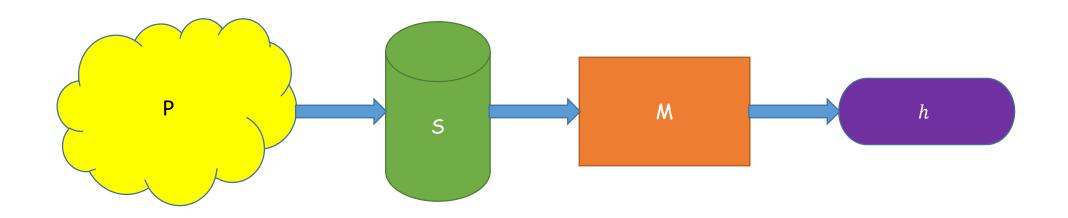
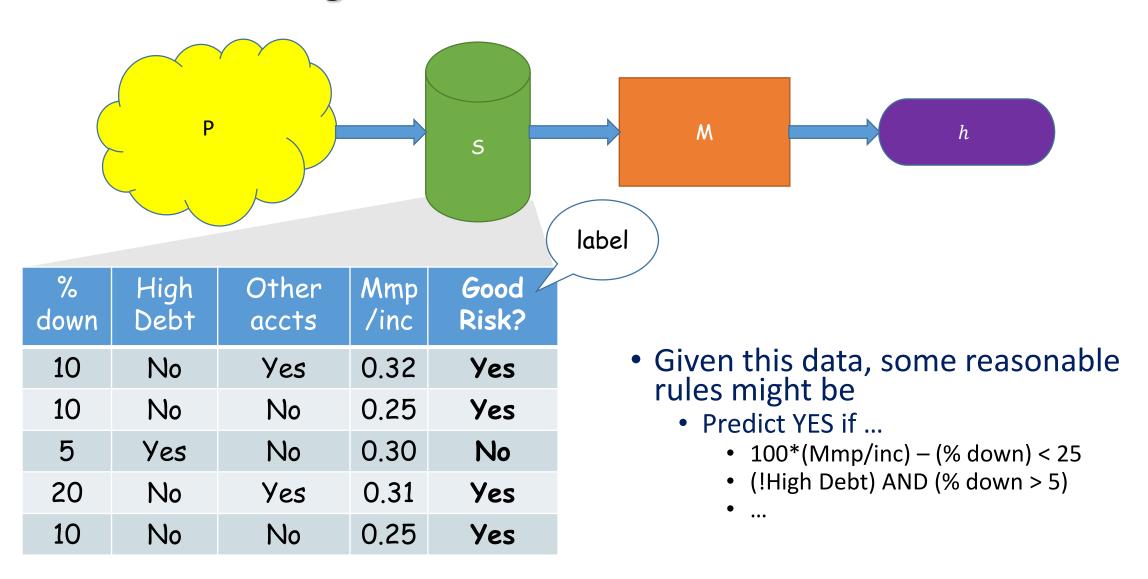
Private Learning - 1



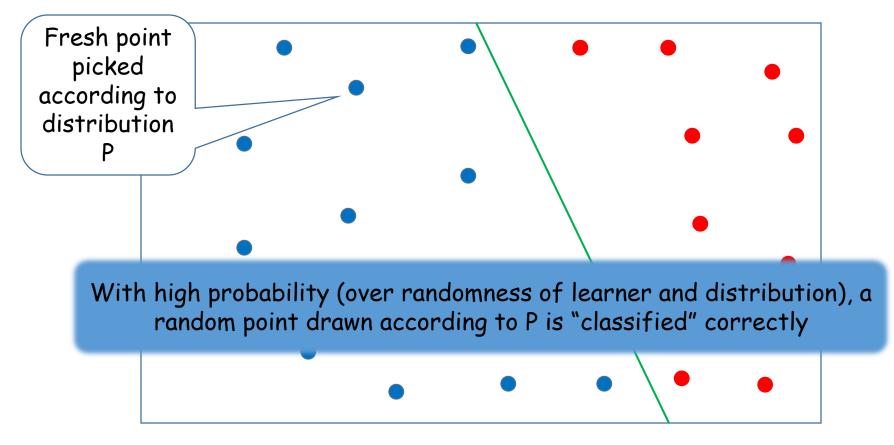
Kobbi Nissim, Georgetown University

Bar-Ilan Winter School on Differential Privacy February 2017

What is learning?



