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Outline 

• Privately releasing statistical queries via Private 
Multiplicative Weights  
• Originally: [Hardt-Rothblum’10], presentation is from 

[Gupta-Hardt-Roth-U’12, Hardt-Ligett-McSherry’13] 

• Optimal worst-case accuracy for statistical queries 

• Optimal worst-case computational efficiency 

• Although still exponential time 

• Extends to the case of online queries 



Multiplicative Weights Update Rule 

• You earn $1 a day.  You need a financier to manage it. 

$. 𝟐𝟓 $. 𝟐𝟓 $. 𝟐𝟓 $. 𝟐𝟓  Day 1 investment 

Day 1 losses 𝟖𝟎% 𝟔𝟎% 𝟏𝟎% 𝟒𝟎% 

Day 1 total loss         .𝟐𝟓 ×. 𝟖   +    . 𝟐𝟓 ×. 𝟔    +  . 𝟐𝟓 ×. 𝟏  +  . 𝟐𝟓 ×. 𝟒
= $𝟎. 𝟒𝟕𝟓 



Multiplicative Weights Update Rule 
$. 𝟏𝟎 $. 𝟐𝟎 $. 𝟓𝟎 $. 𝟐𝟎  Day 2 investment 

Day 2 losses 𝟏𝟎% 𝟓𝟎% 𝟖𝟎% 𝟏𝟎% 

Day 2 total loss         .𝟏𝟎 ×. 𝟏   +    . 𝟐𝟎 ×. 𝟓    +  . 𝟓𝟎 ×. 𝟖  +  . 𝟐𝟎 ×. 𝟏
= $𝟎. 𝟓𝟑 

• You earn $1 a day.  You need a financier to manage it. 

• You decide to readjust your portfolio for day 2. 



Multiplicative Weights Update Rule 
$. 𝟐𝟎 $. 𝟏𝟎 $. 𝟐𝟎 $. 𝟓𝟎  Day 3 investment 

Day 3 losses 𝟐𝟎% 𝟓𝟎% 𝟓𝟎% 𝟐𝟎% 

Day 3 total loss         .𝟐𝟎 ×. 𝟐   +    . 𝟏𝟎 ×. 𝟓    +  . 𝟐𝟎 ×. 𝟓  +  . 𝟓𝟎 ×. 𝟐
= $𝟎. 𝟐𝟗 

• You earn $1 a day.  You need a financier to manage it. 

• You decide to readjust your portfolio for day 2. 

• And so on and so forth…  



Multiplicative Weights Update Rule 
𝒑𝟏

𝒕  𝒑𝟐
𝒕  … 𝒑𝒎

𝒕   Day 𝒕 investment 

Day 𝒕 losses ℓ𝟏
𝒕  ℓ𝟐

𝒕  … ℓ𝒎
𝒕  

Day 𝒕 total loss           𝒑𝟏
𝒕 ℓ𝟏

𝒕    +        𝒑𝟐
𝒕 ℓ𝟐

𝒕     +       …     +        𝒑𝒎
𝒕 ℓ𝒎

𝒕 = 〈𝒑𝒕, ℓ𝒕〉 

• 𝑻 days, 𝒎 actions you can take each day, losses ℓ𝒊
𝒕 

• Total loss is  〈𝒑𝒕, ℓ𝒕〉𝑻
𝒕=𝟏  

• Playing 𝒊 every day, you would have lost 𝐦𝐢𝐧
𝒊

 ℓ𝒊
𝒕𝑻

𝒕=𝟏  

• 𝑹𝑻(ℓ) =  〈𝒑𝒕, ℓ𝒕〉𝑻
𝒕=𝟏  - 𝒎𝒊𝒏

𝒊
 ℓ𝒊

𝒕𝑻
𝒕=𝟏  

• Regret: How dumb do I feel for not sticking with 𝑖? 



