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Outline 

• Packing arguments for DP lower bounds 
• Originated in [HT’10, BKN’10] 

• Intuitive, geometric approach to lower bounds 

• Applicable to a wide variety of problems 

• Often yields tight lower bounds for 𝜀, 0 -dp 

• Separates (𝜀, 0)-dp (“pure”) from (𝜀, 𝛿)-dp (“approx”) 



Main Idea 

𝑋𝑛: all datasets 𝑅: all outputs 

𝑥1 

𝑥2 

• Find many datasets 𝑃 ⊆ 𝑋𝑛 that are close, but 
whose answers are far 
• DP implies that 𝑀 𝑥 ,𝑀 𝑥′  are close 
• Accuracy implies that 𝑀 𝑥 ,𝑀 𝑥′  are far. 

𝑀 𝑥1  

𝑀 𝑥2  
𝑥3 

“packing” 𝑃 ⊆ 𝑋𝑛 

𝑓 𝑥1  

𝑓 𝑥2  

𝑓 𝑥3  

𝑓(𝑥) is some function of interest 
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𝑀 𝑥2  
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“packing” 𝑃 ⊆ 𝑋𝑛 

𝑓(𝑥) is some function of interest 
𝐺(𝑥) are “good outputs for 𝑥” 

𝐺 𝑥1  

𝐺 𝑥2  

𝐺 𝑥3  



Recall Group Privacy 

• Two datasets 𝑥, 𝑥′ ∈ 𝑋𝑛 are neighbors if they differ 
on at most one row 𝑥 ∼ 𝑥′ . 

• Two datasets 𝑥, 𝑥′ ∈ 𝑋𝑛 are 𝑚-neighbors if they 
differ on at most 𝑚 rows 𝑥 ∼𝑚 𝑥′ . 

• Lemma: If 𝑀 ∶ 𝑋𝑛 → 𝑅 is (𝜀, 0)-differentially 
private then for every set of 𝑚-neighbors 𝑥 ∼𝑚 𝑥′, 
and every 𝑆 ⊆ 𝑅, 

 

 

• NB: (𝜀, 𝛿)-dp doesn’t behave as nicely for large 
groups. 

Pr 𝑀 𝑥 ∈ 𝑆 ≤ 𝑒𝜀𝑚 Pr[𝑀 𝑥′ ∈ 𝑆] 



Example: Histograms 

• Dataset: 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑛 

• Histogram: ℎ 𝑥 𝑗 = #{𝑖 ∶ 𝑥𝑖 = 𝑗} 

• Accuracy: Release ℎ  such that max
𝑗

ℎ 𝑥 𝑗  − ℎ 𝑗 ≤
𝑛

3
 

𝟏 𝟐 𝟑 |𝑿| … 

𝟏 𝟐 𝟑 |𝑿| … 

{ ≤
𝒏

𝟑
 

= real histogram 

= noisy histogram 



Example: Histograms 

• Dataset: 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑛 

• Histogram: ℎ 𝑥 𝑗 = #{𝑖 ∶ 𝑥𝑖 = 𝑗} 

• Accuracy: 𝐺 𝑥 = ℎ  |max
𝑧

ℎ 𝑧  − ℎ 𝑥 𝑧 ≤
𝑛

3
 

 

• Q1: Suppose we use Laplace, how much noise do we need? 

• A1: Global ℓ1-sensitivity is 1, add Lap
1

𝜀
 to each entry 

 

• Q2: How big must 𝑛 be to satisfy accuracy? 

• A2: Largest entry has error Θ
ln 𝑋

𝜀
 whp.  So 𝑛 = Θ

ln 𝑋

𝜀
 

is sufficient for accuracy. 

