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Outline 

• Computational hardness results in DP 
• Surprising tradeoffs between privacy, utility, and 

computational efficiency 

• Interesting cryptographic techniques: digital signatures, 
traitor-tracing schemes, watermarking 



Query Release Review 

𝑥1 

𝑥2 

… 

𝑥𝑛 

dataset  
𝑥 ∈ 0,1 𝑛×𝑑 

 𝑨 

(𝜀, 𝛿)-dp 
algorithm 

 𝒔 

“summary” of 𝑥 

query 𝑞 ∈ 𝑄  

answer 𝑞 𝑠   

family of poly-time 
statistical queries  
𝑄 = {𝑞1, 𝑞2, … } 

 
 

𝑞(𝑥)  =
1

𝑛
 𝜙 𝑥𝑖
𝑖

 

𝑠 is accurate if  
max
𝑞∈𝑄

𝑞 𝑥 − 𝑞(𝑠) ≤ .01 

Laplace Mechanism: • Adds error 𝑂 
𝑄

𝜀𝑛
; limited to ≈ 𝑛2 queries 

• Running time is poly(𝑛, 𝑑, 𝑞1 + 𝑞2 +⋯) 
• Summary is just a list of noisy answers 

PMW Mechanism: • Adds error 𝑂
𝑑⋅ln |𝑄|

𝜀𝑛

1 2 

; can answer ≈ 2𝑛/ 𝑑 queries 

• Running time is poly 𝑛, 2𝑑 , 𝑞1 + 𝑞2 +⋯  

• Summary is a synthetic dataset 𝑥 ∈ 0,1 𝑛×𝑑 



Main Questions 

1. Can we answer ≫ 𝑛2 statistical queries privately, 
accurately, and in poly(𝑛, 𝑑) time? 
 

2. Can we efficiently generate private synthetic datasets? 

Laplace Mechanism: • Adds error 𝑂 
𝑄

𝜀𝑛
; limited to ≈ 𝑛2 queries 

• Running time is poly(𝑛, 𝑑, 𝑞1 + 𝑞2 +⋯) 
• Summary is just a list of noisy answers 

PMW Mechanism: • Adds error 𝑂
𝑑⋅ln |𝑄|

𝜀𝑛

1 2 

; can answer ≈ 2𝑛/ 𝑑 queries 

• Running time is poly 𝑛, 2𝑑 , 𝑞1 + 𝑞2 +⋯  

• Summary is a synthetic dataset 𝑥 ∈ 0,1 𝑛×𝑑 



Hardness of Large Query Families 

Theorem*: 
There is a family of 2𝑑 statistical queries 𝑄 on 0,1 𝑑 s.t. no 
DP algorithm can take a dataset of size 𝑛 = poly 𝑑 , run in 
time poly(𝑛, 𝑑), and output an accurate summary for 𝑄. 

Assuming OWF 

Compare to Private Multiplicative Weights, which can 
answer any 2𝑑 queries over the universe 0,1 𝑑 in time 

poly 𝑛, 2𝑑  given a dataset of size 𝑂 𝑑3/2 . 

*[Dwork+’09, Boneh-Zhandry’14, Kowalczyk+’17] 



Traitor-Tracing Schemes 

𝑠𝑘1 

𝑠𝑘𝑖 

𝑠𝑘𝑛 

broadcaster 

master key 𝑚𝑘 ∈ 0,1 ∗ 

can encrypt a message 𝑏 ∈ {0,1} 
so that every user can decrypt 

users 1, … , 𝑛 

secret keys 𝑠𝑘𝑖 ∈ 0,1 ℓ(𝑘𝑒𝑦) 

efficient pirate  
decoder 

𝑖 ∈ 𝑈 

𝑇𝑟𝑎𝑐𝑒𝑚𝑘 

tracing 
algorithm 

coalition of users 
𝑈 ⊆ {1,… , 𝑛} 

𝑠𝑘𝑖 𝑖∈𝐶  

𝑃 𝐸𝑛𝑐 𝑏 = 𝑏 

𝑐 = 𝐸𝑛𝑐 𝑚𝑘, 𝑏 ∈ 0,1 ℓ 𝑐𝑡𝑒𝑥𝑡  

∀𝑖 ∈ 𝑛    𝐷𝑒𝑐 𝑠𝑘𝑖 , 𝑐 = 𝑏 

Correctness =  
Security =  



Traitor Tracing vs. Differential Privacy 

Theorem*:  

