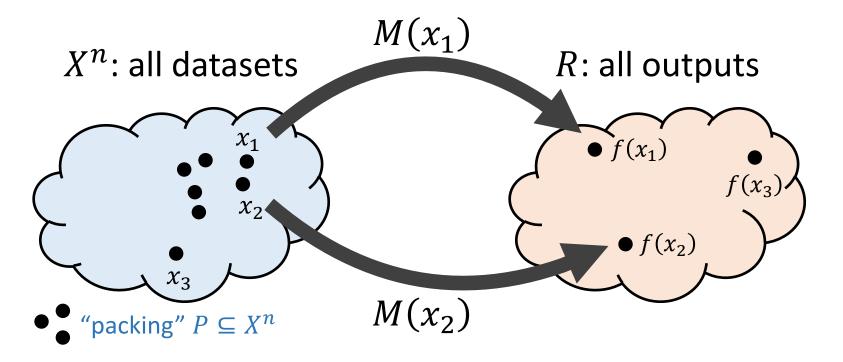
Packing Lower Bounds

Jonathan Ullman, Northeastern University

Outline

- Packing arguments for DP lower bounds
 - Originated in [HT'10, BKN'10]
 - Intuitive, geometric approach to lower bounds
 - Applicable to a wide variety of problems
 - Often yields tight lower bounds for $(\varepsilon, 0)$ -dp
 - Separates $(\varepsilon, 0)$ -dp ("pure") from (ε, δ) -dp ("approx")

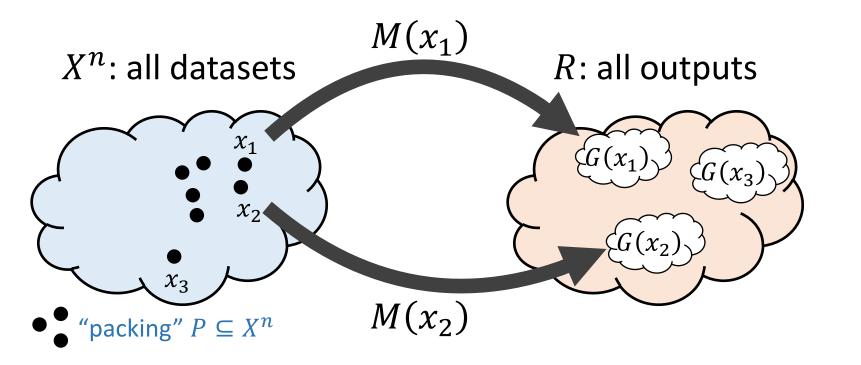
Main Idea



- Find many datasets $P \subseteq X^n$ that are close, but whose answers are far
 - DP implies that M(x), M(x') are close
 - Accuracy implies that M(x), M(x') are far.

Main Idea

f(x) is some function of interest G(x) are "good outputs for x"



- Find many datasets $P \subseteq X^n$ that are close, but whose answers are far
 - DP implies that M(x), M(x') are close
 - Accuracy implies that M(x), M(x') are far.

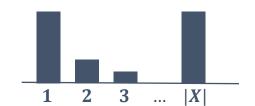
Recall Group Privacy

- Two datasets $x, x' \in X^n$ are neighbors if they differ on at most one row $(x \sim x')$.
- Two datasets $x, x' \in X^n$ are m-neighbors if they differ on at most m rows $(x \sim_m x')$.
- Lemma: If $M: X^n \to R$ is $(\varepsilon, 0)$ -differentially private then for every set of m-neighbors $x \sim_m x'$, and every $S \subseteq R$,

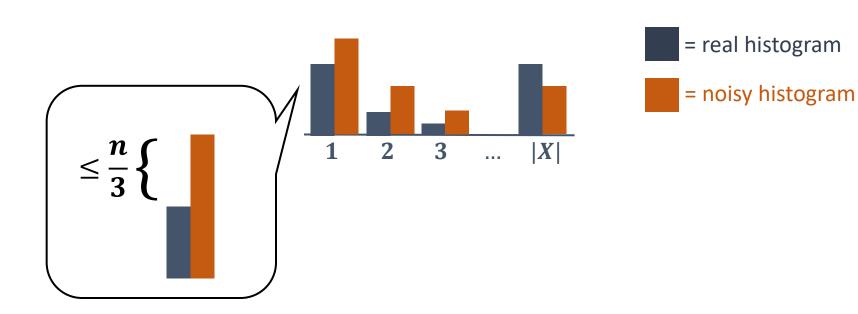
$$\Pr[M(x) \in S] \le e^{\varepsilon m} \Pr[M(x') \in S]$$

• NB: (ε, δ) -dp doesn't behave as nicely for large groups.

