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What is learning?

• Given this data, some reasonable 
rules might be
• Predict YES if …

• 100*(Mmp/inc) – (% down) < 25
• (!High Debt) AND (% down > 5)
• …

% 
down

High
Debt

Other
accts

Mmp
/inc

Good
Risk?

10 No Yes 0.32 Yes

10 No No 0.25 Yes

5 Yes No 0.30 No

20 No Yes 0.31 Yes

10 No No 0.25 Yes
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What is learning?

Samples drawn according to P

Fresh point
picked 

according to 
distribution 

P 

With high probability (over randomness of learner and distribution), a 
random point drawn according to P is “classified” correctly

A distribution P on X. Each point in X labeled 0/1



Notation

• 𝑋 : set of all possible (unlabeled) instances

• A concept is a predicate over 𝑋:  𝑐: 𝑋 {0,1}

• A concept class 𝐶 is a set of concepts
• We will assume that instances are labeled by a target concept 𝑐 ∈ 𝐶, the label 

of instance 𝑥 is 𝑐(𝑥)

• 𝑃 is an unknown distribution over 𝑋

• 𝐿 is a learning algorithm

• Goal of learning algorithm: output a hypothesis ℎ that 
“approximates” the target concept 𝑐 on the distribution 𝑃
• If ℎ ∉ 𝐶 is allowed we call the learner improper

A distribution P on X. 
Each point in X labeled 0/1
Samples drawn according to P



PAC learning [Valiant 84]

• For a probability distribution 𝑃, concept 𝑐 and hypothesis ℎ define
𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ = Pr

𝑥∼𝑃
[𝑐 𝑥 ≠ ℎ 𝑥 ]

• Ideally, we would like our learner to produce a hypothesis ℎ with zero error
• Error is inevitable:

• There is a chance that the labeled sample 𝑆 does not contain enough information to 
produce an error-less hypothesis

• Relax requirements:
• Typically, ℎ approximately correct
• With small probability not even that PAC : Probably Approximately Correct

Learning 
Algorithm L

ℎ: 𝑋 → {0,1}

Probability 
distribution

P

Labeled 
Sample

S



PAC learning [Valiant 84]

• Recall: 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ = Pr
𝑥∼𝑃

[𝑐 𝑥 ≠ ℎ 𝑥 ]

• 𝐿 is a (𝛼, 𝛽)- PAC learner for concept class 𝐶 if 
• For all distributions 𝑃 and target concepts 𝑐 ∈ 𝐶

• After receiving a polynomial number of examples sampled i.i.d. from 𝑃 and 
labeled according to 𝑐 it outputs a hypothesis ℎ such that 

Pr 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ < 𝛼 ≥ 1 − 𝛽

Learning 
Algorithm L

ℎ: 𝑋 → {0,1}

Probability 
distribution

P

Labeled 
Sample

S



Learning over sample vs. over distribution

• Suppose that given 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ) the learner outputs a 
hypothesis ℎ such that

𝑒𝑟𝑟𝑜𝑟𝑆 𝑐, ℎ = Pr
i∈𝑅[𝑛]

ℎ 𝑥𝑖 ≠ 𝑦𝑖 ≤ 𝛼

• Is 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ small?

• Not necessarily as ℎ may not generalize 

• E.g., choose ℎ s.t. ℎ 𝑥𝑖 = 𝑦𝑖 for all 𝑖 and let ℎ 𝑥 be random for 𝑥 ∉ 𝑆

Learning 
Algorithm L

ℎ: 𝑋 → {0,1}

Probability 
distribution

P

Labeled 
Sample

S



Questions asked about PAC learning

• Sample complexity: Lower and upper bounds on the number of 
samples needed to learn a concept class 𝐶

• Time complexity: Time complexity of learning a concept class 𝐶

• Is there a benefit in improper learning (i.e., allowing ℎ ∉ 𝐶)?
• Yes! Sometimes proper learning intractable but improper learning tractable!



Let’s do some science!

• Scurvy: a problem throughout human history 

• Caused by vitamin C deficiency

• How much vitamin C is enough? 

Thanks: Mark Bun
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Example 1: learning thresholds

• Concept Class: 𝓒 = 𝐓𝐇𝐑𝐄𝐒𝐇𝐎𝐋𝐃𝐝 = 𝒄𝟎, … , 𝒄𝟐𝒅

• Learning over sample is easy: output any consistent hypothesis 
from THRESHODd

• Is this good?

𝐓𝐇𝐑𝐄𝐒𝐇𝐎𝐋𝐃𝒅 =
.

