHRW14]

+ many other cool algorithmic techniques

Many Ways of Making (Less) Noise



Randomized Response [W65]
Framework of global sensitivity [DMNS05]
Framework of smooth sensitivity [NRS07]

Sample and aggregate [NRS07]
Exponential mechanism [MT07]

Propose test release [DL09]
Sparse vector technique [DNRRV09]
Private multiplicative weights [HR10]

Matrix mechanism [LHRMM10]
Choosing mechanism [BNS13] 

Large margin mechanism [CHS14]
Dual query mechanism [GGHRW14]

+ many other cool algorithmic techniques

A Programmable 
Framework:



Summary

•Adaptive composition important for privacy, 
algorithm design, data analysis

•Variety of composition theorems
• Basic composition
• Advances composition
• Optimal composition

•𝜖 treated as a “privacy budget”

•Concentrated differential privacy
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