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Outline

* Privately releasing statistical queries via Private
Multiplicative Weights
e Originally: [Hardt-Rothblum’10], presentation is from
[Gupta-Hardt-Roth-U’12, Hardt-Ligett-McSherry’13]
e Optimal worst-case accuracy for statistical queries
* Optimal worst-case computational efficiency

* Although still exponential time

* Extends to the case of online queries



Multiplicative Weights Update Rule

Day 1 investment $.25 $.25 $.25 $.25
E R x O
| (R

Day 1 losses 80% 60% 10% 40%

Day 1 total loss 25%X.8 + .25%x.6 + .25%.1 4+ .25 X%.4
= $0.475

* You earn S1 a day. You need a financier to manage it.



Multiplicative Weights Update Rule

Day 2 investment $.10 $.20 $.50 $.20
E R x O
| (R

Day 2 losses 10% 50% 80% 10%

Day 2 total loss A0%x.1 + .20%x.5 + .50%x.8 + .20 x.1
= $0.53

* You earn S1 a day. You need a financier to manage it.

* You decide to readjust your portfolio for day 2.



Multiplicative Weights Update Rule

Day 3 investment $.20 $.10 $.20 $.50
. R x O
| (R

Day 3 losses 20% 50% 50% 20%

Day 3 total loss 20%.2 + .10x.5 + .20%x.5 + .50 x.2
= $0.29

* You earn S1 a day. You need a financier to manage it.
* You decide to readjust your portfolio for day 2.

* And so on and so forth...



I\/Iultiplicative Weights Update Rule

Day t investment Pz
‘vr J (R
Day t losses % 25 O
Day t total loss ptet +  piehk o+ .+ pLth, = (phth)

« T days, m actions you can take each day, losses #%

* Total loss is Y.1_4(p?t, €%)

* Playing i every day, you would have lost man —1 ft

* Rp(£) = Xi=1(p" £") - mmZ ~1ti

* Regret: How dumb do | feeI for not sticking with i?



I\/Iultiplicative Weights Update Rule

Day t investment p2 pfn
‘vr J (O
Day t losses 25 25
Day t total loss ptet +  piehk o+ .+ pLth, = (phth)

* Def [Regret]: Ry (¥) = Y {_,(pt,£*) - mmZ 1t

* Theorem [Littlestone-Warmuth’94]:
There is an algorithm, MWU, that guarantees regret

Ry(¥) < 2\/T In(m) for any sequence of losses {£}}.




Multiplicative Weights Update Rule

Start with equal weights J

Let 7 = min{,/In(m)/T, 1}, w! = 1, p'= wl/m,
Fort=1,..,T:
Receive losses ¢t = (¢4, ..., %)

Set witl = exp(—n#t) - wiforeveryi=1,..,m

srpft = /G ) S
N

/

{Large loss makes prob. go down

Small loss makes prob. go up

|

* Def [Regret]: Ry (¥) = thl(pt, £h) -miinZ?ﬂ ff

 Theorem [Littlestone-Warmuth’94]:
There is an algorithm, MWU, that guarantees regret

Ry(¥) < 2\/T In(m) for any sequence of losses {£}}.




Multiplicative Weights Update Rule

Letn = min{\/ln(m)/T, 1}, wl = T, pl=wl/m,
Fort=1,..,T:

Receive losses ¢ = (£, ..., ¢%)

Set witl = exp(—nt?) - wt foreveryi =1, .

Set p:‘+1 — (Wt+1 )/(Z] t+1

\_

~

)

e |dea: Use sum of weights Wt = Z]- w; as a potential fn.
. W1 =m
» exp(-nX.f) < W'
e (loss of i lower bounds WT)

» WI <m - exp(n®*T —nX(p", "))

* (your loss upper bounds WT)

+ Algebra = Y ,(pt, #t) — ¥, ¢ < T + 2

n




Multiplicative Weights Update Rule

Let 7 = min{,/In(m)/T, 1}, w! = 1, p'= wl/m,
Fort=1,..,T:

Receive losses ¢t = (¢4, ..., %)

Set witl = exp(—n#t) - wiforeveryi=1,..,m

o

~

* Def [Regret]: Ry (¥) = Zthl(pt, £ - miin Zfﬂ ff

 Theorem [Littlestone-Warmuth’94]:
There is an algorithm, MWU, that guarantees regret

Ry(¥) < 2\/T In(m) for any sequence of losses {£}}.