Multiplicative Weights Update Rule 

• Def [Regret]: 𝑹𝑻 ℓ =  𝒑𝒕, ℓ𝒕𝑻
𝒕=𝟏  - 𝒎𝒊𝒏

𝒊
 ℓ𝒊

𝒕𝑻
𝒕=𝟏  

• Theorem [Littlestone-Warmuth’94]:                                    
There is an algorithm, MWU, that guarantees regret 

𝑅𝑇 ℓ ≤ 2 𝑇 ln (𝑚) for any sequence of losses {ℓ𝑖
𝑡}. 

𝒑𝟏
𝒕  𝒑𝟐

𝒕  … 𝒑𝒎
𝒕   Day 𝒕 investment 

Day 𝒕 losses ℓ𝟏
𝒕  ℓ𝟐

𝒕  … ℓ𝒎
𝒕  

Day 𝒕 total loss           𝒑𝟏
𝒕 ℓ𝟏

𝒕    +        𝒑𝟐
𝒕 ℓ𝟐

𝒕     +       …     +        𝒑𝒎
𝒕 ℓ𝒎

𝒕 = 〈𝒑𝒕, ℓ𝒕〉 



Multiplicative Weights Update Rule 

Let 𝜼 = 𝐦𝐢𝐧 𝐥𝐧 (𝒎)/𝑻, 𝟏 , 𝒘𝟏 = 𝟏,  𝒑𝟏= 𝒘𝟏 𝒎 ,   

For 𝒕 = 𝟏,… , 𝑻: 
      Receive losses ℓ𝒕 = ℓ𝟏

𝒕 , … , ℓ𝒎
𝒕  

      Set 𝒘𝒊
𝒕+𝟏 = 𝐞𝐱𝐩 −𝜼ℓ𝒊

𝒕 ⋅ 𝒘𝒊
𝒕 for every 𝒊 = 𝟏,… ,𝒎 

      Set 𝒑𝒊
𝒕+𝟏 = 𝒘𝒊

𝒕+𝟏  𝒘𝒋
𝒕+𝟏

𝒋  

Start with equal weights 

Large loss makes prob. go down 
Small loss makes prob. go up 

• Def [Regret]: 𝑹𝑻 ℓ =  𝒑𝒕, ℓ𝒕𝑻
𝒕=𝟏  - 𝒎𝒊𝒏

𝒊
 ℓ𝒊

𝒕𝑻
𝒕=𝟏  

• Theorem [Littlestone-Warmuth’94]:                                    
There is an algorithm, MWU, that guarantees regret 

𝑅𝑇 ℓ ≤ 2 𝑇 ln (𝑚) for any sequence of losses {ℓ𝑖
𝑡}. 



Multiplicative Weights Update Rule 

• Idea: Use sum of weights 𝑾𝒕 =  𝒘𝒋
𝒕

𝒋  as a potential fn. 

• 𝑾𝟏 = 𝒎 

• 𝐞𝐱𝐩 −𝜼 ℓ𝒊
𝒕

𝒕 ≤ 𝑾𝑻 

• (loss of 𝒊 lower bounds 𝑾𝑻) 

• 𝑾𝑻 ≤ 𝒎 ⋅ 𝒆𝒙𝒑 𝜼𝟐𝑻 − 𝜼 𝒑𝒕, ℓ𝒕
𝒕   

• (your loss upper bounds 𝑾𝑻) 