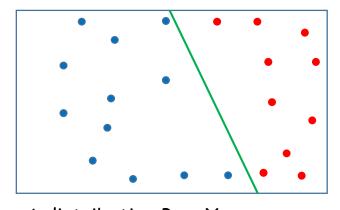
What is learning?



A distribution P on X. Each point in X labeled 0/1 Samples drawn according to P

Notation

- *X* : set of all possible (unlabeled) instances
- A concept is a predicate over $X: c: X \rightarrow \{0,1\}$
- A concept class C is a set of concepts
 - We will assume that instances are labeled by a target concept $c \in C$, the label of instance x is c(x)
- P is an unknown distribution over X
- L is a learning algorithm
- Goal of learning algorithm: output a hypothesis h that "approximates" the target concept c on the distribution P
 - If $h \notin C$ is allowed we call the learner improper

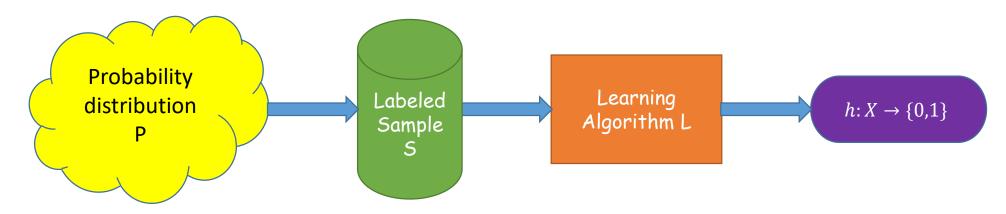


A distribution P on X.

Each point in X labeled 0/1

Samples drawn according to P

PAC learning [Valiant 84]



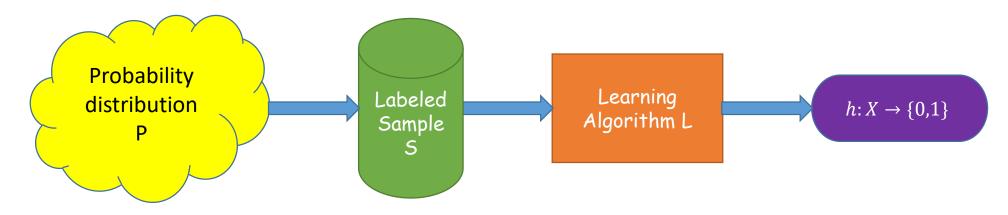
• For a probability distribution P, concept c and hypothesis h define

$$error_P(c,h) = \Pr_{x \sim P}[c(x) \neq h(x)]$$

- ullet Ideally, we would like our learner to produce a hypothesis h with zero error
- Error is inevitable:
 - ullet There is a chance that the labeled sample S does not contain enough information to produce an error-less hypothesis
- Relax requirements:
 - Typically, *h* approximately correct
 - With small probability not even that

PAC: Probably Approximately Correct

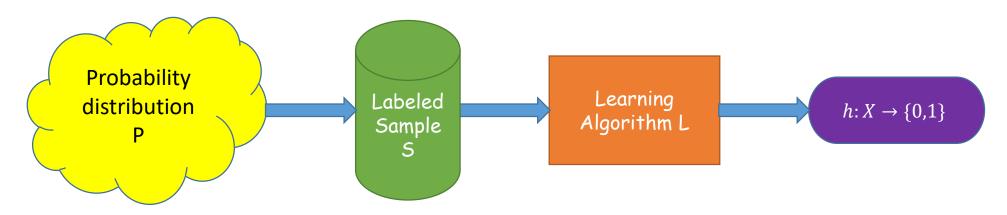
PAC learning [Valiant 84]



