Private Multiplicative Weights

Jonathan Ullman, Northeastern University

Outline

- Privately releasing statistical queries via Private Multiplicative Weights
 - Originally: [Hardt-Rothblum'10], presentation is from [Gupta-Hardt-Roth-U'12, Hardt-Ligett-McSherry'13]
 - Optimal worst-case accuracy for statistical queries
 - Optimal worst-case computational efficiency
 - Although still exponential time
 - Extends to the case of online queries

Day 1 investment \$. 25 \$. 2

= \$**0**. **475**

You earn \$1 a day. You need a financier to manage it.

Day 2 investment \$. 10 \$. 20 \$. 50 \$. 2

- You earn \$1 a day. You need a financier to manage it.
- You decide to readjust your portfolio for day 2.

Day 3 investment \$.20 \$.10 \$.20 \$.50 \$.50 \$.20 \$.20 \$.50 \$.20

- You earn \$1 a day. You need a financier to manage it.
- You decide to readjust your portfolio for day 2.
- And so on and so forth...

Day t investment p_1^t p_2^t ... p_m^t Day t losses ℓ_1^t ℓ_2^t ... ℓ_m^t Day t total loss $p_1^t\ell_1^t$ + $p_2^t\ell_2^t$ + ... + $p_m^t\ell_m^t$ = $\langle p^t,\ell^t \rangle$

- T days, m actions you can take each day, losses ℓ_i^t
- Total loss is $\sum_{t=1}^{T} \langle p^t, \ell^t \rangle$
- Playing i every day, you would have lost $\min_{i} \sum_{t=1}^{T} \ell_{i}^{t}$

•
$$R_T(\ell) = \sum_{t=1}^T \langle p^t, \ell^t \rangle$$
 - $\min_i \sum_{t=1}^T \ell_i^t$

Regret: How dumb do I feel for not sticking with i?

Day t investment p_1^t p_2^t ... p_m^t Day t losses ℓ_1^t ℓ_2^t ... ℓ_m^t Day t total loss $p_1^t\ell_1^t$ + $p_2^t\ell_2^t$ + ... + $p_m^t\ell_m^t$ = $\langle p^t,\ell^t \rangle$

- Def [Regret]: $R_T(\ell) = \sum_{t=1}^T \langle p^t, \ell^t \rangle$ m_i $\sum_{t=1}^T \ell_i^t$
- Theorem [Littlestone-Warmuth'94]: There is an algorithm, MWU, that guarantees regret $R_T(\ell) \leq 2\sqrt{T \ln(m)}$ for any sequence of losses $\{\ell_i^t\}$.

Start with equal weights

```
Let \eta = \min\{\sqrt{\ln(m)/T}, 1\}, w^1 = \overrightarrow{1}, p^1 = w^1/m, For t = 1, ..., T:

Receive losses \ell^t = (\ell^t_1, ..., \ell^t_m)

Set w^{t+1}_i = \exp(-\eta \ell^t_i) \cdot w^t_i for every i = 1, ..., m

Set p^{t+1}_i = (w^{t+1}_i)/(\sum_j w^{t+1}_j)
```

Large loss makes prob. go down Small loss makes prob. go up

- Def [Regret]: $R_T(\ell) = \sum_{t=1}^T \langle p^t, \ell^t \rangle$ $\min_i \sum_{t=1}^T \ell_i^t$
- Theorem [Littlestone-Warmuth'94]: There is an algorithm, MWU, that guarantees regret $R_T(\ell) \le 2\sqrt{T \ln(m)}$ for any sequence of losses $\{\ell_i^t\}$.

```
Let \eta = \min\{\sqrt{\ln(m)/T}, 1\}, w^1 = \vec{1}, p^1 = w^1/m, For t = 1, ..., T:
Receive losses \ell^t = (\ell^t_1, ..., \ell^t_m)
Set w^{t+1}_i = \exp(-\eta \ell^t_i) \cdot w^t_i for every i = 1, ..., m
Set p^{t+1}_i = (w^{t+1}_i)/(\sum_j w^{t+1}_j)
```

