Anonymization and Re-Identification

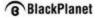
Vitaly Shmatikov

Tastes and Purchases

Social Networks

MULTIPLY®

LIVEJOURNAL



Health Care and Genetics

patientslikeme

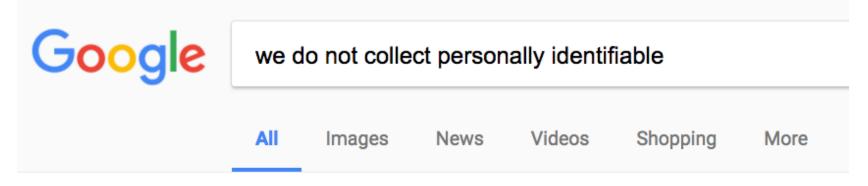
Web Tracking

Online-Offline Aggregation

Solution: Anonymity!

"The critical distinction ...
between the use of personal
information for advertisements
in personally-identifiable form,
and the use, dissemination, or
sharing of information with
advertisers in non-personallyidentifiable form."

Phew...



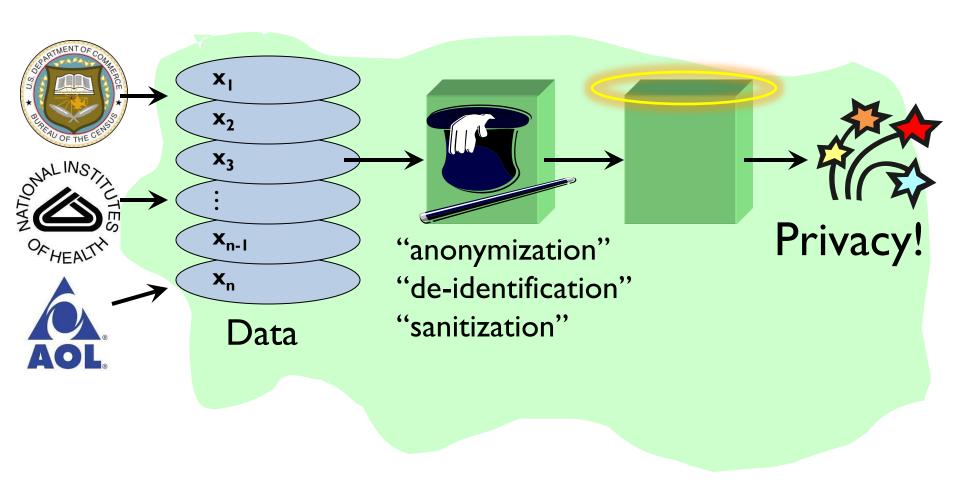
About 18,300,000 results (0.55 seconds)

Guide to Protecting the Confidentiality of Personally Identifiable Information (PII)

Recommendations of the National Institute of Standards and Technology

Erika McCallister

"Privacy-Preserving" Data Release



Whose Data Is It, Anyway?

"Everyone owns and should control their personal data"

- Social networks
 - Information about relationships is shared
- Genome
 - Shared with all blood relatives
- Recommender systems
 - Complex algorithms make it impossible to trace origin of data

Some Privacy Disasters

Netflix Settles Privacy Lawsuit, Cancels Prize Sequel

Taylor Buley, Forbes Staff

AOL Proudly Releases Massive Amounts of Private Data

The New York Times

WORLD U.S. N.Y. / REGIO BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS

What went wrong?

Genomics Law Report

Back to the Future: NIH to Revisit Genomic Data-Sharing Policy

THE CHRONICLE

of Higher Education

Subscr

Harvard's Privacy Meltdown, Revisited: Controversial Facebook Data Yield New Paper

otect Medical Data

Reading Material

Sweeney

Weaving Technology and Policy Together to Maintain Confidentiality

JLME 1997

Narayanan and Shmatikov

Robust De-anonymization of Large Sparse Datasets

Oakland 2008

Homer et al.

Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays PLoS Genetics 2008

Reading Material

Microdata

$\overline{}$				
ID	C	QID		SA
Name	Zipcode	Age	Sex	Disease
Alice (47677	29	Ш	Ovarian Cancer
Betty	47602	22	F	Ovarian Cancer
Charles	47678	27	М	Prostate Cancer
David	47905	43	М	Flu
Emily	47909	52	F	Heart Disease
Fred	47906	47	М	Heart Disease

Voter registration data

Name	Zipcode	Age	Sex
Alice <	47677	29	F
Bob	47983	65	М
Carol	47677	22	F
Dan	47532	23	М
Ellen	46789	43	F

Latanya Sweeney's Attack (1997)

Massachusetts hospital discharge dataset

SSN	Name	velcity	Date Of Birth	Sex	ZIP	Marital Status	Problem
			09/27/64	female	02139	divorced	hypertension
	28		09/30/64	female	02139	divorced	obesity
		asian	04/18/64	male	02139	married	chest pain
	E .	asian	04/15/64	male	02139	married	obesity
	8	black	03/13/63	male	02138	married	hypertension
		black	03/18/63	male	02138	married	shortness of breatl
	2	black	09/13/64	female	02141	married	shortness of breath
		black	09/07/64	female	02141	married	obesity
	8	white	05/14/61	male	02138	single	chest pain
	9	white	05/08/61	male	02138	single	obesity
		white	09/15/61	female	02142	widow	shortness of breath

	Voter List									
1	Name	Address	City	ZIP	DOB	Sex	Party			
			,,,,,,,,,,,,,,,,							
1	Sue J. Carlson	1459 Main St.	Cambridge	02142	9/15/61	female	democrat	***************************************		
			***************************************	*******						

Figure 2 e-Identifying anonymous data by linking to external data

Public voter dataset

Quasi-Identifiers

- Key attributes
 - Name, address, phone number uniquely identifying!
 - Always remove before release
- Quasi-identifiers
 - (5-digit ZIP code, birth date, gender) uniquely identify 87% of the population in the U.S.
 - Can be used for linking anonymized datasets with other datasets

Identifiers vs. Sensitive Attributes

Sensitive attributes

- Medical records, salaries, etc.
- These attributes is what the researchers need, so they are released unmodified

Key Attribute		Quasi-i	dentifier	Sensitive attribute	
Name	DOB	Gender	Zipcode	Disease	
Andre	1/21/76	Male	53715	Heart Disease	
Beth	4/13/86	Female 53715		Hepatitis	
Carol	2/28/76	Male	53703	Brochitis	
Dan	1/21/76	Male	Male 53703		
Ellen	4/13/86	Female	53706	Flu	
Eric	2/28/76	Female	53706	Hang Nail	

K-Anonymity: Intuition

- The information for each person contained in the released table cannot be distinguished from at least k-I individuals whose information also appears in the release
 - Example: you try to identify a man in the released table, but the only information you have is his birth date and gender. There are k men in the table with the same birth date and gender.
- Any quasi-identifier present in the released table must appear in at least k records

K-Anonymity Protection Model

- Private table \rightarrow Released table RT
- Attributes: A₁, A₂, ..., A_n
- Quasi-identifier subset: A_i, ..., A_j

Let $RT(A_1,...,A_n)$ be a table, $QI_{RT} = (A_i,...,A_j)$ be the quasi-identifier associated with RT, $A_i,...,A_j \subseteq A_1,...,A_n$, and RT satisfy k-anonymity. Then, each sequence of values in $RT[A_x]$ appears with at least k occurrences in $RT[QI_{RT}]$ for x=i,...,j.