- Recall: $error_P(c, h) = \Pr_{x \sim P}[c(x) \neq h(x)]$
- L is a (α, β) PAC learner for concept class C if
 - For all distributions P and target concepts $c \in C$
 - After receiving a polynomial number of examples sampled i.i.d. from P and labeled according to c it outputs a hypothesis h such that

$$\Pr[error_P(c,h) < \alpha] \ge 1 - \beta$$

Learning over sample vs. over distribution



• Suppose that given $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ the learner outputs a hypothesis h such that

$$error_{S}(c,h) = \Pr_{i \in R[n]}[h(x_i) \neq y_i] \leq \alpha$$

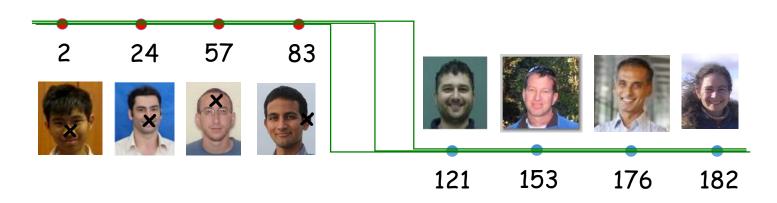
- Is $error_{P}(c, h)$ small?
 - Not necessarily as h may not generalize
 - E.g., choose h s.t. $h(x_i) = y_i$ for all i and let h(x) be random for $x \notin S$

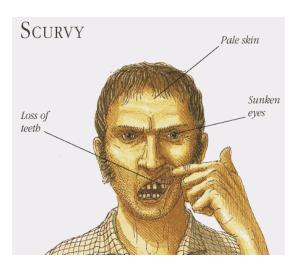
Questions asked about PAC learning

- Sample complexity: Lower and upper bounds on the number of samples needed to learn a concept class ${\cal C}$
- Time complexity: Time complexity of learning a concept class C
- Is there a benefit in improper learning (i.e., allowing $h \notin C$)?
 - Yes! Sometimes proper learning intractable but improper learning tractable!

Let's do some science!

- Scurvy: a problem throughout human history
- Caused by vitamin C deficiency
- How much vitamin C is enough?





Thanks: Mark Bun

Example 1: learning thresholds

• Concept Class: $\mathcal{C} = \text{THRESHOLD}_{\mathbf{d}} = \{c_0, \dots, c_{2^d}\}$

$$\mathsf{THRESHOLD}_d = \left\{ \begin{array}{c} c_j(x) \\ \\ \downarrow \\ 1 \end{array} \right. \begin{array}{c} c_j(x) = 1 \iff x < j \\ \\ \downarrow \\ 1 \end{array} \right\}$$

- Learning over sample is easy: output any consistent hypothesis from THRESHOD_d
 - Is this good?

Example 0: learning points

• Concept Class: $C = POINT_d = \{c_1, ..., c_{2^d}\}$

$$POINT_{d} = \left\{ \begin{array}{c} c_{j}(x) \\ \\ \\ 1 \end{array} \right. \begin{array}{c} c_{j}(x) = 1 \iff x = j \\ \\ \\ j \end{array} \begin{array}{c} \\ \\ T \end{array} \right\}$$

- A PAC learner for POINT_d with O(1) samples:
 - If there exists i s.t. (i, 1) in the sample, return $h = c_i$.
 - Otherwise (all labels are zero), return $h \equiv 0$ (or a random $h \in C$)
- $error_P(c_j,h)>\alpha$ only if $=\Pr_{x\sim P}[x=j]>\alpha$ but sample contains no example (j,1)
- Happens w.p. $\leq (1-\alpha)^n$, to get (α,β) -PAC take $n>O(\frac{\log\frac{1}{\beta}}{\alpha})$

PAC learning finite concept classes (Occam's Razor)

