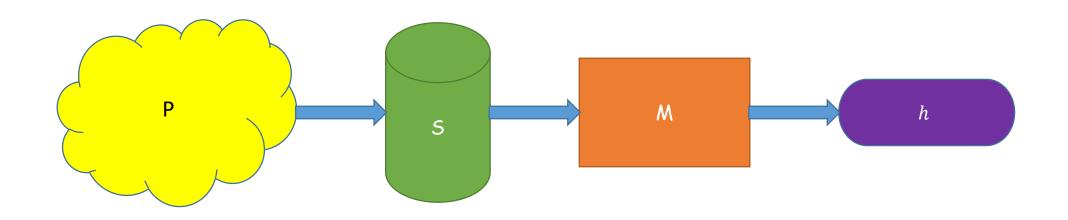
# Private Learning - 2



Kobbi Nissim, Georgetown University

Bar-Ilan Winter School on Differential Privacy February 2017

### Pure-Privately Learning Points

| • | Concept class: | C = | $POINT_d$ | = | $\{c_1,$ | $, c_{2d}$ |
|---|----------------|-----|-----------|---|----------|------------|
|---|----------------|-----|-----------|---|----------|------------|

| х        | 1 | 2 | ••• | <i>i</i> -1 | i | <i>i</i> +1 | ••• |   |
|----------|---|---|-----|-------------|---|-------------|-----|---|
| $c_i(x)$ | 0 | 0 |     | 0           | 1 | 0           |     | 0 |

- Recall: Proper point learner with O(1) samples
- Generic construction of private learners results in O(log |C|) = O(d) samples
  - Is the gap essential?
- Thm 1 [BKN 10]: Proper pure-private PAC learner of Points must use  $\Omega\left(\frac{\mathrm{d}}{\epsilon}\right)$  samples.
- Proof:
  - PAC learning: On database

| X    | i | i | <br>i |
|------|---|---|-------|
| c(x) | 1 | 1 | <br>1 |

learner must return  $c_i$  w.p. > 1/2

• Pure Differential Privacy: By group privacy, learner must return  $c_i$  with probability  $\geq e^{-\epsilon n}$  on

| database | х    | 1 | 1 |     | 1 |
|----------|------|---|---|-----|---|
| databasc | c(x) | 1 | 1 | ••• | 1 |

- There are 2<sup>d</sup>-1 options for i $\neq$ 1, hence need  $(2^d-1)\cdot e^{-\epsilon n}<1/2$ . Hence,  $n=\Omega\left(\frac{d}{\epsilon}\right)$ .
- Can we do better?

# An improper private learner for POINT<sub>d</sub> [BKN10, BNS14]

- Choose a family of  $m = O(\frac{1}{\alpha})$  hypotheses H as follows:
  - Construct  $h_i$  by setting  $h_i(x)=1$  with probability  $\frac{\alpha}{4}$  and  $h_i(x)=0$  otherwise.
  - Let  $H = \{h_i\}$ 
    - Efficiency: enough if entries of  $h_i$  are pairwise independent
- Use exponential mechanism to choose  $h \in H$  with small error
  - This would work well if H contains a hypothesis with error  $\frac{\alpha}{2}$

Note: We apply generic construction on H instead of POINTd

- Fix  $c_i \in POINT_d$  and a distribution P on  $\{0,1\}^d$
- Claim: w.p.  $\geq \frac{1}{2}$  H contains  $h_i$  s.t.  $error_P(c_j, h_i) \leq \frac{\alpha}{2}$ .
- Proof:
  - $E[error_P(c_j, h_i)|h_i(j) = 1] \leq \frac{\alpha}{4}$ .
  - By Markov's inequality  $\Pr\left[error_P(c_j,h_i)>\frac{\alpha}{2}\left|h_i(j)=1\right]\leq \frac{1}{2}$ .
  - $\Pr\left[error_P\left(c_j,h_i\right) \leq \frac{\alpha}{2}\right] \geq \Pr\left[h_i(j) = 1\right] \Pr\left[error(h_i) \leq \frac{\alpha}{2} \middle| h_i(j) = 1\right] \geq \frac{\alpha}{8}.$
  - H fails to contain  $h_i$  s.t.  $error_P(c_j, h_i) \leq \frac{\alpha}{2}$  w.p.  $\leq \left(1 \frac{\alpha}{8}\right)^m \leq \frac{1}{2}$  if  $m > O(\frac{1}{\alpha})$