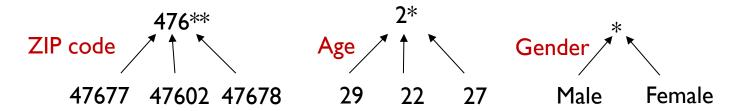
Goal: each record is indistinguishable from at least k-1 other records ("equivalence class")

Achieving k-Anonymity

Lots of algorithms in the literature aiming to produce "useful" anonymizations, usually without any clear notion of utility

Generalization

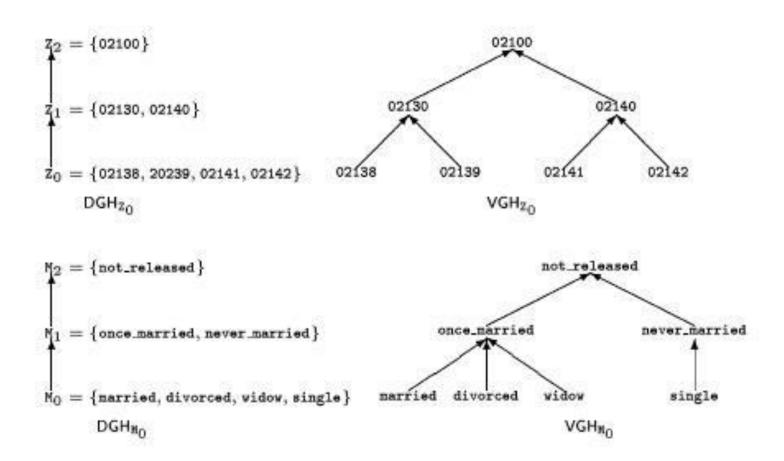
- Replace quasi-identifiers with less specific but semantically consistent values until get k identical
- Partition ordered-value domains into intervals



Suppression

 When generalization causes too much information loss (this often happens with "outliers")

Generalization in Action



Example of a k-Anonymous Table

	Race	Rirth	Gender	7.IP	Problem
t1	Black	1965	m	0214*	short breath
t2	Black	1965	m	0214*	chest pain
t.5	Black	1965	İ	0213*	hypertension
t4	Black	1965	f	0213*	hypertension
ť5	Black	1964	f	0213*	obesity
tб	Black	1964	f	0213*	chest pain
	White	1964	m	0213*	chest pain
t8	White	1964	m	0213*	obesity
t9	White	1964	m	0213*	short breath
t10	White	1967	m	0213*	chest pain
t11	White	1967	m	0213*	chest pain

Figure 2 Example of k-anonymity, where k=2 and $Ql=\{Race, Birth, Gender, ZIP\}$

Example of Generalization (I)

Released table

	Race	Birth	Gender	ZIP	Problem
t1	Black	1965	m	0214*	short breath
t2	Black	1965	m	0214*	chest pain
t3	Black	1965	f	0213*	hypertension
t4	Black	1965	f	0213*	hypertension
t5	Black	1964	f	0213*	obesity
tб	Black	1964	f	0213*	chest pain
t7	White	1964	m	0213*	chest pain
t8	White	1964	m	0213*	obesity
t9	White	1964	m	0213*	short breath
tlü	White	1967	m	0213*	chest pain
t11	White	1967	m	0213*	chest pain

External data source

Name	Birth	Gender	ZIP	Race
Andre	1964	m	02135	White
Beth	1964	f	55410	Black
Carol	1964	f	90210	White
Dan	1967	m	02174	White
Ellen	1968	f	02237	White

Figure 2 Example of k-anonymity, where k=2 and Ql={Race, Birth, Gender, ZIP}

By linking these two tables, you still don't learn Andre's problem

Example of Generalization (2)

Microdata

C	QID	SA	
Zipcode	Age	Sex	Disease
47677	29	ш	Ovarian Cancer
47602	22	F	Ovarian Cancer
47678	27	М	Prostate Cancer
47905	43	М	Flu
47909	52	F	Heart Disease
47906	47	М	Heart Disease

Generalized table

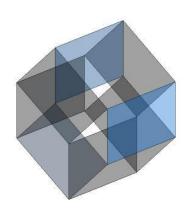
	QID		SA		
Zipcode	Age	Sex	Disease		
476** 476**	2*	*	Ovarian Cancer		
476**	2*	*	Ovarian Cancer		
476**	2*	*			
4790*	[43,52]	*	Flu	!!	
4790*	[43,52]	*	Heart Disease		
4790*	[43,52]	*	Heart Disease		

- Released table is 3-anonymous
- If the adversary knows Alice's quasi-identifier (47677, 29, F), he still does not know which of the first 3 records corresponds to Alice's record

Curse of Dimensionality

Aggarwal (VLDB 2005)

- Generalization fundamentally relies on spatial locality
 - Each record must have k close neighbors
- Real-world datasets are very sparse
 - Many attributes (dimensions)
 - Netflix Prize dataset: 17,000 dimensions
 - Amazon customer records: several million dimensions
 - "Nearest neighbor" is very far
- Projection to low dimensions loses all info ⇒
 k-anonymized datasets are useless



What Does k-Anonymity Prevent?

- Membership disclosure: Attacker cannot tell that a given person is in the dataset.
- Sensitive attribute disclosure: Attacker cannot tell that a given person has a certain sensitive attribute.
- Identity disclosure: Attacker cannot tell which ¹ record corresponds to a given person.

This interpretation is correct, assuming the attacker does not know anything other than quasi-identifiers.

But this does not imply any privacy!