• Dataset: $x = (x_1, ..., x_n) \in X^n$



- Histogram: $h(x)_i = \#\{i : x_i = j\}$
- Accuracy: Release \hat{h} such that $\max_{j} |h(x)_{j}| \hat{h}_{j}| \leq \frac{n}{3}$

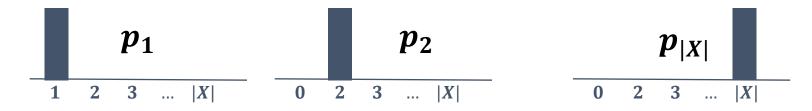


• Dataset: $x = (x_1, ..., x_n) \in X^n$

1 2 3 |X|

- Histogram: $h(x)_{i} = \#\{i : x_{i} = j\}$
- Accuracy: $G(x) = \left\{ \hat{h} \mid \max_{Z} \left| \hat{h}_{Z} h(x)_{Z} \right| \le \frac{n}{3} \right\}$
- Q1: Suppose we use Laplace, how much noise do we need?
- A1: Global ℓ_1 -sensitivity is 1, add $\operatorname{Lap}\left(\frac{1}{\varepsilon}\right)$ to each entry
- Q2: How big must n be to satisfy accuracy?
- A2: Largest entry has error $\Theta\left(\frac{\ln|X|}{\varepsilon}\right)$ whp. So $n=\Theta\left(\frac{\ln|X|}{\varepsilon}\right)$ is sufficient for accuracy.

- Thm: If $M: X^n \to \mathbb{N}^{|X|}$ is $(\varepsilon, 0)$ -differentially private and $\Pr[M(x) \text{ is an accurate histogram}] \ge \frac{1}{e}$, then $n \ge \frac{\ln|X|-1}{\varepsilon}$
- Proof: Define the following "packing" of |X| datasets:



- No histogram is "good" for both p and p'
 - $G(p_1), ..., G(p_{|X|})$ are mutually disjoint

- Thm: If $M: X^n \to \mathbb{N}^{|X|}$ is $(\varepsilon, 0)$ -differentially private and $\Pr[M(x) \text{ is an accurate histogram}] \ge \frac{1}{e}$, then $n \ge \frac{\ln|X|-1}{\varepsilon}$
- Proof:

$$1 \geq \sum_{z} \Pr[M(p_1) \in G(p_z)] \qquad \text{(disjointness)}$$

$$\geq \sum_{z} e^{-\varepsilon n} \Pr[M(p_1) \in G(p_z)] \qquad \text{(group privacy, size } n\text{)}$$

$$\geq \sum_{z} e^{-\varepsilon n} \frac{1}{e} \qquad \text{(accuracy)}$$

$$= |X|e^{-\varepsilon n - 1} \qquad \text{(size of packing is } |X|\text{)}$$

$$\Rightarrow n \geq \frac{\ln|X| - 1}{\varepsilon}$$

General Packing Lemma

- Let $\{G(x)\}_{x\in X^n}$ be a family of subsets of the output range R
 - These are the "good outputs for x"
- m-Packing: Let $P = \{x_0, x_1, ...\} \subseteq X^n$ be such that
 - every $x, x' \in P$ are m-neighbors (datasets are close)
 - $G(p_0)$, $G(p_1)$, ... are mutually disjoint (answers are far)

Lemma: If P is an m-packing and $M: X^n \to R$ is an $(\varepsilon,0)$ -dp algorithm such that $\Pr[M(x) \in G(x)] \ge \frac{1}{e}$, then $m \ge \frac{\ln|P|-1}{\varepsilon}$

