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Pure-Privately Learning Points

• Concept class: C = 𝑃𝑂𝐼𝑁𝑇𝑑 = {𝑐1, … , 𝑐2𝑑}

• Recall: Proper point learner with O(1) samples

• Generic construction of private learners results in O(log |C|) = O(d) samples

• Is the gap essential?

• Thm 1 [BKN 10]: Proper pure-private PAC learner of Points must use  Ω
d

ϵ
samples.

• Proof:

• PAC learning: On database                                                             learner must return ci  w.p. > 1/2

• Pure Differential Privacy: By group privacy, learner must return ci with probability ≥ e−ϵn on 

database

• There are 2d-1 options for i1, hence need (2𝑑−1) ⋅ 𝑒−𝜖𝑛 < 1/2. Hence, 𝑛 = Ω
𝑑

𝜖
.

• Can we do better?

x 1 2 … i-1 i i+1 …

ci(x) 0 0 … 0 1 0 … 0

x i i … i

c(x) 1 1 … 1

x 1 1 … 1

c(x) 1 1 … 1



Note: We apply generic 
construction on H instead of 

POINTd

An improper private learner for POINTd [BKN10, BNS14]

• Choose  a family of 𝑚 = O(
1

𝛼
) hypotheses 𝐻 as follows:

• Construct hi by setting ℎ𝑖(𝑥) = 1 with probability 
𝛼

4
and ℎ𝑖(𝑥) = 0 otherwise.

• Let 𝐻 = {ℎ𝑖}

• Efficiency: enough if entries of ℎi are pairwise independent

• Use exponential mechanism to choose ℎ ∈ 𝐻 with small error

• This would work  well if 𝐻 contains a hypothesis with error 
𝛼

2

• Fix 𝑐𝑗 ∈ 𝑃𝑂𝐼𝑁𝑇𝑑 and a distribution 𝑃 on {0,1}𝑑

• Claim: w.p. ≥
1

2
𝐻 contains ℎ𝑖 s.t. 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐𝑗 , ℎ𝑖 ≤

𝛼

2
.

• Proof:

• 𝐸 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐𝑗 , ℎ𝑖 ℎ𝑖 𝑗 = 1 ≤
𝛼

4
.

• By Markov’s inequality Pr 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐𝑗 , ℎ𝑖 >
𝛼

2
ℎ𝑖 𝑗 = 1 ≤

1

2
.

• Pr 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐𝑗 , ℎ𝑖 ≤
𝛼

2
≥ Pr ℎ𝑖 𝑗 = 1 Pr 𝑒𝑟𝑟𝑜𝑟 ℎ𝑖 ≤

𝛼

2
ℎ𝑖 𝑗 = 1 ≥

𝛼

8
.

• H fails to contain ℎ𝑖 s.t. 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐𝑗 , ℎ𝑖 ≤
𝛼

2
w.p. ≤ 1 −

𝛼

8

𝑚
≤

1

2
if 𝑚 > 𝑂(

1

𝛼
)



Representation of concept classes [BNS13]

• Probabilistic Representation for class 𝓒: a list of hypothesis classes 𝐻1, … , 𝐻𝑟 s.t.

• for every 𝑐∈𝒞 and distribution P over examples, 

• w.p. ¾ , a randomly chosen 𝐻𝑖 contains a hypothesis ℎ s.t. 𝑒𝑟𝑟𝑜𝑟𝑃(𝑐, ℎ) ≤ ¼.