• Algebra ⟹  〈𝒑𝒕, ℓ𝒕〉𝒕  −  ℓ𝒊
𝒕

𝒕 ≤ 𝜼𝑻 +
𝐥𝐧 𝒎

𝜼
 

Let 𝜼 = 𝐦𝐢𝐧 𝐥𝐧 (𝒎)/𝑻, 𝟏 , 𝒘𝟏 = 𝟏,  𝒑𝟏= 𝒘𝟏 𝒎 ,   

For 𝒕 = 𝟏,… , 𝑻: 
      Receive losses ℓ𝒕 = ℓ𝟏

𝒕 , … , ℓ𝒎
𝒕  

      Set 𝒘𝒊
𝒕+𝟏 = 𝐞𝐱𝐩 −𝜼ℓ𝒊

𝒕 ⋅ 𝒘𝒊
𝒕 for every 𝒊 = 𝟏,… ,𝒎 

      Set 𝒑𝒊
𝒕+𝟏 = 𝒘𝒊

𝒕+𝟏  𝒘𝒋
𝒕+𝟏

𝒋  



Multiplicative Weights Update Rule 

Let 𝜼 = 𝐦𝐢𝐧 𝐥𝐧 (𝒎)/𝑻, 𝟏 , 𝒘𝟏 = 𝟏,  𝒑𝟏= 𝒘𝟏 𝒎 ,   

For 𝒕 = 𝟏,… , 𝑻: 
      Receive losses ℓ𝒕 = ℓ𝟏

𝒕 , … , ℓ𝒎
𝒕  

      Set 𝒘𝒊
𝒕+𝟏 = 𝐞𝐱𝐩 −𝜼ℓ𝒊

𝒕 ⋅ 𝒘𝒊
𝒕 for every 𝒊 = 𝟏,… ,𝒎 

      Set 𝒑𝒊
𝒕+𝟏 = 𝒘𝒊

𝒕+𝟏  𝒘𝒋
𝒕+𝟏

𝒋  

• Def [Regret]: 𝑹𝑻 ℓ =  𝒑𝒕, ℓ𝒕𝑻
𝒕=𝟏  - 𝒎𝒊𝒏

𝒊
 ℓ𝒊

𝒕𝑻
𝒕=𝟏  

• Theorem [Littlestone-Warmuth’94]:                                    
There is an algorithm, MWU, that guarantees regret 

𝑅𝑇 ℓ ≤ 2 𝑇 ln (𝑚) for any sequence of losses {ℓ𝑖
𝑡}. 



Multiplicative Weights Update Rule 

Let 𝜼 = 𝐦𝐢𝐧 𝐥𝐧 (𝒎)/𝑻, 𝟏 , 𝒘𝟏 = 𝟏,  𝒑𝟏= 𝒘𝟏 𝒎 ,   

For 𝒕 = 𝟏,… , 𝑻: 
      Receive losses ℓ𝒕 = ℓ𝟏

𝒕 , … , ℓ𝒎
𝒕  

      Set 𝒘𝒊
𝒕+𝟏 = 𝐞𝐱𝐩 −𝜼ℓ𝒊

𝒕 ⋅ 𝒘𝒊
𝒕 for every 𝒊 = 𝟏,… ,𝒎 

      Set 𝒑𝒊
𝒕+𝟏 = 𝒘𝒊

𝒕+𝟏  𝒘𝒋
𝒕+𝟏

𝒋  

• Def [Regret]: 𝑹𝑻 ℓ =  𝒑𝒕, ℓ𝒕𝑻
𝒕=𝟏  - 𝒎𝒊𝒏

𝒑∗
 𝒑∗, ℓ𝒕𝑻

𝒕=𝟏  

• Theorem [Littlestone-Warmuth’94]:                                    
There is an algorithm, MWU, that guarantees regret 

𝑅𝑇 ℓ ≤ 2 𝑇 ln (𝑚) for any sequence of losses {ℓ𝑖
𝑡}. 



Outline 

• Privately releasing statistical queries via Private 
Multiplicative Weights  
• Originally: [Hardt-Rothblum’10], presentation is from 

[Gupta-Hardt-Roth-U’12, Hardt-Ligett-McSherry’13] 

• Optimal worst-case accuracy for statistical queries 

• Optimal worst-case computational efficiency 

• Although still exponential time 

• Extends to the case of online queries 



Towards PMW 

𝟏 𝟐 𝟑 |𝑿| … 𝟏 𝟐 𝟑 |𝑿| … 

𝑝∗ 𝑞1 

Think of 𝑥 ∈ 𝑋𝑛 as a 
distribution over 𝑋 

𝑞 is a vector over 𝑋 

• Dataset 𝑥 is a probability distribution 𝑝∗ over 𝑋 

• Want to answer queries 〈𝑞, 𝑝∗〉 for 𝑞 ∈ 𝑄 

• Statistical query 
1

𝑛
 𝜙 𝑥𝑖𝑖  becomes 〈𝑞, 𝑝∗〉 where               

𝑞 = (𝜙 1 , 𝜙 2 ,… ) 

• Error of 𝑝  is max
𝑞∈𝑄

〈𝑞, 𝑝  − 𝑝∗〉 
Why only one sided? 



