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Outline

e Reconstruction Attacks [Dinur-Nissim’03]

* “Releasing overly accurate answers to too many
statistics is blatantly non-private.”

* Establishes limits on the accuracy achieved by any private
algorithm, not just differentially private ones.

* Neat connections to linear algebra, discrepancy theory,
and error correcting codes.



Modeling Reconstruction
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* Correlation between each attribute j and the secret ;Zi XijSi
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Statistical queries ;Zi d(x;)s;

Parameters of a regression model that predicts s; given x;
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These can all be translated to a linear function Q of the secret vector s.
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* Correlation between each attribute j and the secret zzixijsi is exactly TS

XTs =
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These can all be translated to a linear function Q of the secret vector s.

* Statistical query of the form %Zi ¢ (x;)s; is exactly:
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Modeling Reconstruction
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These can all be translated to a linear function Q of the secret vector s.
* Parameters of a regression model that predicts s; given x;
* Less immediate, but the optimality of the parameters imply certain
linear functions of s



Modeling Reconstruction
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noisy answers

linear queries on
the secret vector
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bounded error vector;
might depend on s

So we want to understand the following problem:
Given a matrix Q € {0,1}*" of k linear queries, and

q = —QS + e, where ||e||oo

such that = Ham(s s) < 1—0

« and s € {0,1}", find §

. 1 1 . :
If we can solve this problem, then no (1—0,1—0)-dp algorithm A, can satisfy
Pr [HAQ(S) —%QSH < a] > 9/10 for all s € {0,1}".



Exponentially Many Queries

Suppose we consider all {0,1}-valued queries:
Q € {0,1}2"*™ has one row for every g € {0,1}"

4 . )
Input: § =-0Qs + e
Brute force attack n

Output: any § € {0,1}" such that Hé]‘ — %Q§H <a
- > Y

Theorem [Dinur-Nissim’03]: %Ham(& s) < 4a

A 1 .. 1 1 . 1 ~
proof: |2 = @8]| = [[Fes +e —20s]| = [T ets = )| - e
e Suppose Ham(S,s) > 4an, then there are > 2an entries on which
s; = 1 but §; = 0 (without loss of generality).
* Since Q contains a row that is 1 on exactly these entries, we have

-0 —9)

— |lello > 2a¢ — @ = a. Contradiction.

co




Relationship to Statistical Queries
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As long as d = log(2n), we can obtain any linear function of s.

* Statistical query of the form %Zi ¢ (x;)s; is exactly:
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Exponentially Many Queries

Suppose we consider all {0,1}-valued queries:
Q € {0,1}2"*™ has one row for every q € {0,1}"

Brute force attack

-
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Input: g = %Qs +e
Output: any § € {0,1}" such that Hc? — %QS‘H <a

~

J

Theorem [Dinur-Nissim’03]: %Ham(& s) < 4a

Corollary: if d = log(2n), then there is no differentially private
algorithm that answers 2™ arbitrary statistical queries on x € {0,1}"**¢
with error a = o(1).



High Accuracy Answers

Suppose we have only a modest number of queries
Q € {0,1}™" is a some set of n queries.

4 X )
Input: g ==0Q0s + e
Matrix (pseudo-) U = 5 N

inversion attack Let s = nQinvq =S+ nQinve
Output: § = § rounded to {0,1}

- /
Theorem [DN’03, DY’08]: If n = 2%, and Q = H,, is the Hadamard

. 1 ~
matrix, then = Ham(§,s) < 4a’n
n Fourier transform of s. ]

Proof: Useful fact 1: nQ"™ = H,,
Useful fact 2: All eigenvalues of H,, are ++/n

. 2
Therefore, ||5 — 5|5 = ||nQ”“’e||2 = ||H,ell5 < nllell5 < a?n?



High Accuracy Answers

Suppose we have only a modest number of queries
Q € {0,1}™" is a some set of n queries.

4 1
Input: g = zQS +e
Let § = nQ™§ = s + nQ"™e
Output: § = § rounded to {0,1}

Matrix (pseudo-)
inversion attack

o

Theorem [DN’03, DY’08]: If n = 2%, and Q = H,, is the Hadamard
matrix, then %Ham(& s) < 4a’n

" 1 . .
Proof: Now observe that ||§ — s]|5 = ZHam(s, s), because if
§; # s;, then we must have (§; — s;)? = 1/4. Rearranging gives

%Ham(& s) < %I|§ — 5|5 < 4a®n



High Accuracy Answers

Suppose we have only a modest number of queries
Q € {0,1}™" is a some set of n queries.

Matrix (pseudo-)
inversion attack

-

o

Input: § = %Qs +e
Let § = nQ"™§ = s + nQ"™e
Output: § = § rounded to {0,1}

Theorem [DN’03, DY’08]: If n = 2¢, and Q = H,, is the Hadamard
matrix, then %Ham(& s) < 4a’n

Corollary: if d = log(2n), then there is no differentially private
algorithm that answers 2n arbitrary statistical queries on a dataset

x € {0,1}**4 with errora = o (—)
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Spectral Bounds

Suppose we have only a modest number of queries
Q € {0,1}™" is a some set of n queries.

4 1
Input: § = ;Qs +e
Let § = nQ"™§ = s + nQ"™e
Output: § = § rounded to {0,1}
NG

Matrix (pseudo-)
inversion attack

Theorem [KRSU’10]: For any k > n and queries Q € {0,1}**",

1 ) 4a’nk
—Ham($,s) < —
n Umin(Q)




Discrepancy Bounds

Q € {0,1}**™ is an arbitrary set of queries

/ ) N
Input: g = EQS +e

Brute force attack A 1
Output: any § € {0,1}" such that ”q — ;QSH <a
(00]

- J

Theorem [MN’12]: If partialdisc(Q) = 2an, then %Ham(& s) < 1—10

Define the partial discrepancy of a matrix Q € R**™ to be

partialdisc(Q) = e {11111%’1}R||QZ||00

zll1 =n/10

Theorem [DNT’13]: A related quantity, hereditarydisc(Q) characterizes the
error required to answer Q up to factors of poly(d, log k).



High Accuracy Answers

Suppose we consider a modest number of random queries
Q € {0,1}**™ hasn < k < 2™ random rows in {0,1}"

Brute force attack

-

.

Input: g = %Qs +e
Output: any § € {0,1}" such that Hc? — %QS‘H <a

~

J

Theorem [Dinur-Nissim’03, Smith]: for everyn < k < 2", and every

a = 0( ln(k/n)>, %Ham(s“‘, s)<o(1)

n

Corollary: if d = log(2n), then there is no differentially private
algorithm that answers k > n random statistical queries on a dataset

x € {0,1}"*4 with errora = o (

1n(k))1/ 2.

n



Reconstruction vs. Differential Privacy

Recall: for every d, there is a differentially private algorithm that
answers k arbitrary statistical queries on a dataset x € {0,1}**¢ with

error a = 0 (4202




Reconstruction vs. Differential Privacy

Later on: for every d, there is a differentially private algorithm that
answers k arbitrary statistical queries on a dataset x € {0,1}**¢ with

- 1/2
errora = 0 (\/E l:ll(k))

Corollary: if d = log(2n), there is no differentially private algorithm

that answers k > n random statistical queries on a dataset X
. In(k)\1/2
€ {0,1}™*4 with errora = 0 ( nr(l )) .

* Reconstruction attacks essentially “characterize” privacy for
low-dimensional datasets

* Understanding high-dimensional data requires very
different attacks (fingerprinting codes / tracing attacks)
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algorithm, not just differentially private ones
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and error correcting codes