𝟏 𝟐 𝟑 |𝑿| … 



Example: Histograms 

• Thm: If 𝑀 ∶ 𝑋𝑛 → ℕ 𝑋  is (𝜀, 0)-differentially private and  

Pr 𝑀 𝑥  is an accurate histogram ≥
1

𝑒
 , then 𝑛 ≥

ln 𝑋  −1

𝜀
 

• Proof: Define the following “packing” of |𝑋| datasets: 

 

 

 

• No histogram is “good” for both 𝑝 and 𝑝′ 

• 𝐺 𝑝1 , … , 𝐺 𝑝 𝑋  are mutually disjoint 

 

𝟏 𝟐 𝟑 |𝑿| … 𝟎 𝟐 𝟑 |𝑿| … 𝟎 𝟐 𝟑 |𝑿| … 

𝒑𝟏 𝒑𝟐 𝒑|𝑿| 



Example: Histograms 

• Thm: If 𝑀 ∶ 𝑋𝑛 → ℕ 𝑋  is (𝜀, 0)-differentially private and  

Pr 𝑀 𝑥  is an accurate histogram ≥
1

𝑒
 , then 𝑛 ≥

ln 𝑋  −1

𝜀
 

• Proof: 

 1 ≥  Pr 𝑀 𝑝1 ∈ 𝐺 𝑝𝑧

𝑧

 

  

≥  𝑒−𝜀𝑛 Pr 𝑀 𝑝1 ∈ 𝐺 𝑝𝑧

𝑧

 
  

≥  𝑒−𝜀𝑛

𝑧

1

𝑒
 

  
= 𝑋 𝑒−𝜀𝑛 −1 

(disjointness) 

(group privacy, size 𝑛) 

(accuracy) 

(size of packing is |𝑋|) 

  

⟹ 𝑛 ≥
ln 𝑋 − 1

𝜀
 



General Packing Lemma 

• Let 𝐺 𝑥 𝑥∈𝑋𝑛  be a family of subsets of the output 
range 𝑅 
• These are the “good outputs for 𝑥” 

• 𝑚-Packing: Let 𝑃 = 𝑥0, 𝑥1, … ⊆ 𝑋𝑛 be such that  
• every 𝑥, 𝑥′ ∈ 𝑃 are 𝑚-neighbors (datasets are close) 

• 𝐺 𝑝0 , 𝐺 𝑝1 , … are mutually disjoint (answers are far) 

 

Lemma: If 𝑃 is an 𝑚-packing and 𝑀 ∶ 𝑋𝑛 → 𝑅 is an 

(𝜀, 0)-dp algorithm such that Pr 𝑀 𝑥 ∈ 𝐺(𝑥) ≥
1

𝑒
 , 

then 𝑚 ≥
ln 𝑃  − 1

𝜀
 



Packing Lemma 

• Lemma: If 𝑀 ∶ 𝑋𝑛 → 𝑅 is (𝜀, 0)-differentially private, and 

∀𝑥 ∈ 𝑃, Pr 𝑀 𝑥 ∈ 𝐺(𝑥) ≥
1

𝑒
 , then 𝑚 ≥

ln 𝑃  − 1

𝜀
 

• Proof: 

 1 ≥  Pr 𝑀 𝑥0 ∈ 𝐺 𝑥𝑧

𝑧

 

  

≥  𝑒−𝜀𝑚 Pr 𝑀 𝑥𝑧 ∈ 𝐺 𝑥𝑧

𝑧

 
  

≥  𝑒−𝜀𝑚

𝑧

1

𝑒
 

  
= 𝑃 𝑒−𝜀𝑚 −1 

(disjointness) 

(group privacy, size 𝑚) 

(accuracy) 

(size of packing) 

  

⟹ 𝑚 ≥
ln 𝑃 − 1

𝜀
 



Example: Dataset Mean 

• Dataset: 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 0,1 𝑑 𝑛
 

• Mean: 𝜇 𝑥 =
1

𝑛
 𝑥𝑖𝑖  

• Accuracy: 𝐺 𝑥 = 𝜇 max
𝑐

𝜇 𝑥 𝑐  − 𝜇 𝑐 ≤ 𝛼  

 

• Q1: Suppose we use Laplace, how much noise do we add? 

• A1: Global ℓ1-sensitivity is 
𝑑

𝜀𝑛
, add Lap

𝑑

𝜀𝑛
 to each entry 

 

• Q2: How accurate? 

• A2: 𝛼 = 𝑂
𝑑 ln 𝑑

𝜀𝑛
 whp.  Can be improved to 𝛼 = 𝑂

𝑑

𝜀𝑛
. 