• The size of Rep is defined as max
𝑖

log |𝐻𝑖|

• 𝑅𝑒𝑝𝐷𝑖𝑚(𝒞): the size of C’s minimal probabilistic representation

• Theorem [BNS13]: Θ(𝑅𝑒𝑝𝐷𝑖𝑚(𝒞)) samples are necessary and sufficient for pure-privately 
learning 𝒞 (improperly)

thresholds Proper Θ log(𝑇) [KLNRS’08, BKN’10]

Improper Θ(log(𝑇)) [FX’13]

points Proper Θ log(𝑇) [KLNRS’08, BKN’10]

Improper Θ(1) [BKN’10, BNS’13]

Concept class learner Sample complexity (pure DP)

C Proper 𝑂 log 𝐶 [KLNRS’08]

Improper Θ(𝑅𝑒𝑝𝐷𝑖𝑚(𝐶)) [BNS’13]

2O(log
∗ 𝑇) [BNS’14], Ω log∗ 𝑇 [BNSV’15]

Θ 1 [BNS’14]

Sample complexity (approx DP)



Back to Example 0: Learning points with approx. 
differential privacy
𝑨𝒅𝒊𝒔𝒕 by Smith & Thakurtha:

• Inputs:

• A set of possible solutions 𝑭

• Database 𝑺 ∈ 𝑿∗

• Sensitivity-1 quality function 𝒒:𝑿∗ × 𝑭 → ℝ

• Algorithm:

1) Let 𝒇𝟏 ≠ 𝒇𝟐 be two highest score solutions in 𝑭, where 𝒒 𝑺, 𝒇𝟏 ≥
𝒒 𝑺, 𝒇𝟐

2) Compute 𝒈𝒂𝒑 𝑺 = 𝒒 𝑺, 𝒇𝟏 − 𝒒 𝑺, 𝒇𝟐 and 𝒈𝒂𝒑∗ = 𝒈𝒂𝒑 𝑺 +

𝑳𝒂𝒑
𝟏

𝝐

3) If 𝒈𝒂𝒑∗ <
𝟏

𝝐
𝐥𝐨𝐠

𝟏

𝜹
then output ⊥ and halt. Otherwise, output 𝒇𝟏



Back to Example 0: Learning points with approx. 
differential privacy

• Given a labeled sample 𝑺 = 𝒙𝒊, 𝒚𝒊 𝒊=𝟏
𝒎 , define the quality of a domain 

element 𝒛 ∈ 𝑿 as:

• 𝒒 𝑺, 𝒛 = 𝒊 ∶ 𝒙𝒊 = 𝒛 𝒂𝒏𝒅 𝒚𝒊 = 𝟏

• Learner for Points [BNS’14]

• Execute 𝑨𝒅𝒊𝒔𝒕 on 𝑺 and 𝒒.

• If returned ⊥, output a random 𝒉 ∈ 𝐏𝐎𝐈𝐍𝐓𝒅.

• Else, if a domain element 𝒋 was returned, then return 𝒉 = 𝒄𝒋.



Back to Learning Thresholds

• Why?

• Seems fundamental and simple
• “should not be too hard”, disturbing difference between private and non-private setting

• [BNSV’15] Equivalent under differential privacy to:
• Distribution learning:

• D – unknown distrib over X with cumulative FD

• Goal: Given oracle access to D, find F: X  [0,1] with small |F(x)-FD(x)| for all x  X

• Query release:

• Given points (x1,…,xn)  X, output data structure approximating |{i : xi < z}|/n for all z  X

• (Approximate) Median:

• Given points (x1,…,xn)  X, output z such that (approx.) half the points are smaller/greater 
than z

• Interior point:

• Given points (x1,…,xn)  X, output z between min and max points

. . . . . .
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Solving Interior Point with Approx DP Requires Ω(log*T) Samples 
[BNVS’15]

• Observe: Impossible to have 𝒏 = 𝟏 when T ≥ 2

• Strategy: Induction
• Approx. dp mechanism M for solving IP over T(n+1)  w/ n+1 samples

Approx. dp mechanism M’ for solving IP over T(n) w/ n samples

• Where T(n+1) = b(n)T(n)

𝟏 𝟐 𝟏 𝟐

Output 1 w.p. ≥
3

4 Output 1 w.p. ≥
3

4
−𝛿

𝑒𝜖
>

1

4



M’

