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What is learning?

oo o5 ST
down | Debt accts /mc
0.32
0.25
0.30
0.31

0.25

10
5
20
10

No
Yes
No
No

No
No
Yes
No

S

Risk?
Yes
Yes
No
Yes
Yes

Good J

e Given this data, some reasonable
rules might be
* Predict YES if ...
e 100*(Mmp/inc) — (% down) < 25
* (IHigh Debt) AND (% down > 5)



What is learning?
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A distribution P on X. Each point in X labeled 0/1
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Notation :

» X : set of all possible (unlabeled) instances A distribution P on X.
. . Each point in X labeled 0/1
* A concept is a predicate over X: c: X-2 {0,1} Samples drawn according to P

* A concept class C is a set of concepts

* We will assume that instances are labeled by a target concept ¢ € C, the label
of instance x is c(x)

e P is an unknown distribution over X
* L is a learning algorithm

* Goal of learning algorithm: output a hypothesis h that
“approximates” the target concept ¢ on the distribution P

* If h & C is allowed we call the learner improper



PAC learning [Valiant 84]
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* For a probability distribution P, concept ¢ and hypothesis h define
errorp(c,h) = Pl;D [c(x) + h(x)]
x~

* |deally, we would like our learner to produce a hypothesis h with zero error

 Error is inevitable:

* There is a chance that the labeled sample S does not contain enough information to
produce an error-less hypothesis

* Relax requirements:

* Typically, h approximately correct .
* With small probability not even that PAC : Probably Approximately Correct



PAC learning [Valiant 84]
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* Recall: errorp(c, h) = xlil;)[c(x) #+ h(x)]

* Lisa (a, p)- PAC learner for concept class C if
* For all distributions P and target conceptsc € C

* After receiving a polynomial number of examples sampled i.i.d. from P and
labeled according to c it outputs a hypothesis h such that
Prlerrorp(c,h) < al=>1-p



Learning over sample vs. over distribution
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* Suppose that given S = {(x,y1), ..., (X, y»,)) the learner outputs a
hypothesis h such that

errorg(c, h) = ieEfn] lh(x;)) #y;] < «

* Iserrorp(c, h) small?
* Not necessarily as h may not generalize
* E.g., choose hs.t. h(x;) = y; forall i and let h(x) be randomforx € S



Questions asked about PAC learning

e Sample complexity: Lower and upper bounds on the number of
samples needed to learn a concept class C

* Time complexity: Time complexity of learning a concept class C

* |s there a benefit in improper learning (i.e., allowing h & C)?
* Yes! Sometimes proper learning intractable but improper learning tractable!



SCURVY

Pale skin

Let’s do some science!

Sunken

e Scurvy: a problem throughout human history
e Caused by vitamin C deficiency
* How much vitamin Cis enough?
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Thanks: Mark Bun



Example 1: learning thresholds

- Concept Class: € = THRESHOLD, = {cq, ..., €,a}
(¢;(x) )

cix)=1 & x<j

THRESHOLD,; = + i '
JRAEAL A

* Learning over sample is easy: output any consistent hypothesis
from THRESHOD 4

* [s this good?

Let’s consider something even simpler...



Example O: learning points

« Concept Class: € = POINTq = {cy, ..., C,a}

(o 6(%) \
cix)=1 & x=]j

POINT; = - | I >
X
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« A PAC learner for POINTy with 0(1) samples:
« If there existsis.t. (i,1) in the sample, return h = ;.
e QOtherwise (all labels are zero), return h = 0 (or a random h € C}

« errorp(c;, h) > a only if = Pr[x = j] > a but sample contains no example (j, 1)

lo 1
g’B)
a

* Happens w.p. < (1 —a)", to get (a, B)-PAC take n > O(




PAC learning finite concept classes (Occam’s
Razor)

* Let C be a finite concept class

S ={(x1,¥1), -, (%, ¥5,)): @a sample of n i.i.d. examples sampled from P and labeled
accordingto ¢, i.e., y; = c(x;)

We say that a hypothesis h € C is consistent with S if h(x;) = y; forall i

Learner:

° |Input: n =

log |C|+]1og

1

a

£ labeled samples

e Qutput: a consistent hypothesis

Proof of learner’s correctness:
* For any hypothesis h with errorp(c,h) > a, Pr[h consistent] < (1 — a)" < e™"

* Hence, probability algorithm outputs h with errorp(c, h) > a is at most |C|e

* Takingn =

log |C|+]og

1

B

we get that the probability of such event is at most 3

—an



Example 1: learning thresholds

» Concept Class: € = THRESHOLD, = {cq, ..., €,a}

(cj(x) )
cix)=1 & x<j

THRESHOLD, = ¢ i '
JRAEAM IS

* A PAC learner for THRESHOD4 with 0(1) samples:
« Let i be largest s.t. (i,1) in the sample, return h = ;.
« Otherwise (all labels are zero), return h = 0 (or a random h € C}



VC dimension

* Given a collection of distinct points S = (x4, ..., X, ) and a concept c, define
the dichotomy c(S) = (c(xy), ..., c(xy,)) (i.e., a string of n bits)

 Given S = (x4, ..., X,;) and a concept class C define C(S) = {c(S):c € C}

* If |C(S)| = 2™ we say that S is shattered by C

* Example: Let X = Rand C = {cgp:a,b € R} where ¢, ,(x) = 15<x<p
e letS =(2,7)
* C0,1(5) = (0,0); C1,3 (S) = (1,0); C3,10(5) = (0,1); C0,10(5) = (1,1).
Hence, S is shattered by C
* No S containing three distinct points is shattered by C: dichotomy

(1,0,1) is impossible Ve = 2

* The Vapnik Chervonenkis dimension of concept class C, denoted VC(C), is
the size of the largest collection of points that is shattered by C



VC dimension and PAC learning

* C:conceptclass, letd = VC(C)

S = (x4, ..., Xn): acollection of n distinct points

* Recall: C(S) = {c(S):c € C}

* By definition, if n < d then |C(S)| < 2% (with equality for at least one set S)

d
* Theorem: if n > d then |C(S)] < (%)

e PAC Learner for classes with finite VC dimension:

vc(e) logiﬂogl

* Input:n = 0( ” ﬁ) labeled samples

e Output: a consistent hypothesis from H = C

* An almost matching lowerbound:

VC(C)+log%
O ” ) labeled samples required



Example 2: Learning parity functions

» Concept Class: € = PARITYg = {¢;},¢(q 1y
e c.(x) =<r,x >mod 2 etS = (1, e
== 1, = €d

*VC(C) =d Foranyr = {0,1}%,¢,(S) =r
Hence C(S) = {0,1}¢
* An efficient PAC learner for PARITYy with 0(d) samples:
* Each example (x,c (y,)) makes a linear constraint
* E.g., sample (1101, 1) translatestor, +r, +r, (mod 2) =1

* Find a consistent r’ by solving the set of linear equations over
GF(2) imposed by input x



PAC learning — where’s the privacy problem?

e Learner: returns a consistent threshold function

* E.g., transition on largest point labeled "1"
* (differential) privacy not preserved

/ Reveals someone’s data!

121 153 176 182

Thanks: Mark Bun



What is private learning?
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* Private Learner:
e Satisfies standard definition of PAC

learning ———

Average-case guarantee

* |s differentially private

Worst-case guarantee




Private PAC (PPAC)

* Definition: Lis a (a, 5, €, 6)- PPAC learner for concept class C if
* Utility: L is a (a, f)- PAC learner for concept class C:

* For all distributions P and target concepts ¢ € C, L outputs a
hypothesis h such that

Prlerrorp(c,h) <al =1-p Probability over sample
and algorithm
* Privacy: L is a (€, §)-differentially private:

e for all neighboring sample sets S, S’ and for all sets of
hypothesis T

Pr(L Tl < e€-Pr[L(S)eT Probability over semple
ril$)eTl<e rL$)eTl+4 and-algorithm