- Let C be a finite concept class
- $S = \{(x_1, y_1), ..., (x_n, y_n)\}$: a sample of n i.i.d. examples sampled from P and labeled according to c, i.e., $y_i = c(x_i)$
- We say that a hypothesis $h \in C$ is consistent with S if $h(x_i) = y_i$ for all i
- Learner:
 - Input: $n \ge \frac{\log |C| + \log \frac{1}{\beta}}{\alpha}$ labeled samples
 - Output: a consistent hypothesis
- Proof of learner's correctness:
 - For any hypothesis h with $error_P(c,h) > \alpha$, $\Pr[h \ consistent] \le (1-\alpha)^n \le e^{-\alpha n}$
 - Hence, probability algorithm outputs h with $error_P(c,h) > \alpha$ is at most $|C|e^{-\alpha n}$
 - Taking $n \ge \frac{\log |\mathcal{C}| + \log \frac{1}{\beta}}{\alpha}$ we get that the probability of such event is at most β

Example 1: learning thresholds

• Concept Class: $\mathcal{C} = \text{THRESHOLD}_{\mathbf{d}} = \{c_0, ..., c_{2^d}\}$

$$\mathsf{THRESHOLD}_d = \left\{ \begin{array}{c} c_j(x) \\ \\ \\ 1 \end{array} \right. \begin{array}{c} c_j(x) = 1 \iff x \leq j \\ \\ 1 \end{array} \right\}$$

- A PAC learner for THRESHOD_d with O(1) samples:
 - Let i be largest s.t. (i, 1) in the sample, return $h = c_i$.
 - Otherwise (all labels are zero), return $h \equiv 0$ (or a random $h \in C$)

VC dimension

- Given a collection of distinct points $S=(x_1,\ldots,x_n)$ and a concept c, define the dichotomy $c(S)=(c(x_1),\ldots,c(x_n))$ (i.e., a string of n bits)
- Given $S = (x_1, ..., x_n)$ and a concept class C define $C(S) = \{c(S) : c \in C\}$
- If $|C(S)| = 2^n$ we say that S is shattered by C
- Example: Let $X=\mathbb{R}$ and $C=\{c_{a,b}:a,b\in\mathbb{R}\}$ where $c_{a,b}(x)=1_{a\leq x\leq b}$
 - Let S = (2,7)
 - $c_{0,1}(S)=(0,0); c_{1,3}(S)=(1,0); c_{3,10}(S)=(0,1); c_{0,10}(S)=(1,1).$ Hence, S is shattered by C
 - No S containing three distinct points is shattered by C: dichotomy (1,0,1) is impossible VC(C)=2
- The Vapnik Chervonenkis dimension of concept class C, denoted VC(C), is the size of the largest collection of points that is shattered by C

VC dimension and PAC learning

- C: concept class, let d = VC(C)
- $S = (x_1, ..., x_n)$: a collection of n distinct points
- Recall: $C(S) = \{c(S) : c \in C\}$
- By definition, if $n \le d$ then $|C(S)| \le 2^d$ (with equality for at least one set S)
- Theorem: if n > d then $|C(S)| \le \left(\frac{en}{d}\right)^d$
- PAC Learner for classes with finite VC dimension:
 - Input: $n \ge O(\frac{VC(C)\log_{\alpha}^{1} + \log_{\beta}^{1}}{\alpha})$ labeled samples
 - Output: a consistent hypothesis from H = C
- An almost matching lowerbound:
 - $\Omega(\frac{VC(C) + \log^{\frac{1}{\beta}}}{\alpha})$ labeled samples required

