Reconstruction Attacks

Jonathan Ullman, Northeastern University

Outline

- Reconstruction Attacks [Dinur-Nissim'03]
 - "Releasing overly accurate answers to too many statistics is blatantly non-private."
 - Establishes limits on the accuracy achieved by any private algorithm, not just differentially private ones.
 - Neat connections to linear algebra, discrepancy theory, and error correcting codes.

identifiers (e.g. name, demographics)

dataset $(X,s) \in \{0,1\}^{n \times (d+1)}$

x_1	s_1
011010	1
x_n	s_n

secret bits (e.g. party affiliation)

Want to release statistics involving the secret vector.

- Correlation between each attribute j and the secret $\frac{1}{n}\sum_i x_{ij}s_i$
- Statistical queries $\frac{1}{n}\sum_{i}\phi(x_{i})s_{i}$
- Parameters of a regression model that predicts s_i given x_i

identifiers (e.g. name, demographics) dataset $(X,s) \in \{0,1\}^{n \times (d+1)}$

x_1	S_1
011010	1
x_n	s_n

secret bits (e.g. party affiliation)

These can all be translated to a linear function Q of the secret vector s.

• Correlation between each attribute j and the secret $\frac{1}{n}\sum_i x_{ij}s_i$ is exactly $\frac{X^Ts}{n}$

$$X^T S = \begin{bmatrix} x_1^T & x_2^T & \dots & x_n^T \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

identifiers (e.g. name, demographics) dataset $(X,s) \in \{0,1\}^{n \times (d+1)}$

x_1	S_1
011010	1
x_n	s_n

secret bits (e.g. party affiliation)

These can all be translated to a linear function Q of the secret vector s.

• Statistical query of the form $\frac{1}{n}\sum_i \phi(x_i)s_i$ is exactly:

$\phi(x_1)$	$\phi(x_2)$	 $\phi(x_n)$
n	n	n

s_1	
s_2	
s_n	

identifiers (e.g. name, demographics)

dataset $(X,s) \in \{0,1\}^{n \times (d+1)}$

x_1	s_1
011010	1
x_n	s_n

secret bits (e.g. party affiliation)

These can all be translated to a linear function Q of the secret vector s.

- Parameters of a regression model that predicts s_i given x_i
 - Less immediate, but the optimality of the parameters imply certain linear functions of s

So we want to understand the following problem:

Given a matrix $Q \in \{0,1\}^{k \times n}$ of k linear queries, and $\widehat{q} = \frac{1}{n}Qs + e$, where $\|e\|_{\infty} \le \alpha$ and $s \in \{0,1\}^n$, find \widehat{s} such that $\frac{1}{n}Ham(\widehat{s},s) \le \frac{1}{10}$

If we can solve this problem, then no $\left(\frac{1}{10}, \frac{1}{10}\right)$ -dp algorithm A_Q can satisfy $\Pr\left[\left\|A_Q(s)\right\|_{\infty} \leq \alpha\right] \geq 9/10$ for all $s \in \{0,1\}^n$.

Exponentially Many Queries

Suppose we consider *all* $\{0,1\}$ -valued queries:

 $Q \in \{0,1\}^{2^n \times n}$ has one row for every $q \in \{0,1\}^n$

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Brute force attack $\left\| \begin{array}{l} \text{Input: } \widehat{q} = \frac{1}{n}Qs + e \\ \text{Output: any } \widehat{s} \in \{0,1\}^n \text{ such that } \left\| \widehat{q} - \frac{1}{n}Q\widehat{s} \right\|_{\infty} \leq \alpha \end{array} \right\|$

Theorem [Dinur-Nissim'03]: $\frac{1}{n}Ham(\hat{s},s) \leq 4\alpha$

Proof:
$$\|\hat{q} - \frac{1}{n}Q\hat{s}\| = \|\frac{1}{n}Qs + e - \frac{1}{n}Q\hat{s}\| \ge \|\frac{1}{n}Q(s - \hat{s})\| - \|e\|$$

- Suppose $Ham(\hat{s}, s) > 4\alpha n$, then there are $> 2\alpha n$ entries on which $s_i = 1$ but $\hat{s}_i = 0$ (without loss of generality).
- Since Q contains a row that is 1 on exactly these entries, we have $\left\|\frac{1}{n}Q(s-\hat{s})\right\| - \|e\|_{\infty} > 2\alpha - \alpha = \alpha$. Contradiction.