𝟏 𝒋. 𝑻

𝒄𝒋 𝒙 = 𝟏 ⟺ 𝒙 < 𝒋

𝒄𝒋(𝒙)

𝒙

Let’s consider something even simpler…



E

𝑷𝑶𝑰𝑵𝑻𝒅 =
.

𝟏 𝒋 𝑻

𝒄𝒋 𝒙 = 𝟏 ⟺ 𝒙 = 𝒋
𝒄𝒋(𝒙)

𝒙

Example 0: learning points

• Concept Class: 𝓒 = 𝐏𝐎𝐈𝐍𝐓𝐝 = 𝒄𝟏, … , 𝒄𝟐𝒅

• A PAC learner for POINTd with 𝑂 1 samples:
• If there exists 𝑖 s.t. 𝑖, 1 in the sample, return ℎ = 𝑐𝑖.
• Otherwise (all labels are zero), return ℎ ≡ 0 (or a random ℎ ∈ 𝐶}

• 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐𝑗 , ℎ > 𝛼 only if = Pr
𝑥∼𝑃

[𝑥 = 𝑗] > 𝛼 but sample contains no example 𝑗, 1

• Happens w.p. ≤ 1 − 𝛼 𝑛, to get 𝛼, 𝛽 -PAC take 𝑛 > 𝑂(
log

1

𝛽

𝛼
)



PAC learning finite concept classes (Occam’s 
Razor)
• Let 𝐶 be a finite concept class

• 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ): a sample of 𝑛 i.i.d. examples sampled from 𝑃 and labeled 
according to 𝑐, i.e., 𝑦𝑖 = 𝑐 𝑥𝑖

• We say that a hypothesis ℎ ∈ 𝐶 is consistent with 𝑆 if ℎ 𝑥𝑖 = 𝑦𝑖 for all 𝑖

• Learner: 

• Input: n ≥
log |𝐶|+log

1

𝛽

𝛼
labeled samples

• Output: a consistent hypothesis

• Proof of learner’s correctness:

• For any hypothesis ℎ with 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ > 𝛼, Pr ℎ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ≤ 1 − 𝛼 𝑛 ≤ 𝑒−𝛼𝑛

• Hence, probability algorithm outputs ℎ with 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ > 𝛼 is at most |𝐶|𝑒−𝛼𝑛

• Taking n ≥
log |𝐶|+log

1

𝛽

𝛼
we get that the probability of such event is at most 𝛽



Example 1: learning thresholds

• Concept Class: 𝓒 = 𝐓𝐇𝐑𝐄𝐒𝐇𝐎𝐋𝐃𝐝 = 𝒄𝟎, … , 𝒄𝟐𝒅

• A PAC learner for THRESHODd with 𝑂 1 samples:
• Let 𝑖 be largest s.t. 𝑖, 1 in the sample, return ℎ = 𝑐𝑖.
• Otherwise (all labels are zero), return ℎ ≡ 0 (or a random ℎ ∈ 𝐶}

𝐓𝐇𝐑𝐄𝐒𝐇𝐎𝐋𝐃𝒅 =
.

𝟏 𝒋. 𝑻

𝒄𝒋 𝒙 = 𝟏 ⟺ 𝒙 ≤ 𝒋

𝒄𝒋(𝒙)

𝒙



VC dimension

• Given a collection of distinct points 𝑆 = (𝑥1, … , 𝑥𝑛) and a concept 𝑐, define 
the dichotomy 𝑐 𝑆 = (𝑐 𝑥1 , … , 𝑐 𝑥𝑛 ) (i.e., a string of 𝑛 bits)

• Given 𝑆 = (𝑥1, … , 𝑥𝑛) and a concept class 𝐶 define 𝐶 𝑆 = {𝑐 𝑆 : 𝑐 ∈ 𝐶}
• If 𝐶 𝑆 = 2𝑛 we say that 𝑆 is shattered by C

• Example: Let 𝑋 = ℝ and 𝐶 = {𝑐𝑎,𝑏: 𝑎, 𝑏 ∈ ℝ} where 𝑐𝑎,𝑏 𝑥 = 1𝑎≤𝑥≤𝑏
• Let 𝑆 = (2, 7)

• 𝑐0,1 𝑆 = 0,0 ; 𝑐1,3 𝑆 = 1,0 ; 𝑐3,10 𝑆 = 0,1 ; 𝑐0,10 𝑆 = (1,1). 
Hence, 𝑆 is shattered by 𝐶

• No 𝑆 containing three distinct points is shattered by 𝐶: dichotomy 
(1,0,1) is impossible

• The Vapnik Chervonenkis dimension of concept class 𝐶, denoted  𝑉𝐶 𝐶 , is 
the size of the largest collection of points that is shattered by 𝐶

