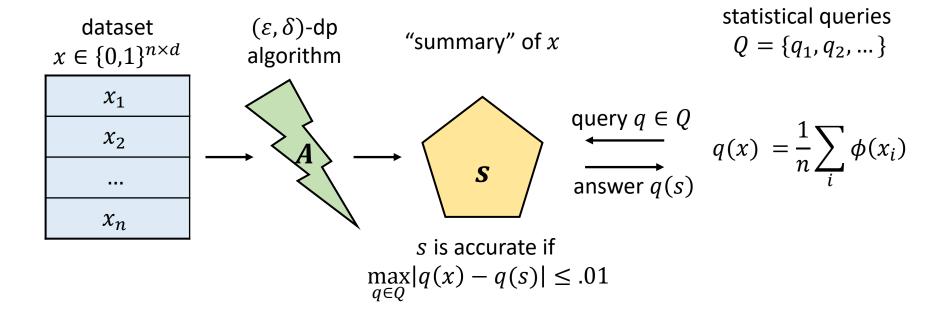
Computational Bottlenecks in Differential Privacy

Jonathan Ullman, Northeastern University

Outline

- Computational hardness results in DP
 - Surprising tradeoffs between privacy, utility, and computational efficiency
 - Interesting cryptographic techniques: digital signatures, traitor-tracing schemes, watermarking

Query Release Review



Laplace Mechanism:

- Adds error $\tilde{O}\left(\frac{\sqrt{|Q|}}{\varepsilon n}\right)$; limited to $\approx n^2$ queries
- Running time is $poly(n, d, |q_1| + |q_2| + \cdots)$
- Summary is just a list of noisy answers

PMW Mechanism:

• Adds error $O\left(\frac{\sqrt{d} \cdot \ln |Q|}{\varepsilon n}\right)^{1/2}$; can answer $\approx 2^{n/\sqrt{d}}$ queries

family of poly-time

- Running time is $poly(n, 2^d, |q_1| + |q_2| + \cdots)$
- Summary is a synthetic dataset $\hat{x} \in \{0,1\}^{n \times d}$

Main Questions

- Can we answer $\gg n^2$ statistical queries privately, accurately, and in poly(n, d) time?
- Can we efficiently generate private synthetic datasets?

- Laplace Mechanism: Adds error $\tilde{O}\left(\frac{\sqrt{|Q|}}{\varepsilon n}\right)$; limited to $\approx n^2$ queries
 - Running time is poly $(n, d, |q_1| + |q_2| + \cdots)$
 - Summary is just a list of noisy answers

PMW Mechanism:

- Adds error $O\left(\frac{\sqrt{d} \cdot \ln |Q|}{\varepsilon n}\right)^{1/2}$; can answer $\approx 2^{n/\sqrt{d}}$ queries
- Running time is poly $(n, 2^d, |q_1| + |q_2| + \cdots)$
- Summary is a synthetic dataset $\hat{x} \in \{0,1\}^{n \times d}$

Assuming OWF

Theorem*:

There is a family of 2^d statistical queries Q on $\{0,1\}^d$ s.t. no DP algorithm can take a dataset of size n = poly(d), run in time poly(n,d), and output an accurate summary for Q.

Compare to Private Multiplicative Weights, which can answer any 2^d queries over the universe $\{0,1\}^d$ in time $poly(n,2^d)$ given a dataset of size $O(d^{3/2})$.

Traitor-Tracing Schemes

 $\text{users } 1, \dots, n$ secret keys $sk_i \in \{0,1\}^{\ell(key)}$

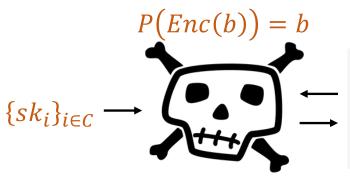
can encrypt a message $b \in \{0,1\}$ so that every user can decrypt

broadcaster

 $c = Enc(mk, b) \in \{0,1\}^{\ell(ctext)}$

 $\forall i \in [n] \ Dec(sk_i, c) = b$

master key $mk \in \{0,1\}^*$



coalition of users $U \subseteq \{1, ..., n\}$

efficient pirate decoder

tracing algorithm

Theorem*:

If there is a TTS for n users then there is a family of $2^{\ell(ctext)}$ statistical queries Q over $\{0,1\}^{\ell(key)}$ such that no DP algorithm can take a dataset of size n, run in polynomial time, and output an accurate summary for Q.