Relationship to Statistical Queries

identifiers (e.g. name, demographics)

dataset $(X,s) \in \{0,1\}^{n \times (d+1)}$

x_1	s_1
011010	1
x_n	s_n

secret bits (e.g. party affiliation)

As long as $d \ge \log(2n)$, we can obtain any linear function of s.

• Statistical query of the form $\frac{1}{n}\sum_{i}\phi(x_{i})s_{i}$ is exactly:

$\phi(x_1)$	$\phi(x_2)$	 $\phi(x_n)$
n	n	n

s_1	
s_2	
s_n	

Exponentially Many Queries

Suppose we consider all $\{0,1\}$ -valued queries:

 $Q \in \{0,1\}^{2^n \times n}$ has one row for every $q \in \{0,1\}^n$

Brute force attack

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Input: $\hat{q} = \frac{1}{n}Qs + e$ Output: any $\hat{s} \in \{0,1\}^n$ such that $\left\|\hat{q} - \frac{1}{n}Q\hat{s}\right\|_{\infty} \le \alpha$

Theorem [Dinur-Nissim'03]:
$$\frac{1}{n}Ham(\hat{s}, s) \le 4\alpha$$

Corollary: if $d \ge \log(2n)$, then there is no differentially private algorithm that answers 2^n arbitrary statistical queries on $x \in \{0,1\}^{n \times d}$ with error $\alpha = o(1)$.

Suppose we have only a modest number of queries $Q \in \{0,1\}^{n \times n}$ is a some set of n queries.

Matrix (pseudo-) inversion attack

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Let $\tilde{s} = nQ^{inv}\hat{q} = s + nQ^{inv}e$
Output: $\hat{s} = \tilde{s}$ rounded to $\{0,1\}$

Theorem [DN'03, DY'08]: If $n=2^\ell$, and $Q=H_n$ is the Hadamard matrix, then $\frac{1}{n}Ham(\hat{s},s) \leq 4\alpha^2 n$

Proof: Useful fact 1: $nQ^{inv} = H_n$ Useful fact 2: All eigenvalues of H_n are $\pm \sqrt{n}$

Therefore, $\|\tilde{s} - s\|_2^2 = \|nQ^{inv}e\|_2^2 = \|H_ne\|_2^2 \le n\|e\|_2^2 \le \alpha^2 n^2$

Suppose we have only a modest number of queries $Q \in \{0,1\}^{n \times n}$ is a some set of n queries.

Matrix (pseudo-) inversion attack

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Let $\tilde{s} = nQ^{inv}\hat{q} = s + nQ^{inv}e$
Output: $\hat{s} = \tilde{s}$ rounded to $\{0,1\}$

Theorem [DN'03, DY'08]: If $n=2^\ell$, and $Q=H_n$ is the Hadamard matrix, then $\frac{1}{n}Ham(\hat{s},s) \leq 4\alpha^2 n$

Proof: Now observe that $\|\tilde{s} - s\|_2^2 \ge \frac{1}{4} Ham(\hat{s}, s)$, because if $\hat{s}_i \ne s_i$, then we must have $(\tilde{s}_i - s_i)^2 \ge 1/4$. Rearranging gives

$$\frac{1}{n}Ham(\hat{s},s) \le \frac{4}{n} \|\tilde{s} - s\|_2^2 \le 4\alpha^2 n$$

Suppose we have only a modest number of queries $Q \in \{0,1\}^{n \times n}$ is a some set of n queries.

Matrix (pseudo-) inversion attack

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Let $\tilde{s} = nQ^{inv}\hat{q} = s + nQ^{inv}e$
Output: $\hat{s} = \tilde{s}$ rounded to $\{0,1\}$

Theorem [DN'03, DY'08]: If $n=2^\ell$, and $Q=H_n$ is the Hadamard matrix, then $\frac{1}{n}Ham(\hat{s},s) \leq 4\alpha^2 n$

Corollary: if $d \geq \log(2n)$, then there is no differentially private algorithm that answers 2n arbitrary statistical queries on a dataset $x \in \{0,1\}^{n \times d}$ with error $\alpha = o\left(\frac{1}{\sqrt{n}}\right)$.