Example 2: Learning parity functions

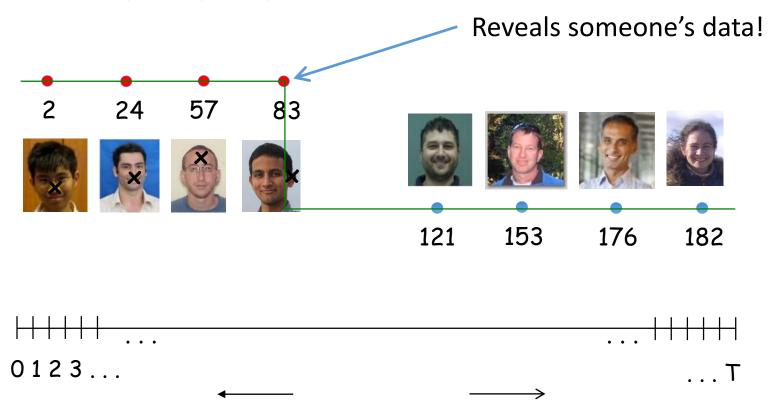
- Concept Class: $\mathcal{C} = \operatorname{PARITY_d} = \{c_r\}_{r \in \{0,1\}^d}$
- $c_r(x) = < r, x > mod 2$
- VC(C) = d

```
Let S=(e_1,\ldots,e_d)
For any r=\{0,1\}^d, c_r(S)=r
Hence \mathbf{C}(S)=\{0,1\}^d
```

- An efficient PAC learner for $PARITY_d$ with O(d) samples:
 - Each example $(x_i, c_r(y_i))$ makes a linear constraint
 - E.g., sample (1101, 1) translates to $r_1 + r_2 + r_4 \pmod{2} = 1$
 - Find a consistent r' by solving the set of linear equations over GF(2) imposed by input x

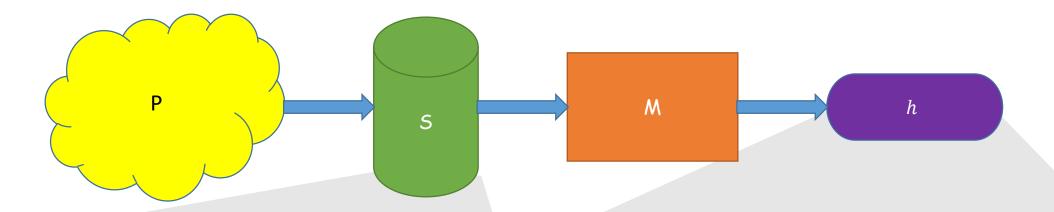
PAC learning – where's the privacy problem?

- Learner: returns a consistent threshold function
 - E.g., transition on largest point labeled "1"
 - (differential) privacy not preserved



Thanks: Mark Bun

What is *private* learning?



% down	High Debt	Other accts	Mmp /inc	Good Risk?
10	No	Yes	0.32	Yes
10	No	No	0.25	Yes
15	No	Yes	0.32	Yes
20	No	Yes	0.31	Yes
10	No	No	0.25	Yes

Predict YES if 100*(Mmp/inc) – (% down) < 25

- Private Learner:
 - Satisfies standard definition of PAC learning

Average-case guarantee

• Is differentially private

Worst-case guarantee

Private PAC (PPAC)

- Definition: L is a $(\alpha, \beta, \epsilon, \delta)$ PPAC learner for concept class C if
 - Utility: L is a (α, β) PAC learner for concept class C:
 - For all distributions P and target concepts $c \in C$, L outputs a hypothesis h such that

$$\Pr[error_P(c,h) < \alpha] \ge 1 - \beta$$

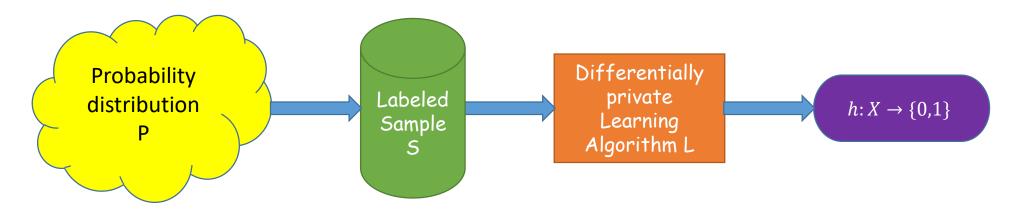
Probability over sample and algorithm

- Privacy: L is a (ϵ, δ) -differentially private:
 - for all neighboring sample sets S,S' and for all sets of hypothesis T