Example: Dataset Mean 

• Dataset: 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 0,1 𝑑 𝑛
 

• Mean: 𝜇 𝑥 =
1

𝑛
 𝑥𝑖𝑖  

• Accuracy: 𝐺 𝑥 = 𝜇 max
𝑐

𝜇 𝑥 𝑐  − 𝜇 𝑐 ≤ 𝛼  

 

1 1 0 0 

0 1 0 1 

0 1 0 1 

0.333 1.000 0.000 0.667 

0.360 0.980 0.045 0.700 

dataset 𝑥 

𝜇 𝑥  

𝜇  𝛼 =  .045 



Example: Dataset Mean 

• Dataset: 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 0,1 𝑑 𝑛
 

• Mean: 𝜇 𝑥 =
1

𝑛
 𝑥𝑖𝑖  

• Accuracy: 𝐺 𝑥 = 𝜇 max
𝑐

𝜇 𝑥 𝑐  − 𝜇 𝑐 ≤ 𝛼  

• Define the following packing: 

• 𝑃 = 𝑝𝑧 𝑧∈ 0,1 𝑑 

• 𝑃 = 2𝑑 

• 𝑝, 𝑝′ are 𝑚 = 3𝛼𝑛 neighbors 

• 𝐺 𝑥 = 𝜇   𝜇 𝑥  − 𝜇 ∞ ≤ 𝛼} 

 

• Packing lemma ⇒ 3𝛼𝑛 ≥
𝑑−1

𝜀
 

1001 

1001 

1001 

0000 

0000 

Ex: 𝑝1001 

𝜇 𝑝𝑧 = 3𝛼𝑧 

3𝛼𝑛 rows 

𝑛 − 3𝛼𝑛 rows 



Example: Dataset Mean 
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1

𝑛
 𝑥𝑖𝑖  

• Accuracy: 𝐺 𝑥 = 𝜇 max
𝑐

𝜇 𝑥 𝑐  − 𝜇 𝑐 ≤ 𝛼  

• Define the following packing: 
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• 𝑃 = 2𝑑 

• 𝑝, 𝑝′ are 𝑚 = 3𝛼𝑛 neighbors 

 

• Packing lemma ⇒ 𝛼 ≥
𝑑−1

3𝜀𝑛
 

1001 

1001 

1001 

0000 

0000 

3𝛼𝑛 rows 

𝑛 − 3𝛼𝑛 rows 

Ex: 𝑝1001 

𝜇 𝑝𝑧 = 3𝛼𝑧 



Statistical Queries (SQs) 

• Recall statistical queries 𝑞 𝑥 =
1

𝑛
 𝜙 𝑥𝑖𝑖  

• The mean is 𝑑 statistical queries on 𝑥 ∈ 0,1 𝑑 𝑛
 

 

• Thm: Laplace noise is (𝜀, 0)-dp and answers 𝑘 

arbitrary SQs up to error  𝛼 = 𝑂
𝑘 ln 𝑘

𝜀𝑛
 

 

• Thm: No 𝜀, 0 -dp algorithm 𝑀 ∶ 𝑋𝑛 → 𝑅 can 

answer 𝑘 ≤ log |𝑋| arbitrary SQs with 𝛼 <
𝑘−1

3𝜀𝑛
 



Statistical Queries (SQs) 

• Recall statistical queries 𝑞 𝑥 =
1

𝑛
 𝜙 𝑥𝑖𝑖  

• The mean is 𝑑 statistical queries on 𝑥 ∈ 0,1 𝑑 𝑛
 

 

• Thm: Laplace noise is (𝜀, 𝛿)-dp and answers 𝑘 

arbitrary SQs up to error 𝛼 = 𝑂 
𝑘 ln(1/𝛿)

𝜀𝑛
 

 

• Packing lower bound is false for approximate dp. 