𝑉𝐶 𝐶 = 2



VC dimension and PAC learning

• 𝐶: concept class, let 𝑑 = 𝑉𝐶 𝐶
• 𝑆 = (𝑥1, … , 𝑥𝑛): a collection of 𝑛 distinct points
• Recall: 𝐶 𝑆 = {𝑐 𝑆 : 𝑐 ∈ 𝐶}
• By definition, if 𝑛 ≤ 𝑑 then 𝐶 𝑆 ≤ 2𝑑 (with equality for at least one set 𝑆)

• Theorem: if 𝑛 > 𝑑 then 𝐶 𝑆 ≤
𝑒𝑛

𝑑

𝑑

• PAC Learner for classes with finite VC dimension: 

• Input: n ≥ 𝑂(
𝑉𝐶 𝐶 log

1

𝛼
+log

1

𝛽

𝛼
) labeled samples

• Output: a consistent hypothesis from 𝐻 = 𝐶

• An almost matching lowerbound:

• Ω(
𝑉𝐶 𝐶 +log

1

𝛽

𝛼
) labeled samples required



Example 2: Learning parity functions

• Concept Class: 𝓒 = 𝐏𝐀𝐑𝐈𝐓𝐘𝐝 = 𝒄𝒓 𝒓∈ 𝟎,𝟏 𝒅

• 𝑐𝑟 𝑥 =< 𝑟, 𝑥 > 𝑚𝑜𝑑 2

• 𝑉𝐶 𝐶 = 𝑑

• An efficient PAC learner for P𝐴𝑅𝐼𝑇𝑌d with 𝑂 𝑑 samples:
• Each example (xi,cr(yi)) makes a linear constraint

• E.g., sample (1101, 1) translates to r1 + r2 + r4 (mod 2) =1
• Find a consistent r’ by solving the set of linear equations over 

GF(2) imposed by input x

Let 𝑆 = (𝑒1, … , 𝑒𝑑)
For any 𝑟 = 0,1 𝑑 , 𝑐𝑟 𝑆 = 𝑟
Hence C 𝑆 = 0,1 𝑑



PAC learning – where’s the privacy problem?

• Learner: returns a consistent threshold function

• E.g., transition on largest point labeled “1”
• (differential) privacy not preserved

Thanks: Mark Bun
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Reveals someone’s data!



What is private learning?

Predict YES if 100*(Mmp/inc) – (% down) < 25% 
down

High
Debt

Other
accts

Mmp
/inc

Good
Risk?

10 No Yes 0.32 Yes

10 No No 0.25 Yes

5 Yes No 0.30 No

20 No Yes 0.31 Yes

10 No No 0.25 Yes

P
S

M ℎ

15 No Yes 0.32 Yes

• Private Learner:
• Satisfies standard definition of PAC 

learning

• Is differentially private
Average-case guarantee

Worst-case guarantee



Private PAC (PPAC) 

• Definition: 𝐿 is a (𝛼, 𝛽, 𝜖, 𝛿)- PPAC learner for concept class 𝐶 if 

• Utility: 𝐿 is a (𝛼, 𝛽)- PAC learner for concept class 𝐶:

• For all distributions 𝑃 and target concepts 𝑐 ∈ 𝐶,  𝐿 outputs a 
hypothesis ℎ such that

Pr 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ < 𝛼 ≥ 1 − 𝛽

• Privacy: 𝐿 is a (𝜖, 𝛿)-differentially private:

• for all neighboring sample sets 𝑆, 𝑆′ and for all sets of 
hypothesis  𝑇

Pr 𝐿 𝑆  𝑇 ≤ 𝑒𝜖 ⋅ Pr 𝐿 𝑆’  𝑇 + 𝛿

Probability over sample 
and algorithm

Probability over sample 
and algorithm



Private learning over sample vs. over distribution

• Suppose that given 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ) the differentially private learner 
outputs a hypothesis ℎ such that

𝑒𝑟𝑟𝑜𝑟𝑆 𝑐, ℎ = Pr
i∈𝑅[𝑛[

ℎ 𝑥𝑖 ≠ 𝑦𝑖 ≤ 𝛼

• Is 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ small?

• Yes! 