If there is a TTS for 𝑛 users then there is a family of 2ℓ 𝑐𝑡𝑒𝑥𝑡  

statistical queries 𝑄 over 0,1 ℓ 𝑘𝑒𝑦  such that no DP 
algorithm can take a dataset of size 𝑛, run in polynomial 
time, and output an accurate summary for 𝑄. 

*[Dwork+’09] 

Number of users   ⟺      Dataset size 
Number of ciphertexts  ⟺      Number of queries 
Length of secret keys  ⟺      Length of dataset elements 
Efficient pirate decoder ⟺      Efficient, accurate summary 



Traitor Tracing vs. Differential Privacy 
dataset  

𝑥 ∈ 0,1 𝑛×ℓ 𝑘𝑒𝑦  

 𝑨 
𝒔 

efficient 
summary of 𝑥 

accurate for 𝑄𝐷𝑒𝑐 

query 𝑞 ∈ 𝑄𝐷𝑒𝑐  

answer 𝑞 𝑠   

efficient 
(𝜀, 𝛿)-dp 
algorithm 

𝑠𝑘1 

𝑠𝑘2 

𝑠𝑘3 

⊥ 

user keys for 
coalition 𝑈 

• Defining the queries: 

• 𝑄𝐷𝑒𝑐 = 𝑞𝑐 𝑐 ∈ 0,1 ℓ 𝑐𝑡𝑒𝑥𝑡 , where 𝑞𝑐 𝑠𝑘 = 𝐷𝑒𝑐(𝑠𝑘, 𝑐) 

• If 𝑐 = 𝐸𝑛𝑐(𝑚𝑘, 𝑏) then 𝑞𝑐 𝑥 =
1

𝑛
  𝑞𝑐 𝑠𝑘𝑖𝑖 =

1

𝑛
  𝐷𝑒𝑐(𝑠𝑘𝑖 , 𝑐)𝑖 = 𝑏 

• So an accurate summary for 𝑄𝐷𝑒𝑐 can be used to decrypt ciphertexts! 

family of poly-time 
statistical queries 𝑄𝐷𝑒𝑐 

 
 

𝑞(𝑥)  =
1

𝑛
 𝜙 𝑥𝑖
𝑖

 



Traitor Tracing vs. Differential Privacy 

𝑠𝑘1 

𝑠𝑘2 

𝑠𝑘3 

⊥ 

dataset  

𝑥 ∈ 0,1 𝑛×ℓ 𝑘𝑒𝑦  

 𝑨 

efficient 
(𝜀, 𝛿)-dp 
algorithm 

efficient pirate 
decoder 

can decrypt ciphertexts user keys for 
coalition 𝑈 

• Defining the queries: 

• 𝑄𝐷𝑒𝑐 = 𝑞𝑐 𝑐 ∈ 0,1 ℓ 𝑐𝑡𝑒𝑥𝑡 , where 𝑞𝑐 𝑠𝑘 = 𝐷𝑒𝑐(𝑠𝑘, 𝑐) 

• If 𝑐 = 𝐸𝑛𝑐(𝑚𝑘, 𝑏) then 𝑞𝑐 𝑥 =
1

𝑛
  𝑞𝑐 𝑠𝑘𝑖𝑖 =

1

𝑛
  𝐷𝑒𝑐(𝑠𝑘𝑖 , 𝑐)𝑖 = 𝑏 

• So an accurate summary for 𝑄𝐷𝑒𝑐 can be used to decrypt ciphertexts! 

𝑇𝑟𝑎𝑐𝑒𝑚𝑘 outputs 
one of the users in 

the dataset 

𝑖 ∈ 𝑈 

Violates DP; 
if we remove 𝑠𝑘𝑖, 𝑇𝑟𝑎𝑐𝑒 

would not output 𝑖  



Traitor Tracing vs. Differential Privacy 

Theorem*:  

If there is a TTS for 𝑛 users then there is a family of 2ℓ 𝑐𝑡𝑒𝑥𝑡  

statistical queries 𝑄 over 0,1 ℓ 𝑘𝑒𝑦  such that no DP 
algorithm can take a dataset of size 𝑛, run in polynomial 
time, and output an accurate summary for 𝑄. 