- Idea: Use sum of weights $W^t = \sum_j w_j^t$ as a potential fn.
 - $W^1 = m$
 - $\exp(-\eta \sum_{t} \ell_{i}^{t}) \leq W^{T}$
 - (loss of i lower bounds W^T)
 - $W^T \leq m \cdot exp(\eta^2 T \eta \sum_t \langle p^t, \ell^t \rangle)$
 - (your loss upper bounds W^T)
 - Algebra $\Longrightarrow \sum_t \langle p^t, \ell^t \rangle \, \sum_t \ell_i^t \leq \eta T + \frac{\ln(m)}{n}$

```
Let \eta = \min\{\sqrt{\ln(m)/T}, 1\}, w^1 = \vec{1}, p^1 = w^1/m, For t = 1, ..., T:
Receive losses \ell^t = (\ell^t_1, ..., \ell^t_m)
Set w^{t+1}_i = \exp(-\eta \ell^t_i) \cdot w^t_i for every i = 1, ..., m
Set p^{t+1}_i = (w^{t+1}_i)/(\sum_j w^{t+1}_j)
```

- Def [Regret]: $R_T(\ell) = \sum_{t=1}^T \langle p^t, \ell^t \rangle$ $m_i n \sum_{t=1}^T \ell_i^t$
- Theorem [Littlestone-Warmuth'94]: There is an algorithm, MWU, that guarantees regret $R_T(\ell) \leq 2\sqrt{T \ln(m)}$ for any sequence of losses $\{\ell_i^t\}$.

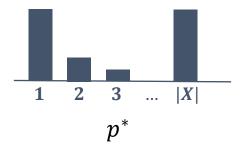
```
Let \eta = \min\{\sqrt{\ln(m)/T}, 1\}, w^1 = \vec{1}, p^1 = w^1/m, For t = 1, ..., T:
Receive losses \ell^t = (\ell_1^t, ..., \ell_m^t)
Set w_i^{t+1} = \exp(-\eta \ell_i^t) \cdot w_i^t for every i = 1, ..., m
Set p_i^{t+1} = (w_i^{t+1})/(\sum_j w_j^{t+1})
```

- Def [Regret]: $R_T(\ell) = \sum_{t=1}^T \langle p^t, \ell^t \rangle$ $\min_{p^*} \sum_{t=1}^T \langle p^*, \ell^t \rangle$
- Theorem [Littlestone-Warmuth'94]: There is an algorithm, MWU, that guarantees regret $R_T(\ell) \leq 2\sqrt{T \ln(m)}$ for any sequence of losses $\{\ell_i^t\}$.

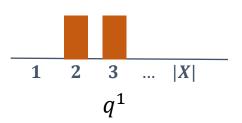
Outline

- Privately releasing statistical queries via Private Multiplicative Weights
 - Originally: [Hardt-Rothblum'10], presentation is from [Gupta-Hardt-Roth-U'12, Hardt-Ligett-McSherry'13]
 - Optimal worst-case accuracy for statistical queries
 - Optimal worst-case computational efficiency
 - Although still exponential time
 - Extends to the case of online queries

- Dataset x is a probability distribution p^* over X
- Want to answer queries $\langle q, p^* \rangle$ for $q \in Q$
 - Statistical query $\frac{1}{n}\sum_i \phi(x_i)$ becomes $\langle q,p^*\rangle$ where $q=(\phi(1),\phi(2),\dots)$ Why only one sided?
- Error of \hat{p} is $\max_{q \in Q} \langle q, \hat{p} p^* \rangle$

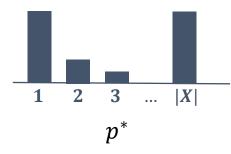


Think of $x \in X^n$ as a distribution over X

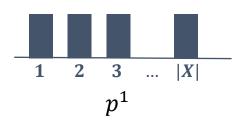


q is a vector over X

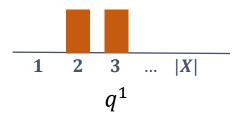
$$p^{1} = \text{Uniform}(X)$$
 For $t = 1, ..., T$: Find a "bad query" q^{t}
$$q \in Q$$
 Let $p^{t+1} = MWU(p^{t}, q^{t})$ Output $\hat{p} = \frac{1}{T} \sum_{t} p^{t}$ Multiplicative weight update using losses $\ell^{t} = q^{t}$



Think of $x \in X^n$ as a distribution over X

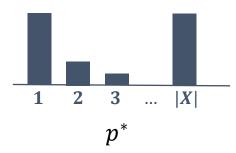


Approximation p^t is also a distribution over X

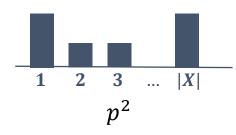


 q^t is a vector over X where p^* , p^t are very different

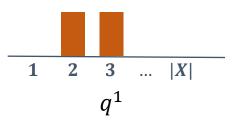
$$p^{1} = \text{Uniform}(X)$$
 For $t = 1, ..., T$: Find a "bad query" q^{t} Let $p^{t+1} = MWU(p^{t}, q^{t})$ Output $\hat{p} = \frac{1}{T} \sum_{t} p^{t}$ Multiplicative weight update using losses $\ell^{t} = q^{t}$