$$\Pr[L(S) \in T] \le e^{\epsilon} \cdot \Pr[L(S') \in T] + \delta$$

Probability over sample and algorithm

Private learning over sample vs. over distribution



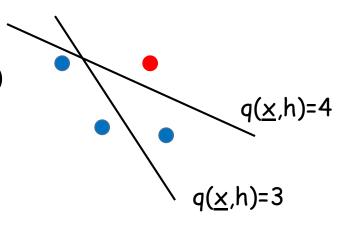
• Suppose that given $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ the differentially private learner outputs a hypothesis h such that

$$error_{S}(c,h) = \Pr_{i \in R[n[}[h(x_i) \neq y_i] \leq \alpha$$

- Is $error_{P}(c, h)$ small?
- Yes!
- Generalization of differential privacy implies that $error_P(c,h) \leq \alpha + \epsilon$ if $n \geq O(\frac{\ln \frac{1}{\delta}}{\epsilon^2})$

PPAC learning of finite concept classes [KLNRS 08]

- Theorem: every finite concept class can be learned privately, using a polynomial number of samples
- Let C be a finite concept class
- $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$: a sample of n i.i.d. examples sampled from P and labeled according to c, i.e., $y_i = c(x_i)$
- Learner: (based on the Exponential Mechanism [MT07])
 - Define $q(S, h) = |\{i: h(x_i) = y_i\}|$
 - Output hypothesis $h \in \mathcal{C}$ w.p. proportional to $e^{\frac{\epsilon}{2}q(S,h)}$
- Using properties of the exponential mechanism:
 - Learner is $(\epsilon, 0)$ -differentially private
 - Proper PAC learner if $n \ge O(\left(\log|C| + \log\frac{1}{\beta}\right) \cdot \max\left(\frac{1}{\epsilon^2}, \frac{1}{\alpha\epsilon}\right))$
- Can be extended to agnostic learning
- Running time may be exponential



Some PPAC learners

- POINT_d = $\{c_1, ..., c_{2^d}\}; c_j(x) = 1 \iff x = j$
 - Generic PPAC construction:
 - Polynomial time
 - Requires O(d) samples
 - But PAC learner with O(1) samples
- THRESHOLD_d = $\{c_0, \dots, c_{2d}\}; c_j(x) = 1 \iff x < j$
 - Generic PPAC construction:
 - Polynomial time
 - Requires O(d) samples
 - But PAC learner with O(1) samples
- $C = PARITY_d = \{c_r\}_{r \in \{0,1\}^d}; c_r(x) = < r, x > mod 2$
 - Efficient construction [KLNRS08]:
 - Polynomial time
 - Requires O(d) samples
 - PAC learner also requires O(d) samples

Efficient PPAC learner for Parity

- Parity: $c_r(x) = \langle r, x \rangle \pmod{2}$
- Input: $\underline{x} = ((y_1, c_r(y_1)),, (y_n, c_r(y_n)))$
- Recall Non-private learning algorithm:
 - Solving the set of linear equations over GF(2) imposed by input x to recover a consistent r'
 - Is this privacy preserving?
- The Effect of a Single Example:
- Let S_i be space of feasible solutions for the set of equations imposed by \underline{x}_i
 - Add a fresh example $(y_{i+1}, c_r(y_{i+1}))$ to \underline{x}_i and let S_{i+1} be the new solution space