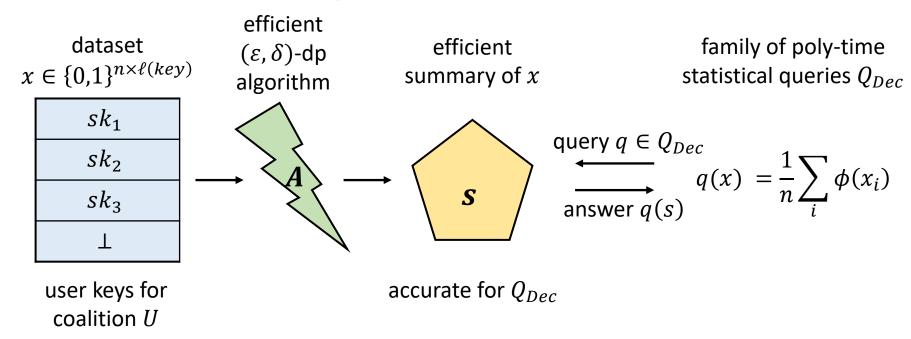
Number of users
Number of ciphertexts
Length of secret keys
Efficient pirate decoder

⇔ Dataset size

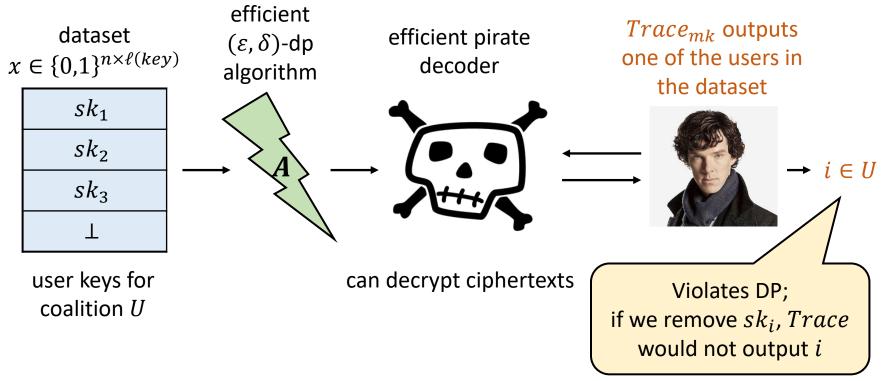
⇔ Number of queries

⇔ Length of dataset elements

⇔ Efficient, accurate summary



- Defining the queries:
 - $Q_{Dec} = \{ q_c \mid c \in \{0,1\}^{\ell(ctext)} \}$, where $q_c(sk) = Dec(sk,c)$
 - If c = Enc(mk, b) then $q_c(x) = \frac{1}{n} \sum_i q_c(sk_i) = \frac{1}{n} \sum_i Dec(sk_i, c) = b$
 - So an accurate summary for Q_{Dec} can be used to decrypt ciphertexts!



- Defining the queries:
 - $Q_{Dec} = \{q_c \mid c \in \{0,1\}^{\ell(ctext)}\}$, where $q_c(sk) = Dec(sk,c)$
 - If c = Enc(mk, b) then $q_c(x) = \frac{1}{n} \sum_i q_c(sk_i) = \frac{1}{n} \sum_i Dec(sk_i, c) = b$
 - So an accurate summary for Q_{Dec} can be used to decrypt ciphertexts!

Theorem*:

If there is a TTS for n users then there is a family of $2^{\ell(ctext)}$ statistical queries Q over $\{0,1\}^{\ell(key)}$ such that no DP algorithm can take a dataset of size n, run in polynomial time, and output an accurate summary for Q.

Number of users
Number of ciphertexts
Length of secret keys
Efficient pirate decoder

⇔ Dataset size

⇔ Number of queries

⇔ Length of dataset elements

⇔ Efficient, accurate summary

Theorem*:

If there is a TTS for n users then there is a family of $2^{\ell(ctext)}$ statistical queries Q over $\{0,1\}^{\ell(key)}$ such that no DP algorithm can take a dataset of size n, run in polynomial time, and output an accurate summary for Q.

Theorem [BZ'14, KMU'17]:

Assuming OWF, for every d, and every n = poly(d), there is a "good enough" TTS with $\ell(key) = \ell(ctext) = d$ secure against poly(d) time adversaries.

Assuming OWF

Theorem*:

There is a family of 2^d statistical queries Q on $\{0,1\}^d$ s.t. no DP algorithm can take a dataset of size n = poly(d), run in time poly(n,d), and output an accurate summary for Q.