Unsorted Matching Attack

- Problem: records appear in the same order in the released table as in the original table
- Solution: randomize order before releasing

Race	ZIP		Race	ZIP	Race	ZIP
Asian	02138		Person	02138	Asian	02130
Asian	02139		Person	02139	Asian	02130
Asian	02141		Person	02141	Asian	02140
Asian	02142		Person	02142	Asian	02140
Black	02138		Person	02138	Black	02130
Black	02139		Person	02139	Black	02130
Black	02141		Person	02141	Black	02140
Black	02142		Person	02142	Black	02140
White	02138		Person	02138	White	02130
White	02139		Person	02139	White	02130
White	02141		Person	02141	White	02140
White	02142		Person	02142	White	02140
PT		GT	1	G	Γ2	

Figure 3 Examples of k-anonymity tables based on PT

Complementary Release Attack

Ganta et al. (KDD 2008)

 Different releases of the same private table can be linked to compromise k-anonymity

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male		chest pain
person	1965	female	0213*	painful eye
person	1965	female	0213*	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	0213*	short of breath
person	1965	female	0213*	hypertension
white	1964	male	0213*	obesity
white	1964	male	0213*	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain

GT1

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1960-69	male	02138	short of breath
white	1960-69	human	02139	hypertension
white	1960-69	human	02139	obesity
white	1960-69	human	02139	fever
white	1960-69	male	02138	vomiting
white	1960-69	male	02138	back pain

GT3

Linking Independent Releases

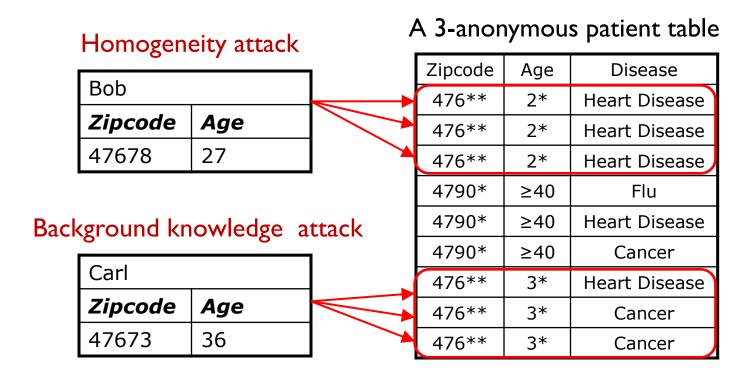
Race	BirthDate	Gender	ZIP	Problem
black	9/20/1965	male	02141	short of breath
black	2/14/1965	male	02141	chest pain
black	10/23/1965	female	02138	painful eye
black	8/24/1965	female	02138	wheezing
black	11/7/1964	female	02138	obesity
black	12/1/1964	female	02138	chest pain
white	10/23/1964	male	02138	short of breath
white	3/15/1965	female	02139	hypertension
white	8/13/1964	male	02139	obesity
white	5/5/1964	male	02139	fever
white	2/13/1967	male	02138	vomiting
white	3/21/1967	male	02138	back pain

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	02138	short of breath
white	1965	female	02139	hypertension
white	1964	male	02139	obesity
white	1964	male	02139	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain

PT L1

Exploiting Distributions

- k-Anonymity does not provide privacy if
 - Sensitive values in an equivalence class lack diversity
 - The attacker has background knowledge



I-Diversity

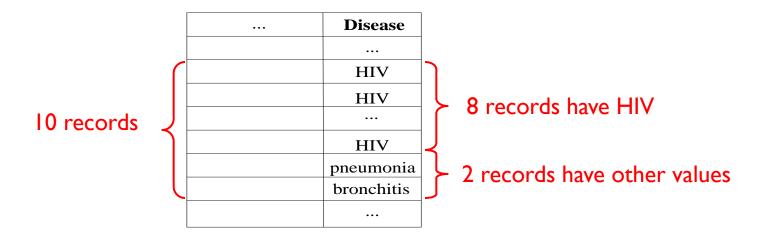
Machanavajjhala et al. (ICDE 2006)

Caucas	787XX	Flu
Caucas	787XX	Shingles
Caucas	787XX	Acne
Caucas	787XX	Flu
Caucas	787XX	Acne
Caucas	787XX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Shingles
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Flu

Sensitive attributes must be "diverse" within each quasi-identifier equivalence class

Distinct I-Diversity

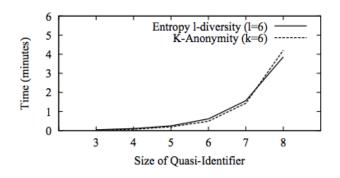
- Each equivalence class has at least I wellrepresented sensitive values
- Doesn't prevent probabilistic inference attacks



Other Versions of I-Diversity

- Probabilistic I-diversity
 - The frequency of the most frequent value in an equivalence class is bounded by 1/I
- Entropy I-diversity
 - The entropy of the distribution of sensitive values in each equivalence class is at least log(I)
- Recursive (c,l)-diversity
 - $-r_1 < c(r_1 + r_{1+1} + ... + r_m)$ where r_i is the frequency of the ith most frequent value
 - Most frequent value does not appear too frequently

My Favorite Charts



Entropy l-diversity (l=6)

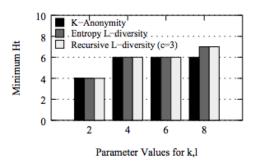
25

K-Anonymity (k=6)

3 4 5 6 7

Size of Quasi-Identifier

Figure 5. Adults Database



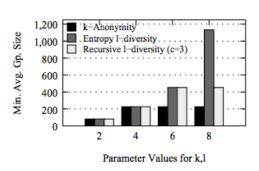


Figure 6. Lands End Database

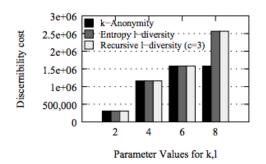


Figure 7. Adults Database. Q = {age, gender, race, marital_status}

Limitations of I-Diversity

- Example: sensitive attribute is HIV+ (1%) or HIV- (99%) – very different sensitivity!
- I-diversity is unnecessary
 - 2-diversity is unnecessary for an equivalence class that contains only HIV- records
- I-diversity is difficult to achieve
 - Suppose there are 10000 records in total
 - To have distinct 2-diversity, there can be at most 10000*1%=100 equivalence classes

Skewness Attack

- Example: sensitive attribute is HIV+ (1%) or HIV- (99%)
- Consider an equivalence class that contains an equal number of HIV+ and HIV- records
 - Diverse, but potentially violates privacy!
- I-diversity does not differentiate:
 - Equivalence class 1:49 HIV+ and 1 HIV-
 - Equivalence class 2: I HIV+ and 49 HIV-

Does not consider overall distribution of sensitive values!