• Generalization of differential privacy implies that 𝑒𝑟𝑟𝑜𝑟𝑃 𝑐, ℎ ≤ 𝛼 + 𝜖 if 

𝑛 ≥ 𝑂(
ln

1

𝛿

𝜖2
)

Differentially 
private 

Learning 
Algorithm L

ℎ: 𝑋 → {0,1}

Probability 
distribution

P

Labeled 
Sample

S



PPAC learning of finite concept classes [KLNRS 08]

• Theorem: every finite concept class can be learned privately, using a 
polynomial number of samples

• Let 𝐶 be a finite concept class
• 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ): a sample of 𝑛 i.i.d. examples sampled from 𝑃

and labeled according to 𝑐, i.e., 𝑦𝑖 = 𝑐 𝑥𝑖
• Learner: (based on the Exponential Mechanism [MT07])

• Define 𝑞 𝑆, ℎ = | 𝑖: ℎ 𝑥𝑖 = 𝑦𝑖 |

• Output hypothesis ℎ ∈ 𝐶 w.p.  proportional to 𝑒
𝜖

2
𝑞 𝑆,ℎ

• Using properties of the exponential mechanism:
• Learner is 𝜖, 0 -differentially private

• Proper PAC learner if 𝑛 ≥ 𝑂( log 𝐶 + log
1

𝛽
⋅ max

1

𝜖2
,
1

𝛼𝜖
)

• Can be extended to agnostic learning
• Running time may be exponential

q(x,h)=3

q(x,h)=4



Some PPAC learners

• 𝐏𝐎𝐈𝐍𝐓𝐝 = 𝒄𝟏, … , 𝒄𝟐𝒅 ; 𝒄𝒋 𝒙 = 𝟏 ⟺ 𝒙 = 𝒋
• Generic PPAC construction:

• Polynomial time
• Requires 𝑂(𝑑) samples

• But PAC learner with O(1) samples

• 𝐓𝐇𝐑𝐄𝐒𝐇𝐎𝐋𝐃𝐝 = 𝒄𝟎, … , 𝒄𝟐𝒅 ; 𝒄𝒋 𝒙 = 𝟏 ⟺ 𝒙 < 𝒋
• Generic PPAC construction:

• Polynomial time
• Requires 𝑂(𝑑) samples

• But PAC learner with O(1) samples

• 𝓒 = 𝐏𝐀𝐑𝐈𝐓𝐘𝐝 = 𝒄𝒓 𝒓∈ 𝟎,𝟏 𝒅; 𝑐𝑟 𝑥 =< 𝑟, 𝑥 > 𝑚𝑜𝑑 2
• Efficient construction [KLNRS08]:

• Polynomial time
• Requires 𝑂(𝑑) samples

• PAC learner also requires O(d) samples



Efficient PPAC learner for Parity

• Parity: cr(x) = <r, x> (mod 2)

• Input:  x=((y1,cr(y1)),….., (yn,cr(yn)))

• Recall Non-private learning algorithm:  

• Solving the set of linear equations over GF(2) imposed by input x to 
recover a consistent r’

• Is this privacy preserving?

• The Effect of a Single Example:

• Let Si be space of feasible solutions for the set of equations imposed by xi

• Add a fresh example (yi+1,cr(yi+1)) to xi and let Si+1 be the new solution 
space

• Then,
1.|Si+1| ≥ |Si| /2, or 
2.|Si+1| = 0

Size of solution space 
reduces by 1/2

System becomes 
inconsistent



new constraint: third coordinate is 0

= Valid solution

100000

001 101

100000

The Effect of a Single Example



new constraint: second coordinate is 1

= Valid solution

100000

001 101

100000

Solution space changes drastically only when 
algorithm fails

The Effect of a Single Example



PRIVATE LEARNER FOR PARITY

1. With probability ½ output “fail”

2. xs pick each example from x with probability /4

3. Use Gaussian elimination to solve the system of equations imposed 
by examples in xs. 
• Let S be the set of feasible solutions

4. If S = Ø, output “fail”.
Otherwise,  output a random vector in S

Smoothes out 
extreme jumps in S



Private Learner for Parity

• -differential privacy preserved:
• E.g. x, x’ neighboring:

• x consistent with some solutions S. 

• x’ inconsistent. 

• Pr[Fail] changes from ½ to ½+ /4

• Learning:
• Confidence can be amplifies by repeating log 1/β runs (decreasing 

accordingly)

• Accuracy , confidence β privacy :

n=O((d log 1/ β + log2 1/β)/ ) examples suffice

27

dimension



PAC learning vs. PPAC learning

• PAC learning:

• Occam’s razor : sample complexity ~ log |𝐶|

• Generally: sample complexity ~𝑉𝐶(𝐶)

• 𝑉𝐶 𝐶 ≤ log |𝐶|

• Finite for some infinite concept classes

• PPAC learning: 

• ’Private Occam’s razor’: sample complexity ~ log |𝐶|

• Can we close gap with non-private learning?

• What about infinite concept classes, is there an analog of the VC 
dimension? Does PAC learnability imply PPAC learnability?

• Efficient PPAC parity learner

• Is every efficiently PAC learnable concept class also efficiently PPAC 
learnable?
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