Towards PMW 

𝟏 𝟐 𝟑 |𝑿| … 𝟏 𝟐 𝟑 |𝑿| … 𝟏 𝟐 𝟑 |𝑿| … 

𝑝∗ 𝑝1 𝑞1 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Find 𝑞𝑡 = argmax

𝑞∈𝑄
〈𝑞, 𝑝𝑡 − 𝑝∗〉 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

Find a “bad query” 𝑞𝑡 

Multiplicative weight update 
using losses ℓ𝑡 = 𝑞𝑡 

Think of 𝑥 ∈ 𝑋𝑛 as a 
distribution over 𝑋 

Approximation 𝑝𝑡 is 
also a distribution over 𝑋 

𝑞𝑡 is a vector over 𝑋 
where 𝑝∗, 𝑝𝑡 are very 

different  



Towards PMW 

𝟏 𝟐 𝟑 |𝑿| … 

𝑝∗ 𝑝2 

Think of 𝑥 ∈ 𝑋𝑛 as a 
distribution over 𝑋 

Use 𝑞𝑡 to make 𝑝𝑡+1 
closer to 𝑝∗ 

𝑞𝑡 is a vector over 𝑋 
where 𝑝∗, 𝑝𝑡 are very 

different  

𝟏 𝟐 𝟑 |𝑿| … 𝟏 𝟐 𝟑 |𝑿| … 

𝑞1 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Find 𝑞𝑡 = argmax

𝑞∈𝑄
〈𝑞, 𝑝𝑡 − 𝑝∗〉 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

Find a “bad query” 𝑞𝑡 

Multiplicative weight update 
using losses ℓ𝑡 = 𝑞𝑡 



Towards PMW 

Claim: For every 𝑞 ∈ 𝑄, 𝑝  has error at most 2
ln 𝑋

𝑇
 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Find 𝑞𝑡 = argmax

𝑞∈𝑄
〈𝑞, 𝑝𝑡 − 𝑝∗〉 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

Find a “bad query” 𝑞𝑡 

Multiplicative weight update 
using losses ℓ𝑡 = 𝑞𝑡 

max
𝑞∈𝑄

 𝑞 ⋅
1

𝑇
 𝑝𝑡

𝑡

 − 𝑝∗ ≤
1

𝑇
 max

𝑞∈𝑄
〈𝑞, 𝑝𝑡 − 𝑝∗

𝑡

〉 

   =
1

𝑇
  〈𝑞𝑡 , 𝑝𝑡 − 𝑝∗〉𝑡  

   ≤
1

𝑇
𝑅𝑇 ≤ 2

ln 𝑋

𝑇
 



Putting the Private in Private MW 

Q: How can we find the (approximately) worst query privately? 

A: The exponential mechanism or find-noisy-max! 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Find 𝑞𝑡 = argmax

𝑞∈𝑄
〈𝑞, 𝑝𝑡 − 𝑝∗〉 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

This is the only step where we 
use the dataset 𝑝∗ 



Exponential Mechanism 

• Recall: 𝐸𝑀𝜀0,𝑄 is 𝜀0, 0 -dp 

• To achieve 𝜀, 𝛿 -dp over 𝑇 iterations, set 𝜀0 ≈
𝜀

𝑇 ln 1 𝛿 
 

• Recall: 𝔼 〈𝑞𝑡 , 𝑝𝑡 − 𝑝∗〉 ≥ max
𝑞∈𝑄

𝑞, 𝑝𝑡 − 𝑝∗  −
2 ln 𝑄

𝜀0𝑛
 

  