Sensitive Attribute Disclosure

Similarity attack

Bob		
Zip	Age	
47678	27	

Conclusion

- I. Bob's salary is in [20k,40k], which is relatively low
- Bob has some stomach-related disease

A 3-diverse patient table

Zipcode	Age	Salary	Disease
476**	2*	20K	Gastric Ulcer
476**	2*	30K	Gastritis
476**	2*	40K	Stomach Cancer
4790*	≥40	50K	Gastritis
4790*	≥40	100K	Flu
4790*	≥40	70K	Bronchitis
476**	3*	60K	Bronchitis
476**	3*	80K	Pneumonia
476**	3*	90K	Stomach Cancer

Does not consider semantics of sensitive values!

t-Closeness

Li et al. (ICDE 2007)

_		
Caucas	787XX	Flu
Caucas	787XX	Shingles
Caucas	787XX	Acne
Caucas	787XX	Flu
Caucas	787XX	Acne
Caucas	787XX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Shingles
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Flu

Distribution of sensitive attributes within each quasi-identifier group should be "close" to their distribution in the entire original database

Trick question: Why publish quasi-identifiers at all?

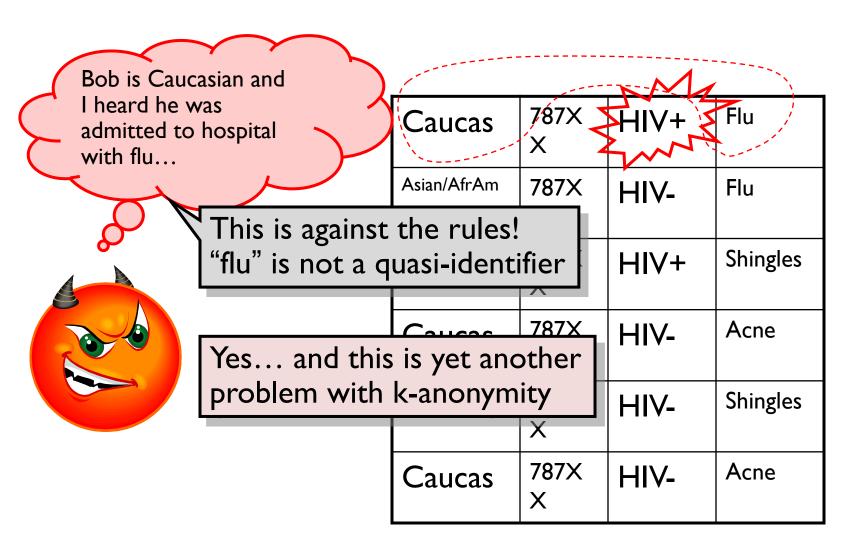
Anonymous, "t-Close" Dataset

Caucas	787X X	HIV+	Flu
Asian/AfrAm	787X X	HIV-	Flu
Asian/AfrAm	787X X	HIV+	Shingles
Caucas	787X X	HIV-	Acne
Caucas	787X X	HIV-	Shingles
Caucas	787X X	HIV-	Acne

This is k-anonymous, I-diverse and t-close...

...so secure, right?

What Does Attacker Know?



HIPAA Privacy Rule

"Under the safe harbor method, covered entities must remove all of a list of 18 enumerated identifiers and have no actual knowledge that the information remaining could be used, alone or in combination, to identify a subject of the information."

"The identifiers that must be removed include direct identifiers, such as name, street address, social security number, as well as other identifiers, such as birth date, admission and discharge dates, and five-digit zip code. The safe harbor requires removal of geographic subdivisions smaller than a State, except for the initial three digits of a zip code if the geographic unit formed by combining all zip codes with the same initial three digits contains more than 20,000 people. In addition, age, if less than 90, gender, ethnicity, and other demographic information not listed may remain in the information. The safe harbor is intended to provide covered entities with a simple, definitive method that does not require much judgment by the covered entity to determine if the information is adequately de-identified."

AOL Search Logs

- In August 2006, AOL released anonymized search query logs
 - 657K users, 20M queries over 3 months
- Opposing goals
 - Analyze data for research purposes, provide better services for users and advertisers
 - Protect privacy of AOL users
 - Government laws and regulations
 - Search queries may reveal income, evaluations, intentions to acquire goods and services, etc.

AOL User 4417749

- AOL query logs have the form
 - <AnonID, Query, QueryTime, ItemRank, ClickURL (truncated URL)>
- Sample queries of user with AnonID 4417749:
 - "numb fingers", "60 single men", "dog that urinates on everything", "landscapers in Lilburn, GA", several people with the last name Arnold
 - Only 14 citizens with the last name Arnold near Lilburn
 - NYT contacted the 14 citizens, found out AOL User 4417749 is 62-year-old Thelma Arnold

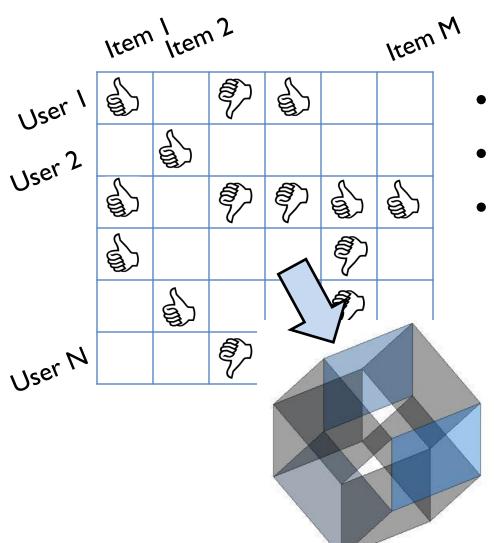
Anonymization Considered Harmful

- Syntactic
 - Focuses on data transformation, not on what can be learned from the anonymized dataset
 - Anonymized dataset can leak sensitive info
- "Quasi-identifier" fallacy
 - Assumes a priori that attacker will not know certain information about his target
- Relies on locality
 - Destroys utility of many real-world datasets