*[Dwork+’09] 

Number of users   ⟺      Dataset size 
Number of ciphertexts  ⟺      Number of queries 
Length of secret keys  ⟺      Length of dataset elements 
Efficient pirate decoder ⟺      Efficient, accurate summary 



Traitor Tracing vs. Differential Privacy 

Theorem [BZ’14, KMU’17]:  
Assuming OWF, for every 𝑑, and every 𝑛 = poly 𝑑 , there is 
a “good enough” TTS with ℓ 𝑘𝑒𝑦 = ℓ 𝑐𝑡𝑒𝑥𝑡 = 𝑑 secure 
against poly(𝑑) time adversaries. 

Theorem*:  

If there is a TTS for 𝑛 users then there is a family of 2ℓ 𝑐𝑡𝑒𝑥𝑡  

statistical queries 𝑄 over 0,1 ℓ 𝑘𝑒𝑦  such that no DP 
algorithm can take a dataset of size 𝑛, run in polynomial 
time, and output an accurate summary for 𝑄. 



Hardness of Large Query Families 

Theorem*: 
There is a family of 2𝑑 statistical queries 𝑄 on 0,1 𝑑 s.t. no 
DP algorithm can take a dataset of size 𝑛 = poly 𝑑 , run in 
time poly(𝑛, 𝑑), and output an accurate summary for 𝑄. 

Assuming OWF 

Compare to Private Multiplicative Weights, which can 
answer any 2𝑑 queries over the universe 0,1 𝑑 in time 

poly 𝑛, 2𝑑  given a dataset of size 𝑂 𝑑3/2 . 

*[Dwork+’09, Boneh-Zhandry’14, Kowalczyk+’17] 



Hardness of Large Query Families 

Theorem*:  
There is a family of 2𝑑 statistical queries 𝑄 on 0,1 𝑑 s.t. no 
DP algorithm can take a dataset of size 𝑛 = poly 𝑑 , run in 
time poly(𝑛, 𝑑), and output an accurate summary for 𝑄. 

Assuming OWF 

Theorem [KMUZ’16]: 
• Exists a hard family of 𝑂(𝑛7) queries over 0,1 𝑑 

• Small family of queries, large data universe 

• Exists a hard family of 2𝑑 queries over 1,… , 𝑂 𝑛7  
• Large family of queries, small data universe 

Way stronger assumption 



Interactive Mechanisms 

𝑥1 

𝑥2 

… 

𝑥𝑛 

dataset  
𝑥 ∈ 0,1 𝑛×𝑑 

 𝑨 

(𝜀, 𝛿)-dp 
algorithm 

query 𝑞1 

answer 𝑎1 

sequence of  
𝑘 queries 

Laplace Mechanism: • Adds error 𝑂 
𝑘

𝜀𝑛
; limited to 𝑛2 queries 

• Running time is poly(𝑛, 𝑑, 𝑞 ) per query 

PMW Mechanism: • Adds error 𝑂
𝑑⋅ln 𝑘

𝜀𝑛

1 2 

; can answer 2𝑛/ 𝑑 queries 

• Running time is poly 𝑛, 2𝑑 , 𝑞  per query 

query 𝑞𝑘  

answer 𝑎𝑘 

… 

answers accurate if  

max
𝑗

 𝑞𝑗 𝑥 − 𝑎𝑗 ≤ .01 



Interactive Mechanisms 

𝑠𝑘1 

𝑠𝑘2 

𝑠𝑘3 

⊥ 

dataset  

𝑥 ∈ 0,1 𝑛×ℓ 𝑘𝑒𝑦  
efficient pirate 

decoder 

user keys for 
coalition 𝑈 

• Changes in the interactive setting: 