𝐸𝑀𝜀0,𝑄 𝑝𝑡 − 𝑝∗ : 

      Choose 𝑞𝑡 with probability proportional to 

exp
𝜀0
2

⋅ 𝑛 ⋅ 𝑞𝑡 , 𝑝𝑡 − 𝑝∗  

      Output 𝑞𝑡 

Call this 𝛼0 



Putting the Private in Private MW 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Privately sample 𝑞𝑡 ← 𝐸𝑀𝜀0,𝑄(𝑝

𝑡 − 𝑝∗) 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

The whole algorithm 
is now private. 

Claim: For every 𝑞 ∈ 𝑄, 𝑝  has error at most 2
ln 𝑋

𝑇
+

2 ln 𝑄

𝜀0𝑛
 

max
𝑞∈𝑄

 𝑞 ⋅
1

𝑇
 𝑝𝑡

𝑡

 − 𝑝∗ ≤
1

𝑇
 max

𝑞∈𝑄
〈𝑞, 𝑝𝑡 − 𝑝∗

𝑡

〉 

   =
1

𝑇
  𝑞𝑡 , 𝑝𝑡 − 𝑝∗ + 𝛼0 𝑡  

   ≤
1

𝑇
𝑅𝑇 + 𝛼0 ≤ 2

ln 𝑋

𝑇
+ 𝛼0 



Putting the Private in Private MW 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Privately sample 𝑞𝑡 ← 𝐸𝑀𝜀0,𝑄(𝑝

𝑡 − 𝑝∗) 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

The whole algorithm 
is now private. 

Claim: For every 𝑞 ∈ 𝑄, 𝑝  has error at most 2
ln 𝑋

𝑇
+

2 ln 𝑄

𝜀0𝑛
 

To achieve 𝜀, 𝛿 -dp, set 𝜀0 = 𝜀 𝑇 ln 1 𝛿    



Putting the Private in Private MW 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Privately sample 𝑞𝑡 ← 𝐸𝑀𝜀0,𝑄(𝑝

𝑡 − 𝑝∗) 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

The whole algorithm 
is now private. 

Claim: For every 𝑞 ∈ 𝑄, 𝑝  has error 2
ln 𝑋

𝑇
+

2 ln 𝑄  𝑇 ln 1 𝛿 

𝜀𝑛
 

To achieve 𝜀, 𝛿 -dp, set 𝜀0 = 𝜀 𝑇 ln 1 𝛿   

Now, set 𝑇 optimally 



Putting the Private in Private MW 

𝑝1 = Uniform(𝑋) 
For 𝑡 = 1, … , 𝑇: 
      Privately sample 𝑞𝑡 ← 𝐸𝑀𝜀0,𝑄(𝑝

𝑡 − 𝑝∗) 

      Let 𝑝𝑡+1 = 𝑀𝑊𝑈(𝑝𝑡, 𝑞𝑡) 

Output 𝑝 =
1

𝑇
 𝑝𝑡

𝑡  

The whole algorithm 
is now private. 

Claim: For every 𝑞 ∈ 𝑄, 𝑝  has error 𝛼 = 𝑂
ln 𝑄  ln 𝑋 ⋅ln 1 𝛿 

𝜀𝑛

1 2 

 

 

Running time is 𝑂 𝑇 𝑄 𝑋 .  Each round is essentially linear in the 
size of the set of queries 𝑄, which can be an arbitrary 𝑄 × |𝑋| 
matrix.  But can be exponential in the size of the dataset. 