The Myth of the PII

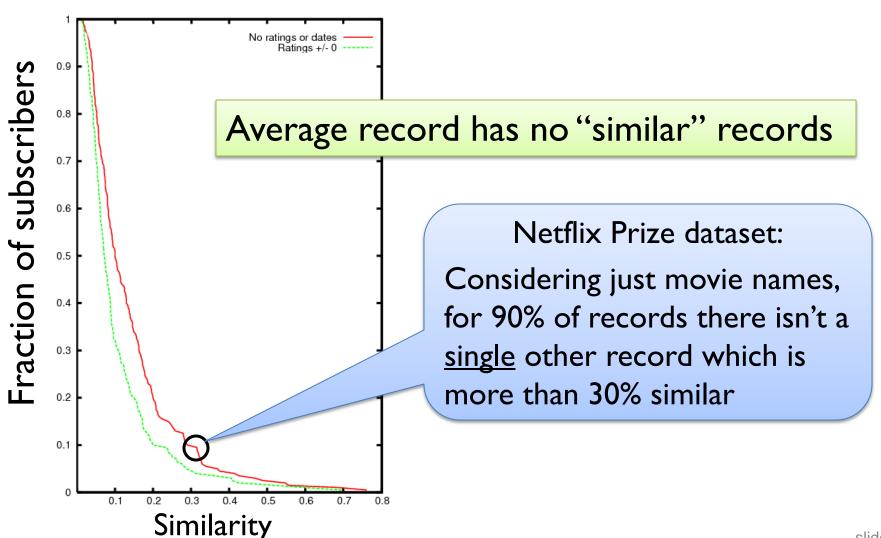
- Data are "anonymized" by removing personally identifying information (PII)
 - Name, Social Security number, phone number, email, address... what else?
- Problem: PII has no technical meaning
 - Defined in disclosure notification laws (if certain information is lost, consumer must be notified)
 - In privacy breaches, any information can be personally identifying

The Curse of Dimensionality



- Row = user record
- Column = dimension
- Thousands or millions of dimensions
 - Netflix movie ratings:35,000
 - Amazon purchases: 10⁷

Sparsity and "Long Tail"



Privacy Threats

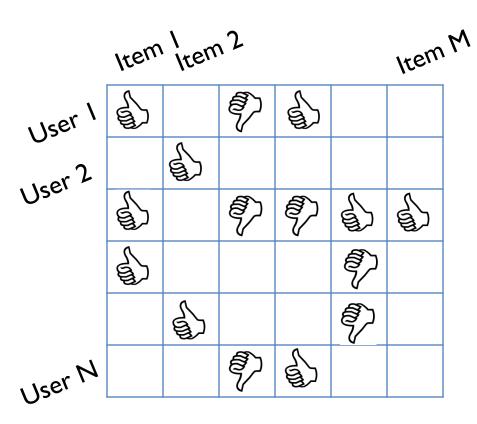
Global surveillance

Spammers
Abusive advertisers and marketers

Phishing

Employers, insurers, stalkers, nosy friends

It's All About the Aux

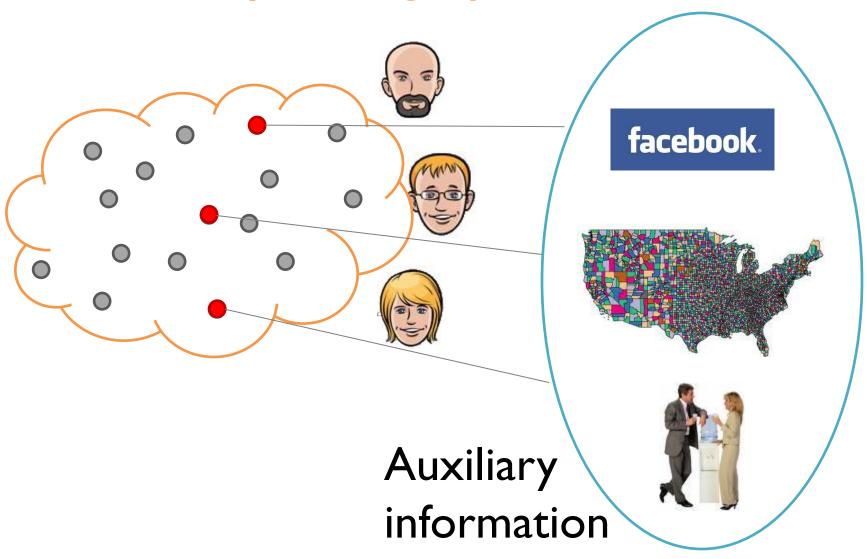


No explicit identifiers

What can the adversary learn by combining this with auxiliary information?

Information available to adversary outside of normal data release process

De-anonymizing Sparse Datasets



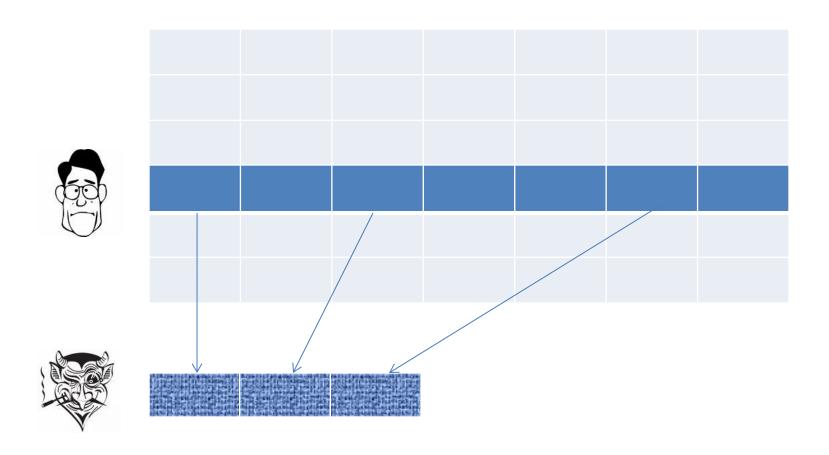
De-anonymization Objectives

- Fix some target record r in the original dataset
- Goal: learn as much about r as possible
- Subtler than "identify r in the released dataset"
 - Don't fall for the k-anonymity fallacy!
 - Silly example: released dataset contains k copies of each original record – this is k-anonymous!
 - Can't identify the "right" record, yet the released dataset completely leaks everything about r

De-anonymization Challenges

- Auxiliary information is noisy
 - Can't use standard information retrieval techniques
- Released records may be perturbed
- Only a sample of records has been released
- False matches
 - No oracle to confirm success!

Aux as Noisy Projection



What De-anonymization Is Not

- Not linkage (statistics, Census studies)
- Not search (information retrieval)
- Not classification (machine learning)
- Not fingerprinting (forensics)

"Scoreboard" Algorithm

- Scoring function
 - Assigns a score to each record in the released sample based on how well it matches Aux
 - $\Sigma_{i \in \text{supp}(aux)}$ Similarity(aux_i, r_i) / log(|support(i)|) gives higher weight to rarer attributes
- Record selection

__ Intuition: weight is a measure of entropy

 Use "eccentricity" of the match to separate true and spurious matches

Extremely versatile paradigm

How Much Aux Is Needed?