Packing Lemma

- Lemma: If $M: X^n \to R$ is $(\varepsilon, 0)$ -differentially private, and $\forall x \in P, \Pr[M(x) \in G(x)] \ge \frac{1}{e}$, then $m \ge \frac{\ln|P| 1}{\varepsilon}$
- Proof:

$$1 \geq \sum_{z} \Pr[M(x_0) \in G(x_z)] \qquad \text{(disjointness)}$$

$$\geq \sum_{z} e^{-\varepsilon m} \Pr[M(x_z) \in G(x_z)] \qquad \text{(group privacy, size } m)$$

$$\geq \sum_{z} e^{-\varepsilon m} \frac{1}{e} \qquad \text{(accuracy)}$$

$$= |P|e^{-\varepsilon m - 1} \qquad \text{(size of packing)}$$

$$\Rightarrow m \geq \frac{\ln|P| - 1}{\varepsilon}$$

- Dataset: $x = (x_1, ..., x_n) \in (\{0,1\}^d)^n$
- Mean: $\mu(x) = \frac{1}{n} \sum_{i} x_{i}$
- Accuracy: $G(x) = \left\{ \hat{\mu} \mid \max_{c} |\mu(x)_{c} \hat{\mu}_{c}| \le \alpha \right\}$
- Q1: Suppose we use Laplace, how much noise do we add?
- A1: Global ℓ_1 -sensitivity is $\frac{d}{\varepsilon n}$, add $\operatorname{Lap}\left(\frac{d}{\varepsilon n}\right)$ to each entry
- Q2: How accurate?
- A2: $\alpha = O\left(\frac{d \ln d}{\varepsilon n}\right)$ whp. Can be improved to $\alpha = O\left(\frac{d}{\varepsilon n}\right)$.

- Dataset: $x = (x_1, ..., x_n) \in (\{0,1\}^d)^n$
- Mean: $\mu(x) = \frac{1}{n} \sum_{i} x_{i}$
- Accuracy: $G(x) = \left\{ \hat{\mu} \mid \max_{c} |\mu(x)_{c} \hat{\mu}_{c}| \le \alpha \right\}$

dataset x	1	1	0	0
	0	1	0	1
	0	1	0	1

$$\mu(x)$$
 0.333 1.000 0.000 0.667

$$\hat{\mu}$$
 0.360 0.980 0.045 0.700

 $\alpha = .045$

- Dataset: $x = (x_1, ..., x_n) \in (\{0,1\}^d)^n$
- Mean: $\mu(x) = \frac{1}{n} \sum_{i} x_{i}$
- Accuracy: $G(x) = \left\{ \hat{\mu} \mid \max_{c} |\mu(x)_{c} \hat{\mu}_{c}| \le \alpha \right\}$
- Define the following packing:

•
$$P = \{p_z\}_{z \in \{0,1\}^d}$$

- $|P| = 2^d$
- p, p' are $m = 3\alpha n$ neighbors
- $G(x) = {\{\hat{\mu} \mid ||\mu(x) \hat{\mu}||_{\infty} \le \alpha}$

• Packing lemma $\Rightarrow 3\alpha n \ge \frac{d-1}{\varepsilon}$

Ex: p_{1001}

 $3\alpha n \text{ rows}$ 1001 1001 1001 1001 0000 0000

$$\mu(p_z) = 3\alpha z$$

- Dataset: $x = (x_1, ..., x_n) \in (\{0,1\}^d)^n$
- Mean: $\mu(x) = \frac{1}{n} \sum_{i} x_{i}$
- Accuracy: $G(x) = \left\{ \hat{\mu} \mid \max_{c} |\mu(x)_{c} \hat{\mu}_{c}| \le \alpha \right\}$
- Define the following packing:

•
$$P = \{p_z\}_{z \in \{0,1\}^d}$$

- $|P| = 2^d$
- p, p' are $m = 3\alpha n$ neighbors

• Packing lemma $\Rightarrow \alpha \ge \frac{d-1}{3\varepsilon n}$

 $3\alpha n \text{ rows}$ 1001 1001 1001 0000 $n - 3\alpha n \text{ rows}$

Ex: p_{1001}

$$\mu(p_z) = 3\alpha z$$

0000

Statistical Queries (SQs)

- Recall statistical queries $q(x) = \frac{1}{n} \sum_{i} \phi(x_i)$
- The mean is d statistical queries on $x \in \left(\{0,1\}^d\right)^n$

- Thm: Laplace noise is $(\varepsilon, 0)$ -dp and answers k arbitrary SQs up to error $\alpha = O\left(\frac{k \ln k}{\varepsilon n}\right)$
- Thm: No $(\varepsilon,0)$ -dp algorithm $M:X^n\to R$ can answer $k\le \log |X|$ arbitrary SQs with $\alpha<\frac{k-1}{3\varepsilon n}$

Statistical Queries (SQs)

- Recall statistical queries $q(x) = \frac{1}{n} \sum_{i} \phi(x_i)$
- The mean is d statistical queries on $x \in (\{0,1\}^d)^n$