Outline 

• Privately releasing statistical queries via Private 
Multiplicative Weights [Hardt-Rothblum’10]. 
• Optimal worst-case accuracy for statistical queries 

• Optimal worst-case computational efficiency 

• Although still exponential time 

• Extends to the case of online queries 



Extension to Online Queries 

• Queries 𝑞1, … , 𝑞𝑘 arrive one at a time (can be adaptive) 

• Must give an 𝛼-accurate answer 𝑎𝑡 after each query 𝑞𝑡 

𝑥1 

𝑥2 

… 

𝑥𝑛 

dataset  
𝑥 ∈ 0,1 𝑛×𝑑 

 𝑨 

(𝜀, 𝛿)-dp 
algorithm 

query 𝑞1 

answer 𝑎1 

sequence of  
𝑘 queries 

query 𝑞𝑘  

answer 𝑎𝑘 

… 

answers accurate if  

max
𝑗

 𝑞𝑗 𝑥 − 𝑎𝑗 ≤ 𝛼  



Online MW 

𝑝1 = Uniform(𝑋), 𝑡 = 1, 𝑇 ≈
4 ln |𝑋|

𝛼2 , 𝜀0 ≈
𝜀

𝑇 ln 1 𝛿 
 

 
Repeat until 𝑡 = 𝑇: [outer loop] 
       
      Repeat: [inner loop] 
            Let 𝑞 be the next query 
            If 𝑞, 𝑝𝑡 − 𝑝∗ ≤ 𝛼, output 𝑎 = 〈𝑞, 𝑝𝑡〉 

            Else output 𝑎 = 𝑞, 𝑝∗ + 𝐿𝑎𝑝
1

𝜀0𝑛
, break loop, and UPDATE 

      UPDATE: 
            Define ℓ𝑡 to be either 𝑞 or −𝑞 depending on the sign of the error 
            Let 𝑝𝑡+1 = 𝑀𝑊𝑈 𝑝𝑡, ℓ𝑡 , let 𝑡 = 𝑡 + 1 

If 𝑝𝑡 is accurate, use 
it to answer 

Otherwise use 
Laplace 

Key Claim: There are only 𝑇 = Θ
ln 𝑋

𝛼2  UPDATES 



Online Private MW 

𝑝1 = Uniform(𝑋), 𝑡 = 1, 𝑇 ≈
4 ln |𝑋|

𝛼2 , 𝜀0 ≈
𝜀

𝑇 ln 1 𝛿 
 

 
Repeat until 𝑡 = 𝑇: [outer loop] 

      Let 𝛼 = 𝛼 + 𝐿𝑎𝑝
1

𝜀0𝑛
 

      Repeat: [inner loop] 
            Let 𝑞 be the next query 

            If 𝑞, 𝑝𝑡 − 𝑝∗ + 𝐿𝑎𝑝
1

𝜀0𝑛
≤ 𝛼 , output 𝑎 = 〈𝑞, 𝑝𝑡〉 

            Else output 𝑎 = 𝑞, 𝑝∗ + 𝐿𝑎𝑝
1

𝜀0𝑛
, break loop, and UPDATE 

      UPDATE: 
            Define ℓ𝑡 to be either 𝑞 or −𝑞 depending on the sign of the error 
            Let 𝑝𝑡+1 = 𝑀𝑊𝑈 𝑝𝑡, ℓ𝑡 , let 𝑡 = 𝑡 + 1 

Randomize the 
threshold 

Randomize the tests 

Key Claim: This algorithm is the composition of 𝑇 = Θ
ln 𝑋

𝛼2  

instances of the sparse vector primitive. 



Master Theorem for Query Release 

 

• Theorem [Hardt-Rothblum’10]: We can privately answer any 
sequence of 𝑘 online (and adaptively chosen) queries in time 
𝑂 𝑋 + |𝑄|  per query with error at most 

𝛼 = 𝑂
ln 𝑄  ln 𝑋 ⋅ ln 1 𝛿 

𝜀𝑛

1 2 

 



Outline 

• Privately releasing statistical queries via Private 
Multiplicative Weights [Hardt-Rothblum’10]. 
• Optimal worst-case accuracy for statistical queries 

• Optimal worst-case computational efficiency 

• Although still exponential time 

• Extends to the case of online queries 