Private learning over sample vs. over distribution

Probability Differentially
distribution Labeled private

p Sample Learning
S Algorithm L

* Suppose that given S = {(x4,y1), ..., (x, y»,)) the differentially private learner
outputs a hypothesis h such that
errors(c,h) = _EP{ [[h(xl-) vyl <a
lIepin

* Iserrorp(c, h) small?
* Yes!
. Generallzatlon of differential privacy implies that errorp(c,h) < a + € if

n>0( 2)



PPAC learning of finite concept classes [KLNRS 08]

* Theorem: every finite concept class can be learned privately, using a
polynomial number of samples

e Let C be a finite concept class

* S ={(x1,y1), .., Xy, ¥)): @ sample of n i.i.d. examples sampled from P
and la eledlaccording toc,i.e. y; = c(x;)

* Learner: (based on the Exponential Mechanism [MTO07])
» Define q(S,h) = |{i: h(x;) = y;}|
e Output hypothesis h € C w.p. proportional to e

* Using properties of the exponential mechanism:
 Learneris (g, 0)-differentially private

* Proper PAC learnerif n > 0((log|C| + log%) - max ( !

€
>4 (S,h)

* Can be extended to agnostic learning
* Running time may be exponential




Some PPAC |learners

* POINT, = {cq, ..., Coa};cj(x) =1 & x =
* Generic PPAC construction:
* Polynomial time
* Requires 0(d) samples
e But PAC learner with O(1) samples

» THRESHOLD, = {cy, ..., C,a}; cj(x) =1 & x<j
* Generic PPAC construction:
* Polynomial time
* Requires O(d) samples
e But PAC learner with O(1) samples

* C = PARITY, = {Cr}re{o’l}d,' c.(x) =<r,x >mod 2

* Efficient construction [KLNRSO08]:
* Polynomial time
* Requires O(d) samples
* PAC learner also requires O(d) samples



Efficient PPAC learner for Parity

* Parity: c,(x) = <r, x> (mod 2)

¢ InpUt: ¥=((ylicr(y1))1 ---- )/ (ynlcr(yn)))
* Recall Non-private learning algorithm:

* Solving the set of linear equations over GF(2) imposed by input x to
recover a consistent r’

* Is this privacy preserving?
* The Effect of a Single Example:

* Let S, be space of feasible solutions for the set of equations imposed by x;
* Add a fresh example (y.,4,c,(y.,1)) to x, and let S;,; be the new solution

Space Size of solution space
* Then, reduces by 1/2

1.|Si1l 2 1S] /2, or
2.1S.4,1 =0 System becomes
R inconsistent




The Effect of a Single Example

@ - Valid solution

o |

001 101
‘/‘ ‘ ........................
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new constraint: third coordinate is O



The Effect of a Single Example

® - Valid solution

o o
/- /
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new constraint: second coordinate is 1




PRIVATE LEARNER FOR PARITY

1. With probability %2 output “fail” % Smoothes out }

extreme jumps in S

2. x, € pick each example from x with probability /4

3. Use Gaussian elimination to solve the system of equations imposed
by examples in x..
 Let S be the set of feasible solutions

4. If S =@, output “fail”.
Otherwise, output a random vectorin S



Private Learner for Parity

e ¢-differential privacy preserved:

* E.g. x, x' neighboring:
e x consistent with some solutions S.
* X' inconsistent.
* Pr[Fail] changes from % to %+ ¢/4

* Learning:
* Confidence can be amplifies by repeating log 1/B runs (decreasing ¢
accordingly)
* Accuracy a, confidence [3 privacy &:
n=0((d log 1/ B + log? 1/B)/ ae) examples suffice

dimension




PAC learning vs. PPAC learning

* PAC learning:
* Occam’s razor : sample complexity ~log |C]|
* Generally: sample complexity ~VC(C)
* VC(C) < log|C]|
* Finite for some infinite concept classes
* PPAC learning:
* 'Private Occam’s razor’: sample complexity ~ log |C]|
* Can we close gap with non-private learning?

 What about infinite concept classes, is there an analog of the VC
dimension? Does PAC learnability imply PPAC learnability?

 Efficient PPAC parity learner

* Is every efficiently PAC learnable concept class also efficiently PPAC
learnable?
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