Multiplicative Weights Update Rule

Let 7 = min{,/In(m)/T, 1}, w! = 1, p'= wl/m,
Fort=1,..,T:

Receive losses ¢ = (£, ..., ¢%)

Set witl = exp(—n#t) - wiforeveryi=1,..,m

Set plt+1 — (Wl§+1 )/(Z} W]t'+1

o

~

* Def [Regretl: Ry (¢) = Yi—y(p", £) - min Yoy (p*, £°)

 Theorem [Littlestone-Warmuth’94]:
There is an algorithm, MWU, that guarantees regret

Ry (¥) < 2\/T In(m) for any sequence of losses {£}}.




Outline

* Privately releasing statistical queries via Private
Multiplicative Weights
e Originally: [Hardt-Rothblum’10], presentation is from
[Gupta-Hardt-Roth-U’12, Hardt-Ligett-McSherry’13]
e Optimal worst-case accuracy for statistical queries
* Optimal worst-case computational efficiency

* Although still exponential time

* Extends to the case of online queries



Towards PMW

 Dataset x is a probability distribution p* over X
* Want to answer queries (g, p”) forg € Q

e Statistical query %Zi ¢ (x;) becomes (g, p*) where

q = ((]5(1), (]5(2), ) Qly one sided? ]
* Error of p is max{(q,p — p*)
qeqQ

| P 1

1 2 3 .. [X| 1 2 3 . |X|
p’ q'
Think of x € X™ as a q is a vector over X

distribution over X



Towards PMW
fpl = Uniform(X) \

Fort=1,..,T: Find a “bad query” qt ]

Find gt = argmax(q, pt — p*)
qeQ
Let pt*t = MWU(p?, qb)

L1
Outputp = ;Zt p*

Multiplicative weight update
L using losses £t = q*

| o T T

1 2 3 .. |X| . 1X] 1 2 3 .. |X|
p* p q'
Think of x € X™ as a Approximation pt is qt is a vector over X
distribution over X also a distribution over X where p*, pt are very

different



Towards PMW
fpl = Uniform(X) \

Fort=1,..,T: Find a “bad query” qt ]

Find gt = argmax(q, pt — p*)
qeQ
Let pt*t = MWU(p?, qb)

L1
Outputp = ;Zt p*

Multiplicative weight update
L using losses £t = q*

| P T

1 2 3 .. |X| 1 2 3 .. |X| 1 2 3 .. |X|
* 2
p p q'
Think of x € X™ as a Use gt to make pt*? qt is a vector over X
distribution over X closer to p* where p*, pt are very

different



Towards PMW
/pl = Uniform(X) \

Fort=1,..,T: Find a “bad query” q* ]
Find ¢© = argmax(q, p* — p*)
q€eQ
Let p"** = MWU(p*, q")
Output p = lztpt
4 Multiplicative weight update
L using losses #* = ¢*

In|X|

Claim: For every g € Q, p has error at most 2

1
— t _ p* —
max q - (T Et p p) Emaxwp p’)

= _Zt (q-,p* —p*)




Putting the Private in Private MW

fpl = Uniform(X) This is the only step where we
Fort=1,..,T: use the dataset p*

Find gt = argmax(q, pt — p*)
qeQ
Let pt*t = MWU(p?, qb)

L1
Outputp = ;Zt p*

J

Q: How can we find the (approximately) worst query privately?

A: The exponential mechanism or find-noisy-max!



Exponential Mechanism
- R

EM, o' —p™):

Choose gt with probability proportional to
€0

exp (7 n-{qt,pt — "))

Output g¢

* Recall: EM,_ q is (&, 0)-dp

 To achieve (&, 6)-dp over T iterations, set g5 = i

e
. | Eot s t .« _ 2In|Q|
Recall: E[{q", p* — p")] 2 max(q,p" —p") ==~

Call this «




Putting the Private in Private MW

/pl = Uniform(X) The whole algorithm
Fort =1,..,T: is now private.