- How much does the adversary need to know about a record to find a very similar record in the released dataset?
 - Under very mild sparsity assumption, O(log N), where N is the number of records
- What if not enough Aux is available?
 - Identifying a small number of candidate records
 similar to the target still reveals a lot of information

♠ ■ ■ -

A Page → Tools →

NETFLIX

Netflix Prize

Forum **Netflix Home**

@ 1997-2006 Netflix, Inc. All rights reserved.

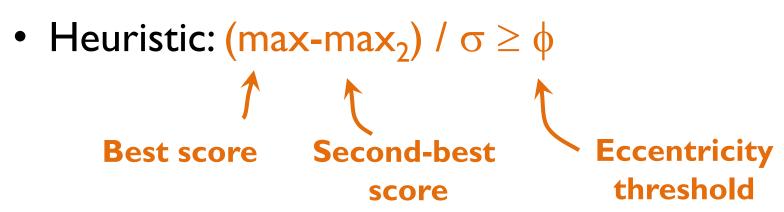
De-anonymizing the Netflix Dataset

- 500K users, 18,000 movies
- 213 dated ratings per user, on average
- Two is enough to reduce to 8 candidate records
- Four is enough to identify uniquely (on average)
- Works even better with relatively rare ratings
 - "The Astro-Zombies" rather than "Star Wars"

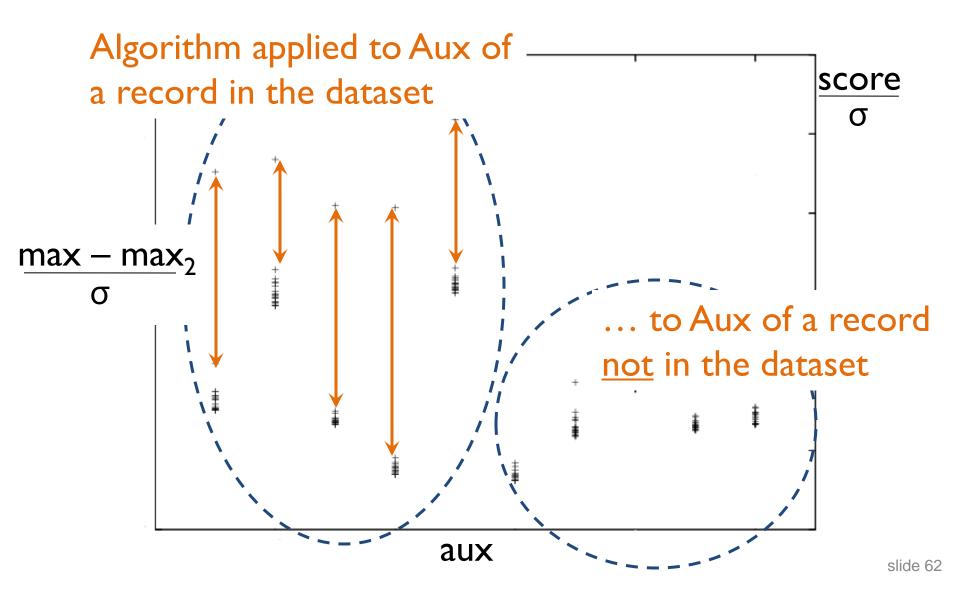
Self-testing

Methodological question: how does the attacker know the matches aren't spurious?

- No de-anonymization oracle or "ground truth"
- Compute a score for each record: how well does it match the auxiliary information?

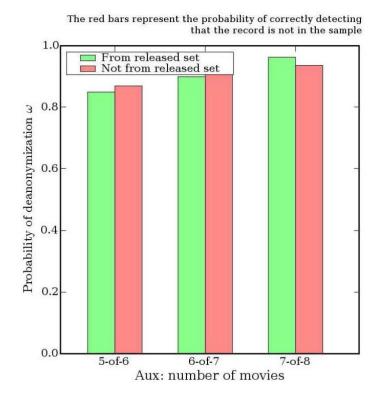


Eccentricity in the Netflix Dataset



Self-testing: Experimental Results

- After algorithm finds a match, remove the found record and re-run
- With very high probability, the algorithm now declares that there is no match



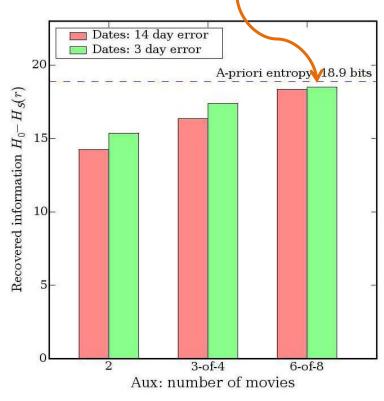
Robustness

 Algorithm is robust to errors in attacker's Aux

 Dates and ratings may be known imprecisely, some may be completely wrong

- Perturbation = noise in the data = doesn't matter!
- Nearest neighbor is so far,
 can tolerate <u>huge</u> amount
 of noise and perturbation

With 6 approximately correct & 2 completely wrong ratings, recover all entropy



Main Themes

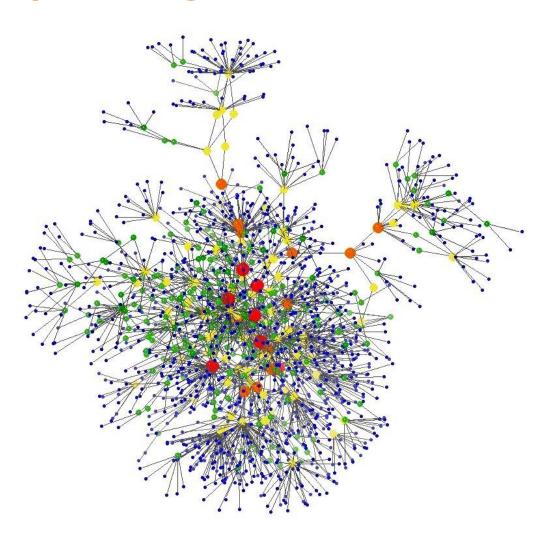
- Conceptual
 - Datasets are sparse
 - No "nearest neighbors"
 - Aux is logarithmic in number of records, linear in noise
 - "Personally identifiable" is meaningless
 - Distinction between aggregate and individual data unclear

Collaborative filtering systems

- Methodological
 - Scoring function to match records
 - Self-testing to avoid false matches
 - Self-correction leads to ever more accurate reidentification
 - Simple heuristics improve accuracy