Spectral Bounds

Suppose we have only a modest number of queries $Q \in \{0,1\}^{n \times n}$ is a some set of n queries.

Matrix (pseudo-) inversion attack

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Let $\tilde{s} = nQ^{inv}\hat{q} = s + nQ^{inv}e$
Output: $\hat{s} = \tilde{s}$ rounded to $\{0,1\}$

Theorem [KRSU'10]: For any $k \ge n$ and queries $Q \in \{0,1\}^{k \times n}$,

$$\frac{1}{n}Ham(\hat{s},s) \le \frac{4\alpha^2 nk}{\sigma_{min}^2(Q)}$$

Discrepancy Bounds

 $Q \in \{0,1\}^{k \times n}$ is an arbitrary set of queries

Brute force attack
$$\left\| \begin{array}{l} \text{Input: } \widehat{q} = \frac{1}{n}Qs + e \\ \text{Output: any } \widehat{s} \in \{0,1\}^n \text{ such that } \left\| \widehat{q} - \frac{1}{n}Q\widehat{s} \right\|_{\infty} \leq \alpha \end{array} \right\|$$

Theorem [MN'12]: If partialdisc $(Q) \ge 2\alpha n$, then $\frac{1}{n}Ham(\hat{s},s) \le \frac{1}{10}$

Define the partial discrepancy of a matrix
$$Q \in \mathbb{R}^{k \times n}$$
 to be
$$\text{partialdisc}(Q) = \min_{\substack{z \in \{-1,0,1\}^n \\ \|z\|_1 \le n/10}} \|Qz\|_{\infty}$$

Theorem [DNT'13]: A related quantity, hereditary disc(Q) characterizes the error required to answer Q up to factors of poly(d, log k).

Suppose we consider a *modest number of random queries*

 $Q \in \{0,1\}^{k \times n}$ has $n \le k \le 2^n$ random rows in $\{0,1\}^n$

Input:
$$\hat{q} = \frac{1}{n}Qs + e$$

Brute force attack $\left\| \begin{array}{l} \text{Input: } \widehat{q} = \frac{1}{n}Qs + e \\ \text{Output: any } \widehat{s} \in \{0,1\}^n \text{ such that } \left\| \widehat{q} - \frac{1}{n}Q\widehat{s} \right\|_{\infty} \leq \alpha \end{array} \right.$

Theorem [Dinur-Nissim'03, Smith]: for every $n \le k \le 2^n$, and every

$$\alpha = o\left(\sqrt{\frac{\ln(k/n)}{n}}\right), \ \frac{1}{n}Ham(\hat{s}, s) \le o(1)$$

Corollary: if $d \ge \log(2n)$, then there is no differentially private algorithm that answers $k \gg n$ random statistical queries on a dataset

$$x \in \{0,1\}^{n \times d}$$
 with error $\alpha = o\left(\frac{\ln(k)}{n}\right)^{1/2}$.

Reconstruction vs. Differential Privacy

Recall: for every d, there is a differentially private algorithm that answers k arbitrary statistical queries on a dataset $x \in \{0,1\}^{n \times d}$ with

error
$$\alpha = \tilde{O}\left(\frac{d \ln(k)}{n}\right)^{1/3}$$

Reconstruction vs. Differential Privacy

Later on: for every d, there is a differentially private algorithm that answers k arbitrary statistical queries on a dataset $x \in \{0,1\}^{n \times d}$ with

error
$$\alpha = \tilde{O}\left(\frac{\sqrt{d}\ln(k)}{n}\right)^{1/2}$$

Corollary: if $d \ge \log(2n)$, there is no differentially private algorithm that answers $k \gg n$ random statistical queries on a dataset $x \in \{0,1\}^{n \times d}$ with error $\alpha = o\left(\frac{\ln(k)}{n}\right)^{1/2}$.

- Reconstruction attacks essentially "characterize" privacy for low-dimensional datasets
- Understanding high-dimensional data requires very different attacks (fingerprinting codes / tracing attacks)

Outline

- Reconstruction Attacks [Dinur-Nissim'03]
 - "Releasing overly accurate answers to too many statistics is blatantly non-private."
 - Establishes limits on the accuracy achieved by any private algorithm, not just differentially private ones
 - Neat connections to linear algebra, discrepancy theory, and error correcting codes