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ [𝑇 𝑛 ]

෤𝑥

Solving Interior Point with Approx DP Requires Ω(log*T) 
Samples[BNVS’15]

• If M approx private so is M’

• Suppose M succeeds
• 𝑧0, 𝑧1, … , 𝑧𝑛 all share a prefix of length 
min(𝑥1, … , 𝑥𝑛) and hence ǁ𝑧 also shares this 
prefix with 𝑧0

• Hence, ෤𝑥 ≥ min(𝑥1, … , 𝑥𝑛)

• Let 𝑤 = max 𝑥1, … , 𝑥𝑛
• If ෤𝑥 > 𝑤 then ǁ𝑧 reveals 𝑦0

𝑤+1

• By approx. privacy, this can happen with 

probability at most 
𝑒𝜖

𝑏
+ 𝛿

yi
1yi

2…𝑦𝑖
𝑇 𝑛

∈𝑅 𝑏𝑇(𝑛)

𝑧𝑖 = 𝑦0
1𝑦0

2…𝑦0
𝑥𝑖𝑦𝑖

𝑥𝑖+1…𝑦𝑖
𝑇(𝑛)

𝑧0 = 𝑦0
1𝑦0

2…𝑦0
𝑇(𝑛)

𝑧0, 𝑧1, … , 𝑧𝑛 ∈ [𝑇 𝑛 + 1 ]

M

ǁ𝑧

෤𝑥 = |𝑝𝑟𝑒𝑓𝑖𝑥 ǁ𝑧, 𝑧0 |
Privacy used 
for claiming 
correctness



Variations on a the PPAC learning model
• Pure-privacy, proper

• Generic construction, but exhibits higher sample complexity than in non-private 
learning

• Pure-privacy, improper
• Characterization of sample complexity in terms of randomized representation
• Limited gain in sample complexity (POINTS but not THREHOLD)

• Approximate privacy, proper
• Mostly not well understood
• Improved sample complexity (POINTS and THRESHOLD, but cannot learn THRESHOLD 

over the reals)

• Label privacy
• Significantly weaker notion of privacy (label protected but not sample)
• Characterization of sample complexity in terms of VC dimension

• Semi-Supervised learning
• Some examples labeled, most are not
• Characterization of labeled sample complexity in terms of VC dimension



Semi-Supervised Learning [BNS’15]
• Input: batches of labeled and unlabeled samples

• Generic construction: 
Every finite concept class 𝑪 can be learned privately using 𝑶 𝐕𝐂 𝑪
labeled examples.
• The construction uses O(log |C|) unlabeled examples

• Boosting the labeled sample complexity:
Given a private learner for a concept class 𝑪, it is possible to reduce 
its labeled sample complexity to 𝑶(𝐕𝐂 𝑪 ).
• While maintaining the unlabeled sample complexity



Reducing the labeled sample complexity of a given learner 𝓐

• Base learner 𝓐 with sample complexity 𝒏.

• Input: Database 𝑺 of size 𝒏, partially labeled

1. Let 𝑯 be the set of all dichotomies over 𝑺 realized 
by the target concept class 𝑪

2. Choose 𝒉 ∈ 𝑯 using the exponential mechanism 
with the labeled portion of 𝑺

3. Relabel 𝑺 using 𝒉, 

4. Execute 𝓐

𝒙𝟏 , 𝒚𝟏

𝒙𝟐 ,  𝒚𝟐

𝒙𝟑 , 𝒚𝟑

𝒙𝟒 ,  𝒚𝟒

⋮
𝒙𝒕 , 𝒚𝒕

𝒙𝒕+𝟏 , ?

𝒙𝒕+𝟐 , ?

𝒙𝒕+𝟑 , ?

⋮
𝒙𝒏 , ?