## Representation of concept classes [BNS13]

- Probabilistic Representation for class C: a list of hypothesis classes  $H_1, \dots, H_r$  s.t.
  - for every  $c \in \mathcal{C}$  and distribution P over examples,
  - w.p.  $\frac{3}{4}$ , a randomly chosen  $H_i$  contains a hypothesis h s.t.  $error_p(c,h) \leq \frac{1}{4}$ .
  - The size of Rep is defined as  $\max_{i} \log |H_i|$
- RepDim(C): the size of C's minimal probabilistic representation
- Theorem [BNS13]:  $\Theta(RepDim(\mathcal{C}))$  samples are necessary and sufficient for pure-privately learning  $\mathcal{C}$  (improperly)

| Concept class | learner  | Sample complexity (pure DP)          | Sample complexity (approx DP)                            |
|---------------|----------|--------------------------------------|----------------------------------------------------------|
| C             | Proper   | $O(\log C )$ [KLNRS'08]              |                                                          |
|               | Improper | $\Theta(RepDim(C))$ [BNS'13]         |                                                          |
| points        | Proper   | $\Theta(\log(T))$ [KLNRS'08, BKN'10] | $\Theta(1)$ [BNS'14]                                     |
|               | Improper | Θ(1) [BKN'10, BNS'13]                |                                                          |
| thresholds    | Proper   | $\Theta(\log(T))$ [KLNRS'08, BKN'10] | $2^{O(\log^* T)}$ [BNS'14], $\Omega(\log^* T)$ [BNSV'15] |
|               | Improper | $\Theta(\log(T))$ [FX'13]            |                                                          |

# Back to Example 0: Learning points with approx. differential privacy

#### $A_{dist}$ by Smith & Thakurtha:

#### • Inputs:

- A set of possible solutions *F*
- Database  $S \in X^*$
- Sensitivity-1 quality function  $q: X^* \times F \to \mathbb{R}$

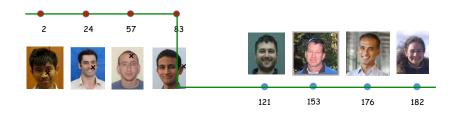
#### Algorithm:

- 1) Let  $f_1 \neq f_2$  be two highest score solutions in F, where  $q(S, f_1) \geq q(S, f_2)$
- 2) Compute  $gap(S)=q(S,f_1)-q(S,f_2)$  and  $gap^*=gap(S)+Lap\left(\frac{1}{\epsilon}\right)$
- 3) If  $gap^* < \frac{1}{\epsilon}\log\left(\frac{1}{\delta}\right)$  then output  $\perp$  and halt. Otherwise, output  $f_1$

# Back to Example 0: Learning points with approx. differential privacy

- Given a labeled sample  $S = (x_i, y_i)_{i=1}^m$ , define the quality of a domain element  $z \in X$  as:
  - $q(S,z) = |\{i : (x_i = z) \text{ and } (y_i = 1)\}|$
- Learner for Points [BNS'14]
  - Execute  $A_{dist}$  on S and q.
  - If returned  $\bot$ , output a random  $h \in POINT_d$ .
  - Else, if a domain element j was returned, then return  $h=c_{j}$ .

# Back to Learning Thresholds



- Why?
  - Seems fundamental and simple
    - "should not be too hard", disturbing difference between private and non-private setting

0123...