• Then,

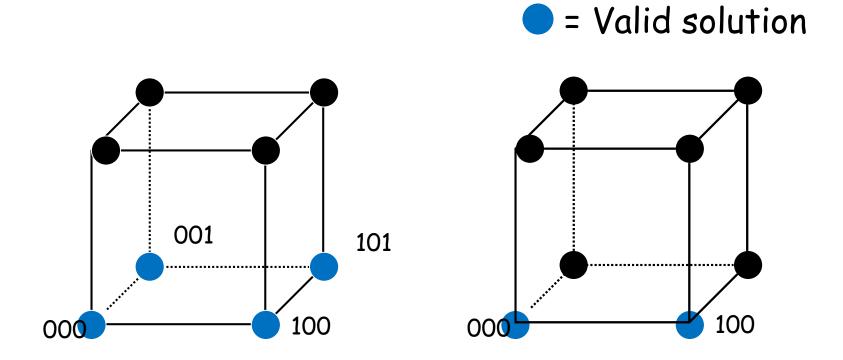
$$1.|S_{i+1}| \ge |S_i|/2$$
, or

$$2.|S_{i+1}| = 0$$

Size of solution space reduces by 1/2

System becomes inconsistent

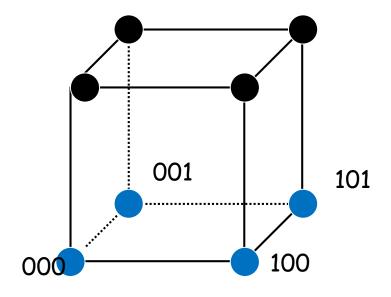
The Effect of a Single Example

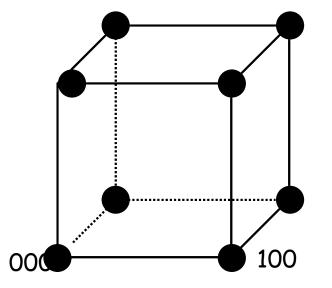


new constraint: third coordinate is 0

The Effect of a Single Example

= Valid solution





new constraint: second coordinate is 1

Solution space changes drastically only when algorithm fails

PRIVATE LEARNER FOR PARITY

1. With probability ½ output "fail"

Smoothes out extreme jumps in S

- 2. $\underline{x}_s \leftarrow \text{pick each example from } \underline{x} \text{ with probability } \varepsilon/4$
- 3. Use Gaussian elimination to solve the system of equations imposed by examples in \underline{x}_s .
 - Let S be the set of feasible solutions
- 4. If $S = \emptyset$, output "fail". Otherwise, output a random vector in S

Private Learner for Parity

- ε-differential privacy preserved:
 - E.g. <u>x</u>, <u>x</u>' neighboring:
 - <u>x</u> consistent with some solutions S.
 - <u>x'</u> inconsistent.
 - Pr[Fail] changes from $\frac{1}{2}$ to $\frac{1}{2} + \frac{\epsilon}{4}$

Learning:

- Confidence can be amplifies by repeating log $1/\beta$ runs (decreasing ϵ accordingly)
- Accuracy α , confidence β privacy ϵ :

n=O((d log 1/ β + log² 1/ β)/ α ε) examples suffice

PAC learning vs. PPAC learning

- PAC learning:
 - Occam's razor : sample complexity $\sim \log |C|$
 - Generally: sample complexity $\sim VC(C)$
 - $VC(C) \leq \log |C|$
 - Finite for some infinite concept classes
- PPAC learning:
 - 'Private Occam's razor': sample complexity $\sim \log |C|$
 - Can we close gap with non-private learning?
 - What about infinite concept classes, is there an analog of the VC dimension? Does PAC learnability imply PPAC learnability?
 - Efficient PPAC parity learner
 - Is every efficiently PAC learnable concept class also efficiently PPAC learnable?

References

- Michael J. Kearns and Umesh Vazirani: An Introduction to Computational Learning Theory. MIT Press, 1994
- Shai Shalev-Shwartz and Shai Ben-David: Understanding Machine Learning – From Theory to Algorithms, Cambridge University Press, 2014
- Avrim Blum, Cynthia Dwork, Frank McSherry, Kobbi Nissim: Practical privacy: the SuLQ framework. PODS 2005
- Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith: What Can We Learn Privately? FOCS 2008
- Cynthia Dwork, Guy N. Rothblum, Salil P. Vadhan: Boosting and Differential Privacy. FOCS 2010