• Thm: Laplace noise is (ε, δ) -dp and answers k arbitrary SQs up to error $\alpha = \tilde{O}\left(\frac{\sqrt{k \ln(1/\delta)}}{\varepsilon n}\right)$

- Packing lower bound is false for approximate dp.
- Later on we'll see how to show tight lower bounds for (ε, δ) -dp using very different techniques

Example: Online Counting

- Data: stream of bits $x_1, \dots, x_T \in \{0,1\}^T$, given one at a time
- Goal: after x_t , output a_t approximating $c_t = \sum_{t' \le t} x_{t'}$
- Accuracy: $\max_{t} |a_t c_t| \le \alpha$
- Fact: there is an $(\varepsilon, 0)$ -dp algorithm with accuracy $\alpha = O(\varepsilon^{-1} \ln T)$. (Binary tree gives $\alpha = O(\varepsilon^{-1} \ln^2 T)$.)

• Theorem: for every $(\varepsilon, 0)$ -dp algorithm $\alpha = \Omega(\varepsilon^{-1} \ln T)$.

Example: Online Counting

• Theorem: for every $(\varepsilon, 0)$ -dp algorithm $\alpha = \Omega(\varepsilon^{-1} \ln T)$.

Split the input into $B = \frac{T}{3\alpha}$ blocks of length 3α .

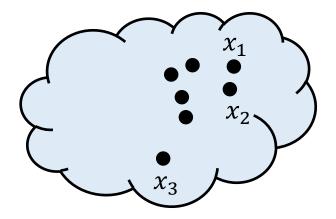
- $P = \left\{ p_j : j = 1, \dots, \frac{T}{3\alpha} \right\}; |P| = \frac{T}{3\alpha}; \text{ distance } m = 3\alpha.$
- $G(x) = \left\{ (a_1, \dots, a_T) : \max_t |c_t a_t| \le \alpha \right\}$ • $G(p_i), G(p_{i'})$ are disjoint
- Packing Lem. $\Longrightarrow m \geq \frac{\ln|P|-1}{\varepsilon} \Longrightarrow 3\alpha \geq \frac{\ln(T)-\ln(3\alpha)-1}{\varepsilon}$

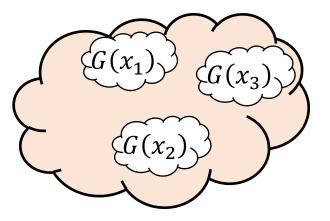
Example: Online Counting

- Theorem: for every $(\varepsilon, 0)$ -dp algorithm $\alpha = \Omega(\varepsilon^{-1} \ln T)$.
- Also applies to answering threshold queries
 - Dataset $x \in [T]^n$
 - Queries $c_t(x) = \#\{i : x_i \ge t\}$
 - Goal: output (a_1, \dots, a_T) such that $\max_t |a_t c_t(x)| \le \alpha$

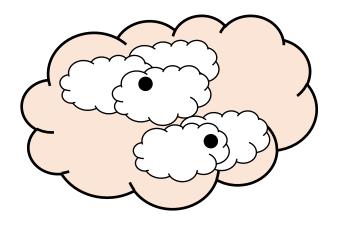
Packing vs. Covering

 X^n : all datasets





- packing: set of datasets; no output is "good" for two datasets
- covering: set of outputs; for every dataset, some output is "good"



Final Thought: Packing vs. Covering

- Suppose we have a function $f: X^n \to R$
- Suppose we have a covering C such that for every x, there exists $c \in C$, such that $d(f(x), c) \le \alpha$.
 - Some accuracy metric d.
- Thm: Exists an $(\varepsilon, 0)$ -dp algorithm with error $\beta = \alpha + \frac{\ln|\mathcal{C}|}{\varepsilon n}$.
 - If $n = \Omega\left(\frac{\ln|\mathcal{C}|}{\varepsilon\alpha}\right)$, then we get error $\beta = O(\alpha)$
- Thm: size of minimum covering ≈ size of maximum packing
 - Implies LB of $n=\Omega\left(\frac{\ln|\mathcal{C}|}{\varepsilon}\right)$; tight up to $O\left(\frac{1}{\alpha}\right)$ factor

Outline

- Packing arguments for DP lower bounds
 - Intuitive geometric approach to lower bounds
 - Applicable to a wide variety of problems
 - Often yields tight lower bounds for $(\varepsilon, 0)$ -dp
 - Separates $(\varepsilon, 0)$ -dp from (ε, δ) -dp