Social networks

Exploiting Data Structure



Reading Material

Backstrom, Dwork, Kleinberg

Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography

WWW 2007 and CACM 2011

Narayanan and Shmatikov

De-anonymizing Social Networks

Oakland 2009

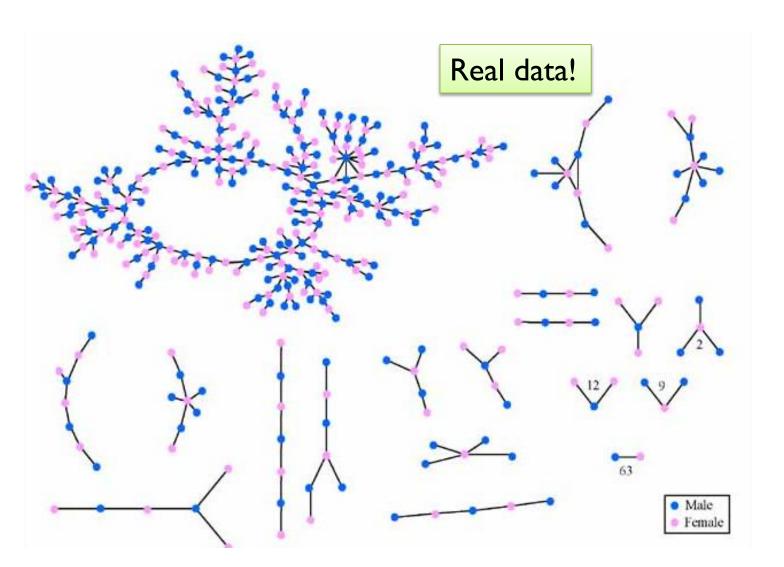
Narayanan, Shi, Rubinstein

Link Prediction by De-anonymization:

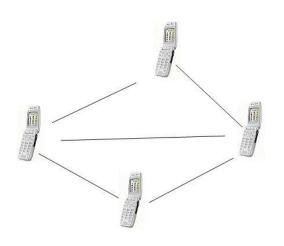
How We Won the Kaggle Social Network Challenge

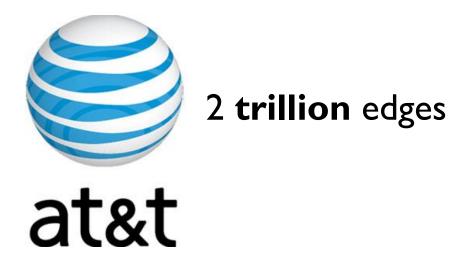
IJCNN 2011

"Jefferson High": Romantic and Sexual Network



Phone Call Graphs

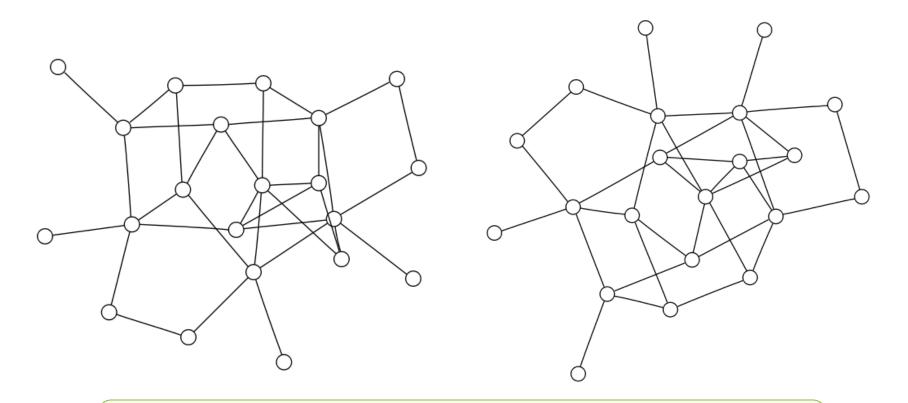




Examples of outsourced call graphs		
Hungary	2.5M nodes	
France	7M nodes	
India	3M nodes	

3,000 companies providing wireless services in the U.S

Structural De-anonymization



Goal: structural mapping between two graphs

For example, Facebook vs. anonymized phone call graph

Two-Stage Paradigm

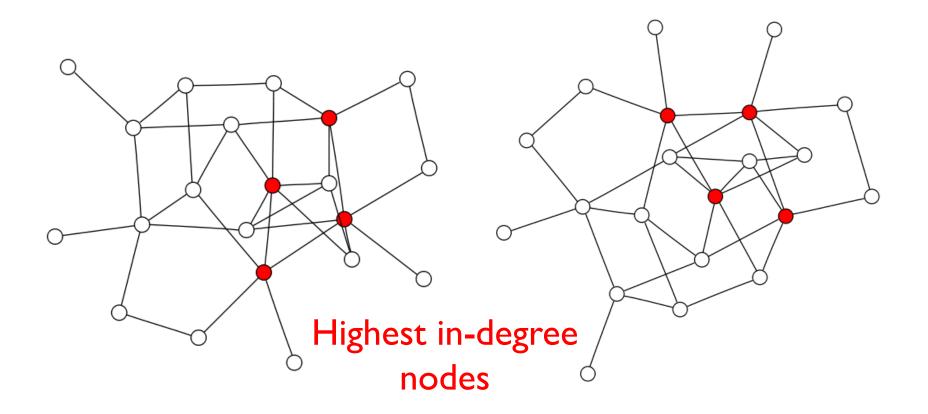
Seed matching

- Detailed knowledge about a small number of nodes
- Used to create initial "seed" mapping between auxiliary information and anonymized graph

Propagation

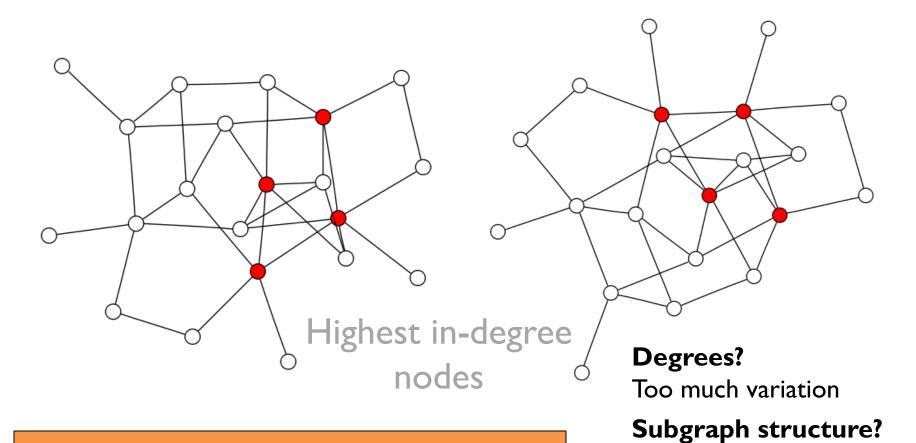
- Iteratively extend the mapping using already mapped nodes
- Self-reinforcing (similar to "spread of epidemic")

Where To Start?