• Same family of queries 

• View 𝐴 𝑥  together as the efficient pirate decoder 

• Relevant measure is now the number of queries made by 𝑇𝑟𝑎𝑐𝑒𝑚𝑘 

𝑇𝑟𝑎𝑐𝑒𝑚𝑘 outputs 
one of the users in 

the dataset 

𝑖 ∈ 𝑈 

query 𝑞1 

sequence of  
𝑘 queries 

query 𝑞𝑘  

… 



Interactive Mechanisms 

Theorem [U’13]:  
Assuming OWF, for every ℓ, and every 𝑛 = poly ℓ , there is a 
“good enough” TTS  that makes 𝑘 = 𝑂 𝑛2  queries and is 
secure against poly(ℓ) time adversaries 

Theorem [U’13]:  

If there is a TTS for 𝑛 users with keys in 0,1 ℓ 𝑘𝑒𝑦  such that 
𝑇𝑟𝑎𝑐𝑒 makes 𝑘 queries, then no efficient DP interactive 
mechanism answers 𝑘 arbitrary queries. 

*“Good enough” means that the scheme traces “stateful-but-cooperative” pirates. 



Hardness of Large Query Families 

Theorem [U’13]:  
No DP algorithm can take a dataset 𝑥 ∈ 0,1 𝑛×𝑑, run in time 
𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝑞 ) per query, and accurately answer 𝑘 = 𝑂 𝑛2  
arbitrary statistical queries 

Assuming OWF 

Compare to Laplace, which answers 𝑘 = Ω 𝑛2  queries in 
time poly 𝑛, 𝑑, |𝑞|  per query. 

 
Compare to Private Multiplicative Weights, which answers 

𝑘 ≈ 2𝑛 𝑑  queries in time 𝑝𝑜𝑙𝑦 𝑛, 2𝑑 , 𝑞  per query. 



Hardness of Large Query Families 

Theorem [U’13]:  
No DP algorithm can take a dataset 𝑥 ∈ 0,1 𝑛×𝑑, run in time 
𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝑞 ) per query, and accurately answer 𝑘 = 𝑂 𝑛2  
arbitrary statistical queries 

Assuming OWF 

Previous results apply to arbitrary---and, statisticians might 
say, rather funny looking---statistical queries. 

 
What can we say about simple families of queries? 



Synthetic Datasets 

𝑥1 

𝑥2 

… 

𝑥𝑛 

dataset  
𝑥 ∈ 0,1 𝑛×𝑑 

 𝑨 

(𝜀, 𝛿)-dp 
algorithm 

query 𝑞 ∈ 𝑄  

answer 𝑞 𝑠   

family of poly-time 
statistical queries  
𝑄 = {𝑞1, 𝑞2, … } 

 
 

𝑞(𝑥)  =
1

𝑛
 𝜙 𝑥𝑖
𝑖

 

𝑥  is accurate if  
max
𝑞∈𝑄

𝑞 𝑥 − 𝑞(𝑥 ) ≤ .01 

PMW Mechanism: • Adds error 𝑂
𝑑⋅ln |𝑄|

𝜀𝑛

1 2 

; can answer 2𝑛/ 𝑑 queries 

• Running time is poly 𝑛, 2𝑑 , 𝑞1 + 𝑞2 +⋯  

• Summary is a synthetic dataset 𝑥 ∈ 0,1 𝑛×𝑑 

“synthetic 
dataset” 𝑥  

𝑥 1 

𝑥 2 

… 

𝑥 𝑛 



Hardness of Synthetic Data 

Theorem [DNRRV’09, UV’11]:  
No DP algorithm can take a dataset of size 𝑛 = poly 𝑑 , run 
in time poly(𝑛, 𝑑), and output a synthetic dataset accurate 
for the means of and correlations between each column. 

𝑑2 statistical queries of the form  

𝑞𝑖,𝑘 𝑥 =
1

𝑛
 𝑥𝑖𝑗 ⋅ 𝑥𝑖𝑘
𝑖

 

Assuming OWF 

Laplace is efficient and accurate, but no synthetic data. 
 

PMW is accurate and generates synthetic data, but 
requires at least 2𝑑 time. 