- [BNSV'15] Equivalent under differential privacy to:
  - Distribution learning:
    - D unknown distrib over X with cumulative F<sub>D</sub>
    - Goal: Given oracle access to D, find F: X  $\rightarrow$  [0,1] with small  $|F(x)-F_D(x)|$  for all  $x \in X$
  - Query release:
    - Given points  $(x_1,...,x_n) \in X$ , output data structure approximating  $|\{i: x_i < z\}|/n$  for all  $z \in X$
  - (Approximate) Median:
    - Given points  $(x_1,...,x_n) \in X$ , output z such that (approx.) half the points are smaller/greater than z
  - Interior point:
    - Given points  $(x_1,...,x_n) \in X$ , output z between min and max points

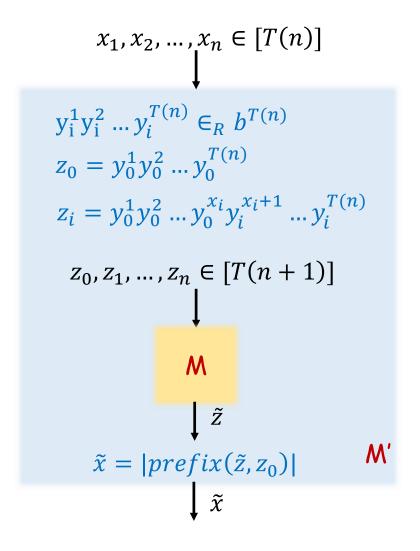
# Solving Interior Point with Approx DP Requires $\Omega(log*T)$ Samples [BNVS'15]

• Observe: Impossible to have n = 1 when  $T \ge 2$ 



- Strategy: Induction
  - Approx. dp mechanism M for solving IP over T(n+1) w/ n+1 samples
  - → Approx. dp mechanism M' for solving IP over T(n) w/ n samples
  - Where  $T(n+1) = b(n)^{T(n)}$

# Solving Interior Point with Approx DP Requires $\Omega(\log^*T)$ Samples[BNVS'15]



If M approx private so is M'

- Suppose M succeeds
  - $z_0, z_1, ..., z_n$  all share a prefix of length  $\min(x_1, ..., x_n)$  and hence  $\tilde{z}$  also shares this prefix with  $z_0$
  - Hence,  $\tilde{x} \ge \min(x_1, ..., x_n)$
- Let  $w = \max(x_1, ..., x_n)$ 
  - If  $\tilde{x} > w$  then  $\tilde{z}$  reveals  $y_0^{w+1}$
  - By approx. privacy, this can happen with probability at most  $\frac{e^{\epsilon}}{b} + \delta$

Privacy used for claiming correctness

## Variations on a the PPAC learning model

#### Pure-privacy, proper

Generic construction, but exhibits higher sample complexity than in non-private learning

#### Pure-privacy, improper

- Characterization of sample complexity in terms of randomized representation
- Limited gain in sample complexity (POINTS but not THREHOLD)

#### Approximate privacy, proper

- Mostly not well understood
- Improved sample complexity (POINTS and THRESHOLD, but cannot learn THRESHOLD over the reals)

#### Label privacy

- Significantly weaker notion of privacy (label protected but not sample)
- Characterization of sample complexity in terms of VC dimension

#### Semi-Supervised learning

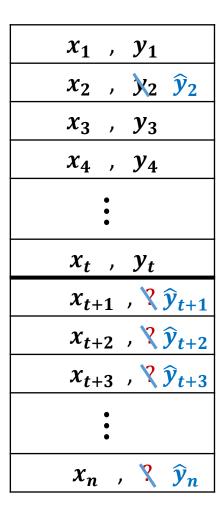
- Some examples labeled, most are not
- Characterization of labeled sample complexity in terms of VC dimension

# Semi-Supervised Learning [BNS'15]

- Input: batches of labeled and unlabeled samples
- Generic construction: Every finite concept class C can be learned privately using  $O(\operatorname{VC}(C))$  labeled examples.
  - The construction uses  $O(\log |C|)$  unlabeled examples
- Boosting the labeled sample complexity: Given a private learner for a concept class C, it is possible to reduce its labeled sample complexity to O(VC(C)).
  - While maintaining the unlabeled sample complexity

#### Reducing the labeled sample complexity of a given learner A

- Base learner  $\mathcal{A}$  with sample complexity n.
- Input: Database S of size n, partially labeled
- Let H be the set of all dichotomies over S realized by the target concept class C
- 2. Choose  $h \in H$  using the exponential mechanism with the <u>labeled portion</u> of S
- 3. Relabel S using h,
- 4. Execute *A*