Think of $x \in X^n$ as a distribution over X



Use q^t to make p^{t+1} closer to p^*



 q^t is a vector over X where p^* , p^t are very different

```
p^1 = \text{Uniform}(X) For t = 1, ..., T: Find a "bad query" q^t \text{Find } q^t = \underset{q \in Q}{\operatorname{argmax}} \langle q, p^t - p^* \rangle Let p^{t+1} = MWU(p^t, q^t) Output \hat{p} = \frac{1}{T} \sum_t p^t Multiplicative weight update using losses \ell^t = q^t
```

Claim: For every
$$q \in Q$$
, \hat{p} has error at most $2\sqrt{\frac{\ln|X|}{T}}$

$$\begin{aligned} \max_{q \in Q} \ q \cdot \left(\frac{1}{T} \sum_{t} p^{t} - p^{*}\right) &\leq \frac{1}{T} \sum_{t} \max_{q \in Q} \langle q, p^{t} - p^{*} \rangle \\ &= \frac{1}{T} \sum_{t} \langle q^{t}, p^{t} - p^{*} \rangle \\ &\leq \frac{1}{T} R_{T} \leq 2 \sqrt{\frac{\ln|X|}{T}} \end{aligned}$$

```
p^1 = \text{Uniform}(X) This is the only step where we use the dataset p^* Since p^t = p^t and p^t = p^t This is the only step where we use the dataset p^t Since p^t = p^t Since p^t
```

Q: How can we find the (approximately) worst query privately?

A: The exponential mechanism or find-noisy-max!

Exponential Mechanism

 $EM_{arepsilon_0,Q}(p^t-p^*)$: Choose q^t with probability proportional to $\exp\left(rac{arepsilon_0}{2}\cdot n\cdot \langle q^t,p^t-p^*
angle
ight)$ Output q^t

- Recall: $EM_{\varepsilon_0,Q}$ is $(\varepsilon_0,0)$ -dp
 - To achieve (ε, δ) -dp over T iterations, set $\varepsilon_0 \approx \frac{\varepsilon}{\sqrt{T \ln(1/\delta)}}$
- Recall: $\mathbb{E}[\langle q^t, p^t p^* \rangle] \ge \max_{q \in Q} \langle q, p^t p^* \rangle \frac{2 \ln |Q|}{\varepsilon_0 n}$

Call this $lpha_0$

$$\begin{aligned} p^1 &= \text{Uniform}(X) \\ \text{For } t &= 1, \dots, T \colon \\ &\quad \text{Privately sample } q^t \leftarrow EM_{\varepsilon_0,Q}(p^t - p^*) \\ &\quad \text{Let } p^{t+1} = MWU(p^t,q^t) \\ \text{Output } \hat{p} &= \frac{1}{T} \sum_t p^t \end{aligned}$$

The whole algorithm is now private.

Claim: For every $q \in Q$, \hat{p} has error at most $2\sqrt{\frac{\ln|X|}{T}} + \frac{2\ln|Q|}{\varepsilon_0 n}$

$$\begin{aligned} \max_{q \in Q} \ q \cdot \left(\frac{1}{T} \sum_{t} p^{t} - p^{*}\right) &\leq \frac{1}{T} \sum_{t} \max_{q \in Q} \langle q, p^{t} - p^{*} \rangle \\ &= \frac{1}{T} \sum_{t} \langle q^{t}, p^{t} - p^{*} \rangle + \alpha_{0} \\ &\leq \frac{1}{T} R_{T} + \alpha_{0} \leq 2 \sqrt{\frac{\ln|X|}{T}} + \alpha_{0} \end{aligned}$$

```
p^1 = \text{Uniform}(X) For t = 1, ..., T:
   Privately sample q^t \leftarrow EM_{\varepsilon_0,Q}(p^t - p^*) Let p^{t+1} = MWU(p^t, q^t) Output \hat{p} = \frac{1}{T} \sum_t p^t
```

Claim: For every
$$q \in Q$$
, \hat{p} has error at most $2\sqrt{\frac{\ln|X|}{T}} + \frac{2\ln|Q|}{\varepsilon_0 n}$

To achieve
$$(\varepsilon, \delta)$$
-dp, set $\varepsilon_0 = \varepsilon/\sqrt{T \ln(1/\delta)}$