Privately sample q* « EM, o (p* — p*)
Letp™*t = MWU(p*,q")

A 1
Output p = ;tht

- Y

2 1n|Q|
EoMn

Claim: For every g € Q, p has error at most 2 /1“|TX| +

1
— t % _
o (1200 =) 53 Y mayant -

Z;Zt <q D _p*>+a0

In|X]|

< IR +ag <2 [P+




Putting the Private in Private MW

/pl = Uniform(X) The whole algorithm
Fort=1,..,T: IS now private.

Privately sample q* « EM,, o(p" — p*)
Let pt*t = MWU(p?, 1)

.1
Output p = ;tht

o /

2 1n|Q|
EoMn

Claim: For every g € Q, p has error at most 2 /1“|TX| +

To achieve (g, 6)-dp, set g, = e/\/T In(1/68)



Putting the Private in Private MW

/pl = Uniform(X) The whole algorithm
Fort=1,..,T: IS now private.

Privately sample q* « EM,, o(p" — p*)
Let pt*t = MWU(p?, 1)

L1
Outputp = =%, p*

o /

In|X| . 21n|Q|+/TIn(1/6)

Claim: For every g € Q, p has error 2 / — t

&n

To achieve (g, 6)-dp, set g, = e/\/T In(1/68)

Now, set T optimally




Putting the Private in Private MW

/pl = Uniform(X) The whole algorithm
Fort=1,..,T: IS now private.

Privately sample q* « EM, o(p" — p*)
Let pt*t = MWU(p?, 1)

.1
Output p = ;tht

o /

&n

1/2
Claim: Foreveryq € Q,p haserrora = 0 (lnIQI \/1n|X|-1n(1/5))

Running time is O(T|Q||X]|). Each round is essentially linear in the
size of the set of queries Q, which can be an arbitrary |Q| X |X]
matrix. But can be exponential in the size of the dataset.



Outline

* Privately releasing statistical queries via Private
Multiplicative Weights [Hardt-Rothblum’10].
e Optimal worst-case accuracy for statistical queries
e Optimal worst-case computational efficiency

* Although still exponential time

* Extends to the case of online queries



Extension to Online Queries

* Queries g4, ..., gy arrive one at a time (can be adaptive)

* Must give an a-accurate answer a; after each query q;

dataset (g,0)-dp

x € {0,1}x4 algorithm
X1
X2
Xn

sequence of

k queries

query q,

—
—
answer a,

query qg

s
—_—
answer ay

answers accurate if
max |qj(x) — aj| <a
J



Online MW

1 _ . . _ 4ln|X| - £ \
ﬁ— Uniform(X),t=1,T = — 'EON—W

Repeat until ¢ = T: [outer loop] If pt is accurate, use
it to answer

Repeat: [inner loop]
Let g be the next query Otherwise use
If |{q,p* — p")| < a, output a = (q,p") Laplace
Else output a = (q,p*) + Lap( ) break loop, and UPDATE

UPDATE:
Define £ to be either g or —q depending on the sign of the error

\ Let pt*1 = MWU(®?, £Y), lett =t + 1 /

In|X|

Key Claim: There areonly T = ® ( ) UPDATES



Online Private MW

1 _ . . 4 In | X| - € \
ﬁ— Uniform(X),t=1,T = — &0~ N
Repeat until t = T: [outer Ioop]/[ Randomize the ]
1 threshold
Leta—a+Lap(0n) \
Repeat: [inner loop] .
Let g be the next query Randomize the tests
L

F1(q,p* = p*)| + Lap () < & output a = (q,p")

| Elseoutputa = (q,p*) + Lap( ) break loop, and UPDATE
UPDATE.:

Define £ to be either g or —q depending on the sign of the error
K Let pt*t1 = MWU(®?, £Y), lett =t + 1 /

a2

Key Claim: This algorithm is the compositionof T = ® (lnlxl)
instances of the sparse vector primitive.



Master Theorem for Query Release

 Theorem [Hardt-Rothblum’10]: We can privately answer any
sequence of k online (and adaptively chosen) queries in time
O(|X]| + |Q]) per query with error at most

(lnIQI JIIXT 1n<1/5>)” 2
a=20

En
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