#### Reducing the labeled sample complexity of a given learner $\mathcal{A}$

- Base learner  $\mathcal{A}$  with sample complexity n.
- Input: Database S of size n, partially labeled

- $\exists f \in H \text{ s.t. } error_S(f)$
- Let **H** be the set of all dichotomies over **S** realized by the target concept class C
- 2. Choose  $h \in H$  using the exponential mechanism with the **labeled portion** of **S**
- 3. Relabel S using h,

A returns a hypothesis that is close to h

4. Execute A

If S contains  $\approx VC(C) \log |S|$  labeled exampless then h is close to the target concept

#### Reducing the labeled sample complexity of a given learner A

- Base learner  $\mathcal{A}$  with sample complexity n.
- Input: Database S of size n, partially labeled
- Let H be the set of all dichotomies over S realized by the target concept class C
- 2. Choose  $h \in H$  using the exponential mechanism with the labeled portion of S
- 3. Relabel *S* using *h*

4. Execute A

#### Solution:

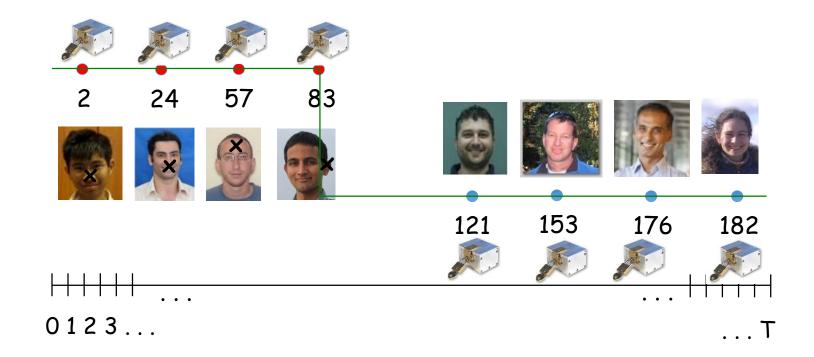
use h to relabel sample, analyze distribution of relabeled databases

#### Difficulty:

H depends on S!
Outputting h would breach privacy!

# Thresholds and Computational Complexity [Bun-Zhandry'15]

- Order Revealing Encryption:
- Learn {<, >, =} but nothing else
- Efficiently learnable, but not efficiently privately learnable



Thanks: Mark Bun

# Epilog: why study private learning?

- Real-world implementations of learning algorithms can lead to loss of privacy
  - Recall Vitaly Shmatikov's talks!
  - Carefully distinguish privacy breaches from doing science
  - McSherry's "secrets about you" vs. "your secrets"
- Learning: a basic task that abstracts many of the computations performed on collections of private individual data
  - Hence, important to understand to what extent it can be done under the restriction of differential privacy
- A test bed for many ideas (e.g., how to circumvent sample complexity bounds)
- Learning intimately related with differential privacy
  - Learning theory tools useful for privacy [BLR'08, HR'10]
  - Differential privacy implies generalization [McSherry, DFHPRR'15, BNSSU'15]
    - Useful even when privacy is not the goal!

### What have we Learned?

- PAC learning exhibits a lot of complexity under differential privacy
  - Even for simple complexity classes like points and thresholds
  - A variety of applicable strategies, quite a full picture
    - Still open: improper learning and characterization of sample complexity under approx. privacy
  - Crypto used for showing hardness (fingerprinting codes, order-revealing encryption)
    - But can it be used positively?

### Some more references

- Synthetic data
  - <u>Avrim Blum</u>, Katrina Ligett, <u>Aaron Roth</u>: A learning theory approach to noninteractive database privacy. <u>STOC 2008</u>
- Boosting
  - Cynthia Dwork, Guy N. Rothblum, Salil P. Vadhan: Boosting and Differential Privacy. FOCS 2010
- Continuous domains:
  - Kamalika Chaudhuri, <u>Daniel J. Hsu</u>: Sample Complexity Bounds for Differentially Private Learning. <u>COLT 2011</u>
- Other machine learning
  - See Adam's talk