ෝ𝒚𝟐

ෝ𝒚𝒕+𝟏

ෝ𝒚𝒕+𝟐

ෝ𝒚𝒕+𝟑

ෝ𝒚𝒏



Reducing the labeled sample complexity of a given learner 𝓐

• Base learner 𝓐 with sample complexity 𝒏.

• Input: Database 𝑺 of size 𝒏, partially labeled

1. Let 𝑯 be the set of all dichotomies over 𝑺 realized 
by the target concept class 𝑪

2. Choose 𝒉 ∈ 𝑯 using the exponential mechanism 
with the labeled portion of 𝑺

3. Relabel 𝑺 using 𝒉, 

4. Execute 𝓐

∃𝐟 ∈ 𝐇 s.t. 𝐞𝐫𝐫𝐨𝐫𝐒 𝐟
= 𝟎

If 𝐒 contains 
≈ 𝐕𝐂(𝐂) 𝐥𝐨𝐠 𝑺 labeled 
exampless then 𝐡 is 
close to the target 

concept
𝓐 returns a 

hypothesis that is 
close to 𝐡



Reducing the labeled sample complexity of a given learner 𝓐

• Base learner 𝓐 with sample complexity 𝒏.

• Input: Database 𝑺 of size 𝒏, partially labeled

1. Let 𝑯 be the set of all dichotomies over 𝑺 realized 
by the target concept class 𝑪

2. Choose 𝒉 ∈ 𝑯 using the exponential mechanism 
with the labeled portion of 𝑺

3. Relabel 𝑺 using 𝒉

4. Execute 𝓐

Difficulty: 
H depends on S! 

Outputting h would 
breach privacy! 

Solution:
use h to relabel 
sample, analyze 
distribution of 

relabeled 
databases



Thresholds and Computational Complexity [Bun-
Zhandry’15]
• Order Revealing Encryption:

• Learn           {<, >, =}           but nothing else

• Efficiently learnable, but not efficiently privately learnable

Thanks: Mark Bun

. . . . . .
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Epilog: why study private learning?
• Real-world implementations of learning algorithms can lead to loss of privacy

• Recall Vitaly Shmatikov’s talks!

• Carefully distinguish privacy breaches from doing science

• McSherry’s “secrets about you” vs. “your secrets”

• Learning: a basic task that abstracts many of the computations performed on 
collections of private individual data

• Hence, important to understand to what extent it can be done under the 
restriction of differential privacy

• A test bed for many ideas (e.g., how to circumvent sample complexity bounds)

• Learning intimately related with differential privacy

• Learning theory tools useful for privacy [BLR’08, HR’10]

• Differential privacy implies generalization [McSherry, DFHPRR’15, 
BNSSU’15]

• Useful even when privacy is not the goal!



What have we Learned?

• PAC learning exhibits a lot of complexity under differential privacy
• Even for simple complexity classes like points and thresholds

• A variety of applicable strategies, quite a full picture
• Still open: improper learning and characterization of sample complexity under approx. 

privacy

• Crypto used for showing hardness (fingerprinting codes, order-revealing 
encryption)
• But can it be used positively?



Some more references
• Synthetic data 

• Avrim Blum, Katrina Ligett, Aaron Roth: A learning theory approach to non-
interactive database privacy. STOC 2008

• Boosting
• Cynthia Dwork, Guy N. Rothblum, Salil P. Vadhan: Boosting and Differential 

Privacy. FOCS 2010

• Continuous domains:
• Kamalika Chaudhuri, Daniel J. Hsu: Sample Complexity Bounds for 

Differentially Private Learning. COLT 2011

• Other machine learning
• See Adam’s talk

http://dblp.uni-trier.de/pers/hd/b/Blum:Avrim
http://dblp.uni-trier.de/pers/hd/r/Roth:Aaron
http://dblp.uni-trier.de/db/conf/stoc/stoc2008.html#BlumLR08
http://dblp.uni-trier.de/pers/hd/h/Hsu:Daniel_J=
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp19.html#ChaudhuriH11