• Later on we’ll see how to show tight lower bounds 
for (𝜀, 𝛿)-dp using very different techniques 



Example: Online Counting 

• Data: stream of bits 𝑥1, … , 𝑥𝑇 ∈ 0,1 𝑇, given one at a time 

• Goal: after 𝑥𝑡, output 𝑎𝑡 approximating 𝑐𝑡 =  𝑥𝑡′𝑡′≤ 𝑡  

• Accuracy: max
𝑡

𝑎𝑡  − 𝑐𝑡 ≤ 𝛼 

 

• Fact: there is an 𝜀, 0 -dp algorithm with accuracy             
𝛼 = 𝑂 𝜀−1 ln 𝑇 .  (Binary tree gives 𝛼 = 𝑂 𝜀−1 ln2 𝑇 .) 

 

• Theorem: for every 𝜀, 0 -dp algorithm 𝛼 = Ω 𝜀−1 ln 𝑇 . 



Example: Online Counting 

• Theorem: for every 𝜀, 0 -dp algorithm 𝛼 = Ω 𝜀−1 ln 𝑇 . 

 

 

 

Split the input into 𝐵 =
𝑇

3𝛼
 blocks of length 3𝛼. 

𝟎𝟎𝟎𝟎𝟎 𝟏𝟏𝟏𝟏𝟏 𝟎𝟎𝟎𝟎𝟎 𝟎𝟎𝟎𝟎𝟎 𝟎𝟎𝟎𝟎𝟎 𝒑𝒋 

block 𝑗 

• 𝑃 =  𝑝𝑗 ∶ 𝑗 = 1,… ,
𝑇

3𝛼
; 𝑃 =

𝑇

3𝛼
 ;  distance 𝑚 = 3𝛼.  

• 𝐺 𝑥 =  𝑎1, … , 𝑎𝑇 ∶ max
𝑡

 𝑐𝑡 − 𝑎𝑡 ≤ 𝛼  

• 𝐺 𝑝𝑗 , 𝐺 𝑝𝑗′  are disjoint 

• Packing Lem. ⟹ 𝑚 ≥
ln 𝑃 −1

𝜀
⟹ 3𝛼 ≥

ln 𝑇 −ln 3𝛼 −1

𝜀
 



Example: Online Counting 

• Theorem: for every 𝜀, 0 -dp algorithm 𝛼 = Ω 𝜀−1 ln 𝑇 . 
 

• Also applies to answering threshold queries 

• Dataset 𝑥 ∈ 𝑇 𝑛 

• Queries 𝑐𝑡 𝑥 = #{𝑖 ∶ 𝑥𝑖 ≥ 𝑡} 

• Goal: output 𝑎1, … , 𝑎𝑇  such that                         
max

𝑡
𝑎𝑡 − 𝑐𝑡 𝑥 ≤ 𝛼 



Packing vs. Covering 

𝑋𝑛: all datasets 𝑅: all outputs 

𝑥1 

𝑥2 

𝑥3 

𝐺 𝑥1  

𝐺 𝑥2  

𝐺 𝑥3  

• packing: set of datasets; no output 
is “good” for two datasets 

• covering: set of outputs; for every 
dataset, some output is “good” 



Final Thought: Packing vs. Covering 

• Suppose we have a function 𝑓 ∶ 𝑋𝑛 → 𝑅 

• Suppose we have a covering 𝐶 such that for every 𝑥, there 
exists 𝑐 ∈ 𝐶, such that 𝑑 𝑓 𝑥 , 𝑐 ≤ 𝛼. 

• Some accuracy metric 𝑑. 

• Thm: Exists an (𝜀, 0)-dp algorithm with error 𝛽 = 𝛼 +
ln 𝐶

𝜀𝑛
.   

• If 𝑛 = Ω
ln 𝐶

𝜀𝛼
, then we get error 𝛽 = 𝑂 𝛼  

 

• Thm: size of minimum covering ≈ size of maximum packing 

• Implies LB of 𝑛 = Ω
ln 𝐶

𝜀
; tight up to 𝑂

1

𝛼
 factor 



Outline 

• Packing arguments for DP lower bounds 
• Intuitive geometric approach to lower bounds 

• Applicable to a wide variety of problems 

• Often yields tight lower bounds for 𝜀, 0 -dp 

• Separates (𝜀, 0)-dp from (𝜀, 𝛿)-dp 