Claim: For every
$$q \in Q$$
, \hat{p} has error $2\sqrt{\frac{\ln|X|}{T}} + \frac{2\ln|Q|\sqrt{T\ln(1/\delta)}}{\varepsilon n}$

To achieve
$$(\varepsilon,\delta)$$
-dp, set $\varepsilon_0=\varepsilon/\sqrt{T\ln(1/\delta)}$
Now, set T optimally

Claim: For every
$$q \in Q$$
, \hat{p} has error $\alpha = O\left(\frac{\ln|Q|\sqrt{\ln|X|\cdot\ln(1/\delta)}}{\varepsilon n}\right)^{1/2}$

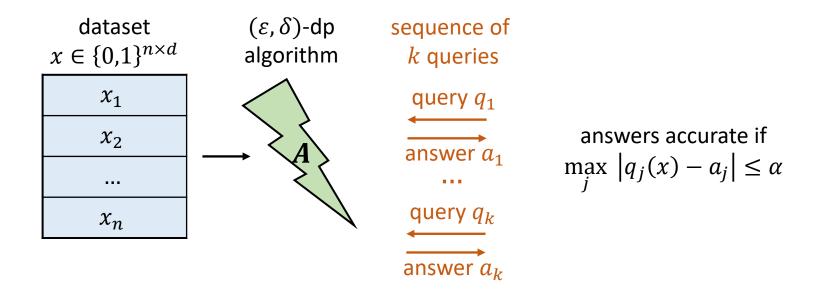
Running time is O(T|Q||X|). Each round is essentially linear in the size of the set of queries Q, which can be an arbitrary $|Q| \times |X|$ matrix. But can be exponential in the size of the dataset.

Outline

- Privately releasing statistical queries via Private Multiplicative Weights [Hardt-Rothblum'10].
 - Optimal worst-case accuracy for statistical queries
 - Optimal worst-case computational efficiency
 - Although still exponential time
 - Extends to the case of online queries

Extension to Online Queries

- Queries q_1, \dots, q_k arrive one at a time (can be adaptive)
- Must give an lpha-accurate answer a_t after each query q_t



Online MW

$$p^1 = \text{Uniform}(X), \ t = 1, \ T \approx \frac{4 \ln |X|}{\alpha^2}, \ \varepsilon_0 \approx \frac{\varepsilon}{\sqrt{T \ln(1/\delta)}}$$
 Repeat until $t = T$: [outer loop] If p^t is accurate, use it to answer If $|\langle q, p^t - p^* \rangle| \leq \alpha$, output $a = \langle q, p^t \rangle$ Cherwise use Laplace Laplace UPDATE: Define ℓ^t to be either q or $-q$ depending on the sign of the error Let $p^{t+1} = MWU(p^t, \ell^t)$, let $t = t+1$

Key Claim: There are only
$$T = \Theta\left(\frac{\ln|X|}{\alpha^2}\right)$$
 UPDATES

Online Private MW

$$p^1 = \text{Uniform}(X), \ t = 1, \ T \approx \frac{4 \ln |X|}{\alpha^2}, \ \varepsilon_0 \approx \frac{\varepsilon}{\sqrt{T \ln(1/\delta)}}$$
 Repeat until $t = T$: [outer loop] Randomize the threshold Repeat: [inner loop] Randomize the threshold Repeat: [inner loop] Randomize the tests If $|\langle q, p^t - p^* \rangle| + Lap\left(\frac{1}{\varepsilon_0 n}\right) \leq \hat{\alpha}$, output $a = \langle q, p^t \rangle$ Else output $a = \langle q, p^* \rangle + Lap\left(\frac{1}{\varepsilon_0 n}\right)$, break loop, and UPDATE UPDATE: Define ℓ^t to be either ℓ^t to be either

Key Claim: This algorithm is the composition of $T = \Theta\left(\frac{\ln|X|}{\alpha^2}\right)$ instances of the sparse vector primitive.

Master Theorem for Query Release

• Theorem [Hardt-Rothblum'10]: We can privately answer any sequence of k online (and adaptively chosen) queries in time O(|X| + |Q|) per query with error at most

$$\alpha = O\left(\frac{\ln|Q| \sqrt{\ln|X| \cdot \ln(1/\delta)}}{\varepsilon n}\right)^{1/2}$$

Outline

- Privately releasing statistical queries via Private Multiplicative Weights [Hardt-Rothblum'10].
 - Optimal worst-case accuracy for statistical queries
 - Optimal worst-case computational efficiency
 - Although still exponential time
 - Extends to the case of online queries