Hardness of Synthetic Data 

𝑥1 

𝑥2 

… 

𝑥𝑛 

dataset  
𝑥 ∈ 0,1 𝑛×𝑑 

 𝑨 

(𝜀, 𝛿)-dp 
algorithm 

“synthetic 
dataset” 𝑥  

family of queries  
𝑄 = {𝑞1, 𝑞2, … } 

𝑥  is accurate if  
max
𝑞∈𝑄

𝑞 𝑥 − 𝑞(𝑥 ) ≤ .01 

𝑥 1 

𝑥 2 

… 

𝑥 𝑛 

Digital Signatures: • Three algorithms (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟) 
• 𝐺𝑒𝑛 → 𝑠𝑘, 𝑣𝑘 ∈ 0,1 𝑑 
• For a message 𝑚 ∈ 0,1 𝑑 , 𝑆𝑖𝑔𝑛 𝑠𝑘,𝑚 → 𝜎 ∈ 0,1 𝑑  
• 𝑉𝑒𝑟 𝑣𝑘, 𝑚, 𝜎 ∈ 0,1 ; outputs 1 if 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚) 

• No poly(𝑑) time adversary, even one with a signing oracle, 

can forge a new pair (𝑚∗, 𝜎∗) s.t. 𝑉𝑒𝑟 𝑣𝑘, 𝑚∗, 𝜎∗ = 1 



Hardness of Synthetic Data 

𝑚1, 𝜎1  

𝑚2, 𝜎2  

… 

𝑚𝑛, 𝜎𝑛  

dataset  
𝑥 ∈ 0,1 𝑛×2𝑑 

 𝑨 

(𝜀, 𝛿)-dp 
algorithm 

“synthetic 
dataset” 𝑥  

define the query 

𝑞𝑣𝑘 𝑚, 𝜎 = 𝑉𝑒𝑟 𝑣𝑘, 𝑚, 𝜎  

𝑞 𝑥 = 1, so if 𝑥  is accurate 
𝑞𝑣𝑘 𝑥 ≥ .99 

𝑥 1 

𝑥 2 

… 

𝑥 𝑛 

Argument: • Choose 𝑠𝑘, 𝑣𝑘 ← 𝐺𝑒𝑛 
• Let 𝑥 be 𝑛 random message-signature pairs 
• Query: “what fraction of this dataset is valid signatures?” 
• Accuracy implies that the dataset contains a valid signature 

• Case 1: 𝑚∗, 𝜎∗ ∈ 𝑥: violates privacy 
• Case 2: 𝑚∗, 𝜎∗ ∉ 𝑥: violates unforgeability 

random 
signed messages 

∃ 𝑚∗, 𝜎∗ ∈ 𝑥  

𝑉𝑒𝑟 𝑣𝑘, 𝑚∗, 𝜎∗ = 1 



Hardness of Synthetic Data 

Theorem [DNRRV’09]:  
No DP algorithm can take a dataset of size 𝑛 = poly 𝑑 , run 
in time poly(𝑛, 𝑑), and output a synthetic dataset accurate 
for all “verification queries” 𝑄𝑣𝑘 = 𝑉𝑒𝑟 𝑣𝑘,⋅ 𝑣𝑘∈ 0,1 𝑑  

• Can reduce the number of queries to by embedding the 
verification key in the dataset. 

• Can simplify the queries to means and correlations 
using techniques from hardness of approximation 
• Encodings of the signed messages as probabilistically 

checkable proofs (PCPs) 

Assumes that secure 
cryptography is possible. 



Hardness of Synthetic Data 

Theorem [DNRRV’09, UV’11]:  
No DP algorithm can take a dataset of size 𝑛 = poly 𝑑 , run 
in time poly(𝑛, 𝑑), and output a synthetic dataset accurate 
for the means of and correlations between each column. 

𝑑2 statistical queries of the form  

𝑞𝑖,𝑘 𝑥 =
1

𝑛
 𝑥𝑖𝑗 ⋅ 𝑥𝑖𝑘
𝑖

 

Assuming OWF 



Outline 

• Computational hardness results in DP 
• Surprising tradeoffs between privacy, utility, and 

computational efficiency 

• Interesting cryptographic techniques: digital signatures, 
traitor-tracing schemes, watermarking 

• Hardness of private data release 

• Hardness of generating synthetic data 
 


