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Outline

* Packing arguments for DP lower bounds
* Originated in [HT'10, BKN’10]
Intuitive, geometric approach to lower bounds

Applicable to a wide variety of problems

Often yields tight lower bounds for (&, 0)-dp
Separates (&, 0)-dp (“pure”) from (&, §)-dp (“approx”)



f(x) is some function of interest

Main ldea

M (x1)

X™: all datasets R: all outputs

’: “packing” P € X" M(xZ)

* Find many datasets P € X™ that are close, but
whose answers are far
e DPimpliesthat M(x), M(x') are close
e Accuracy implies that M(x), M(x") are far.



f(x) is some function of interest

M d | N Id ed G (x) are “good outputs for x”

M (x1)

X™: all datasets R: all outputs

’: “packing” P € X" M(xZ)

* Find many datasets P € X™ that are close, but
whose answers are far
e DPimpliesthat M(x), M(x') are close
e Accuracy implies that M(x), M(x") are far.



Recall Group Privacy

* Two datasets x, x’ € X™ are neighbors if they differ
on at most one row (x ~ x').

e Two datasets x, x’ € X™ are m-neighbors if they
differ on at most m rows (x ~,,, x').

e Lemma: If M : X™ — Ris (&, 0)-differentially
private then for every set of m-neighbors x ~,,, x’,
and every S € R,

PriM(x) € S] < e Pr[M(x") € S]

* NB: (&,0)-dp doesn’t behave as nicely for large
groups.



Example: Histograms

 Dataset: x = (xq,...,X,,) € X" ]_I_- I

* Histogram: h(x); = #{i : x; = j}

» Accuracy: Release h such that max|h(x)] | = %
J

. = real histogram
\/ ' I h . = noisy histogram




Example: Histograms

* Dataset: x = (xl, ...,xn) e X" ]_.__ I

* Histogram: h(x); = #{i : x; = j} 1 2 3 . |X]
e Accuracy: G(x) = {ﬁ | max|h, — h(x),| < E}
Z 3

* Q1: Suppose we use Laplace, how much noise do we need?

* Al: Global #;-sensitivity is 1, add Lap G) to each entry

* Q2: How big must n be to satisfy accuracy?

* A2: Largest entry has error 0 (ln(lgxl) whp. Son =0 (lnlxl)
is sufficient for accuracy.



Example: Histograms

« Thm: If M : X™ —» NIl s (¢, 0)-differentially private and

' i 1 In|X| -1
Pr[M(x) is an accurate histogram| = —, thenn > il gl

* Proof: Define the following “packing” of | X| datasets:

I P1 I D2 P x| I

1 2 3 .. |X| 0 2 3 .. |X| 0 2 3 .. |X|

 No histogram is “good” for both p and p’
* G(pqp), ...,G(p|X|) are mutually disjoint



Example: Histograms

« Thm: If M : X™ —» NIl s (¢, 0)-differentially private and
Pr[M(x) is an accurate histogram] > = thenn > ¥l -1

e £
* Proof:
1> 2 Pr[M(p,) € G(p,)] (disjointness)
Z
> z e " Pr[M(p;) € G(p,)] (group privacy, size n)
Z
1
> Z e &N — (accuracy)
- e
= |X|e~&n 1 (size of packing is | X|)

In|X| -1
—n >

&



General Packing Lemma

* Let {G(x)},.exn be a family of subsets of the output
range R

* These are the “good outputs for x”

* m-Packing: Let P = {x,, x4, ... } € X™ be such that
* every x,x' € P are m-neighbors (datasets are close)
* G(py), G(pqg), ... are mutually disjoint (answers are far)

Lemma: If P is an m-packingand M : X™ — R is an
(¢,0)-dp algorithm such that Pr[M(x) € G(x)] = - ,
In|P| - 1 °
&

thenm =



Packing Lemma

* Lemma:If M : X™ = R is (g, 0)-differentially private, and
Vx € P,Pr[M(x) € G(x)] = i, thenm > Pl =1

&

* Proof:
1> Z Pr[M(x,) € G(x,)] (disjointness)

Z

> z e M Pr[M(x,) € G(x,)] (group privacy, size m)
Z

1

> Z e &M _ (accuracy)
~ e

= |P|e~E™ -1 (size of packing)

In|P| —1
= m =



Example: Dataset Mean

* Dataset: x = (x4, ...,Xx,) € ({0,1}‘1)”

1
* Mean: u(x) = ;Zixi

* Accuracy: G(x) = {ﬁ ‘ max|u(x), — .| < a}
C

* Q1: Suppose we use Laplace, how much noise do we add?

* Al: Global £;-sensitivity is %, add Lap (%) to each entry
* Q2: How accurate?

dlnd
&N

) whp. Can be improvedtoa = O (i).