Only a subset of nodes and edges in common

How To Match?

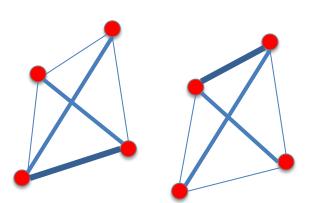


Number of common neighbors between each pair of nodes

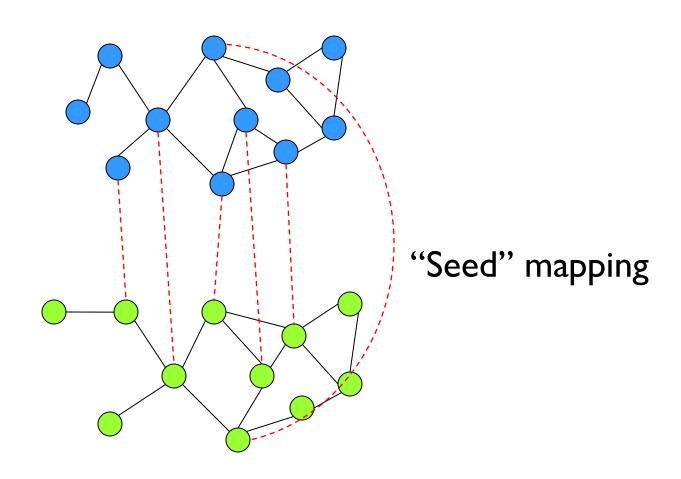
Too sparse

Seed Matching as Combinatorial Optimization

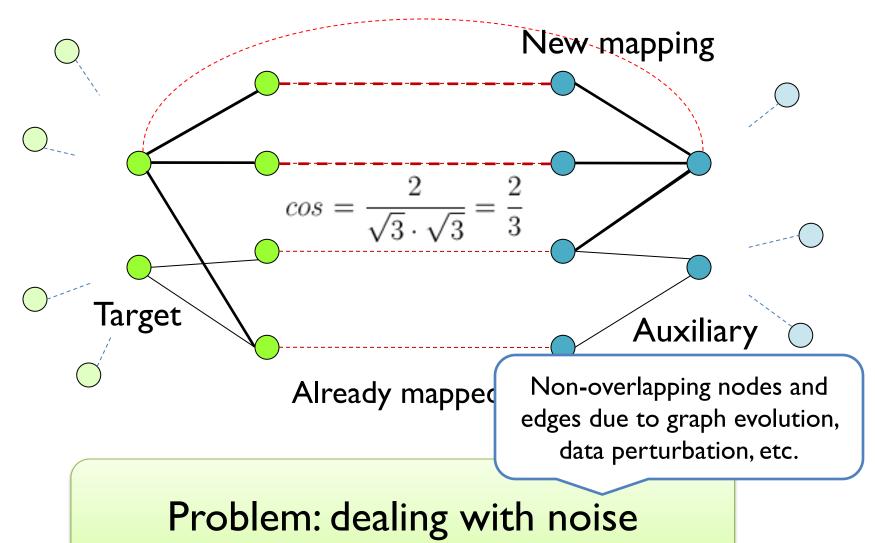
- Complete graphs on 20 100 "seed" nodes
- Edge weights = common neighbor coefficients (cosines)
- Reduced to known problem: weighted graph matching – use simulated annealing
- Now we have a mapping between seed nodes



Iterative Propagation



Propagation: Measuring Similarity



Adaptations To Handle Noise

Reverse map

Edge directionality

Edge weights

Node weights

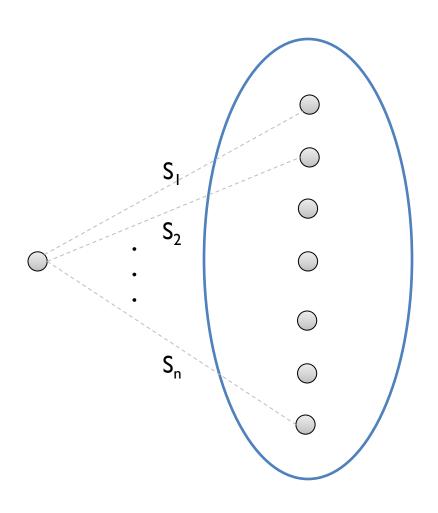
Self-correction

Eccentricity

Non-bijective

Deletion

Eccentricity



If true positive:

• $s_{max} - s_{max2}$ is large

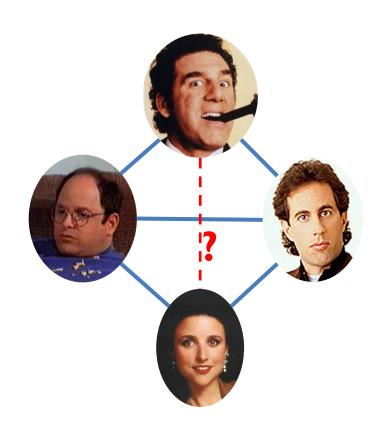
If false positive:

• $s_{max} - s_{max2}$ is small

Winning the IJCNN/Kaggle Social Network Challenge

Narayanan, Shi, Rubinstein

- "Anonymized" graph of Flickr used as challenge for a link prediction contest
- De-anonymization = "oracle" for true answers
 - 57% coverage
 - 98% accuracy



Other De-anonymization Results

- Social networks again and again
- Location data
- Stylometry (writing style)

• • •

Genetic data

- Same general approach
- Different data models, algorithms, scaling challenges

Lesson #1: De-anonymization Is Robust

- 33 bits of entropy
 - 6-8 movies, 4-7 friends, etc.
- Perturbing data to foil de-anonymization often destroys utility
- We can estimate confidence even without ground truth
- Accretive and iterative:
 more de-anonymization
 better de-anonymization

Lesson #2: "PII" Is Technically Meaningless

PII is info "with respect to which there is a reasonable basis to believe the information can be used to identify the individual."

Any piece of data can be used for re-identification!

Narayanan, Shmatikov CACM column, 2010

"blurring of the distinction between personally identifiable information and supposedly anonymous or de-identified information"