&n

-A2:a=0(



Example: Dataset Mean

* Dataset: x = (xl, ---;xn) S ({OJl}d)n

1
* Mean: u(x) = ;Zixi

* Accuracy: G(x) = {ﬁ | max|u(x), — .| < a}
C

dataset x

u(x)

i

1 1 0 0

0 1 0 1

0 1 0 1
0.333 1.000 0.000 0.667
0.360 0.980 0.045 0.700

a = .045



Example: Dataset Mean

* Dataset: x = (xl, ---;xn) S ({OJl}d)n

1
* Mean: u(x) = ;Zixi

* Accuracy: G(x) = {ﬁ | max|u(x), — .| < a}
C

Define the following packing:

* r = EX: P1001
P — {pz}ze{()’l}d
o |P| =2° 1001
* p,p’ are m = 3an neighbors 3an rows | 1001
c Gx) ={al|llux) —fille < a} 1001
0000
n — 3an rows

d—1 0000

Packing lemma = 3an = —
u(p,) = 3az



Example: Dataset Mean

* Dataset: x = (xl, ---;xn) S ({OJl}d)n

1
* Mean: u(x) = ;Zixi

* Accuracy: G(x) = {ﬁ ‘ max|u(x), — .| < a}
C

Define the following packing:

e P = {pZ}ZE{O,l}d EX: P1001
. |P| =24 1001
* p,p’ are m = 3an neighbors 3an rows | 1001
1001
d—1 0000
e Packinglemma= a = Py, n — 3an rows 0000

u(p,) = 3az



Statistical Queries (SQs)

* Recall statistical queries g(x) = %Zi b (x;)

* The mean is d statistical querieson x € ({0,1}d)n

* Thm: Laplace noise is (&, 0)-dp and answers k
arbitrary SQs up to error a = 0 (k n k)

&n

* Thm: No (&, 0)-dp algorithm M : X™ — R can
answer k < log |X| arbitrary SQs with a < el

3EN



Statistical Queries (SQs)

* Recall statistical queries g(x) = %Zi b (x;)

* The mean is d statistical querieson x € ({0,1}d)n

* Thm: Laplace noise is (&, 0)-dp and answers k
JK ln(1/6))

&n

arbitrary SQs up to error a = 0 (

* Packing lower bound is false for approximate dp.

* Later on we’ll see how to show tight lower bounds
for (&, 0)-dp using very different techniques



Example: Online Counting

e Data: stream of bits x4, ..., x; € {0,1}7, given one at a time
* Goal: after x;, output a; approximating ¢, = ) ,/_ . X

* Accuracy: m?xlat —¢| < «a

Fact: there is an (&, 0)-dp algorithm with accuracy
a =0(e1InT). (Binary tree givesa = 0(¢"11n?T).)

Theorem: for every (g, 0)-dp algorithm a = Q(e 1 InT).



Example: Online Counting

e Theorem: for every (¢, 0)-dp algorithm o = Q(e~1InT).

Split the input into B = % blocks of length 3«.

Dj 00000 11111 00000 00000 00000

block j

- I. _ T . _
e P = {pj L] = 1,...,3a}, |P| = —; distance m = 3«.

3a
e G(x) = { (a,..,ar): max lc; —a;| < a}

* G(p;),G(p;) are disjoint

In|P|-1 — 3q > In(T)-In(3a)—1
£ €

e Packing Lem. = m =



Example: Online Counting
e Theorem: for every (¢, 0)-dp algorithm o = Q(¢~*InT).

* Also applies to answering threshold queries
» Dataset x € [T|"
e Queries ¢;(x) = #{i : x; = t}
* Goal: output (a4, ..., ar) such that
m?xlat —c;(0)| <«



Packing vs. Covering

X™: all datasets

e packing: set of datasets; no output
is “good” for two datasets

e covering: set of outputs; for every
dataset, some output is “good”

R: all outputs



Final Thought: Packing vs. Covering

* Suppose we have a function f : X" - R

* Suppose we have a covering C such that for every x, there
exists ¢ € C, such that d(f(x),c) < a.

e Some accuracy metric d.

* Thm: Exists an (&, 0)-dp algorithm with error f = a + ]

— en
In|C]|
£

o Ifn=20Q ( ), then we get error 8 = O(«a)

 Thm: size of minimum covering = size of maximum packing

* Implies LB ofn = () (ﬁ:l)’ tightup to O (1) factor

a



Outline

* Packing arguments for DP lower bounds
* Intuitive geometric approach to lower bounds
e Applicable to a wide variety of problems
» Often yields tight lower bounds for (&, 0)-dp
* Separates (&, 0)-dp from (&, 6)-dp