Compare to Private Multiplicative Weights, which can answer any 2^d queries over the universe $\{0,1\}^d$ in time $poly(n,2^d)$ given a dataset of size $O(d^{3/2})$.

Assuming OWF

Theorem*:

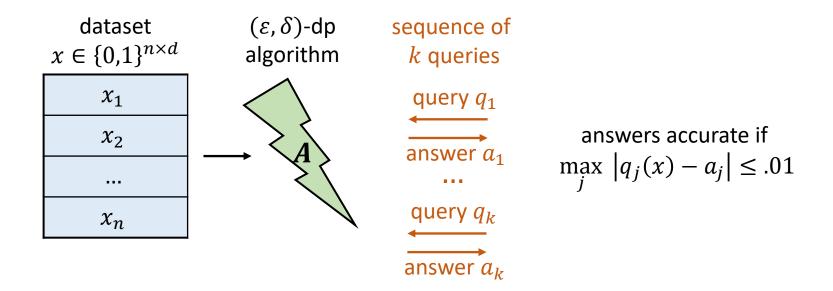
There is a family of 2^d statistical queries Q on $\{0,1\}^d$ s.t. no DP algorithm can take a dataset of size n = poly(d), run in time poly(n, d), and output an accurate summary for Q.

Way stronger assumption

Theorem [KMUZ'16]:

- Exists a hard family of $O(n^7)$ queries over $\{0,1\}^d$
 - Small family of queries, large data universe
- Exists a hard family of 2^d queries over $\{1, ..., O(n^7)\}$
 - Large family of queries, small data universe

Interactive Mechanisms



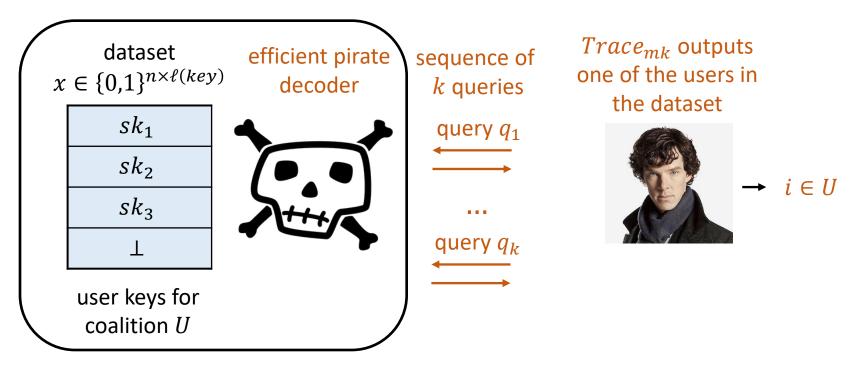
Laplace Mechanism:

- Adds error $\tilde{O}\left(\frac{\sqrt{k}}{\varepsilon n}\right)$; limited to n^2 queries
- Running time is poly(n, d, |q|) per query

PMW Mechanism:

- Adds error $O\left(\frac{\sqrt{d} \cdot \ln(k)}{\varepsilon n}\right)^{1/2}$; can answer $2^{n/\sqrt{d}}$ queries
- Running time is $poly(n, 2^d, |q|)$ per query

Interactive Mechanisms



- Changes in the interactive setting:
 - Same family of queries
 - View A(x) together as the efficient pirate decoder
 - Relevant measure is now the number of queries made by $Trace_{mk}$

Interactive Mechanisms

Theorem [U'13]:

If there is a TTS for n users with keys in $\{0,1\}^{\ell(key)}$ such that Trace makes k queries, then no efficient DP interactive mechanism answers k arbitrary queries.

Theorem [U'13]:

Assuming OWF, for every ℓ , and every $n = \text{poly}(\ell)$, there is a "good enough" TTS that makes $k = \tilde{O}(n^2)$ queries and is secure against $\text{poly}(\ell)$ time adversaries

*"Good enough" means that the scheme traces "stateful-but-cooperative" pirates.

Assuming OWF

Theorem [U'13]:

No DP algorithm can take a dataset $x \in \{0,1\}^{n \times d}$, run in time poly(n,d,|q|) per query, and accurately answer $k = \tilde{O}(n^2)$ arbitrary statistical queries

Compare to Laplace, which answers $k = \widetilde{\Omega}(n^2)$ queries in time $\operatorname{poly}(n,d,|q|)$ per query.

Compare to Private Multiplicative Weights, which answers $k \approx 2^{n/\sqrt{d}}$ queries in time $poly(n, 2^d, |q|)$ per query.

Assuming OWF

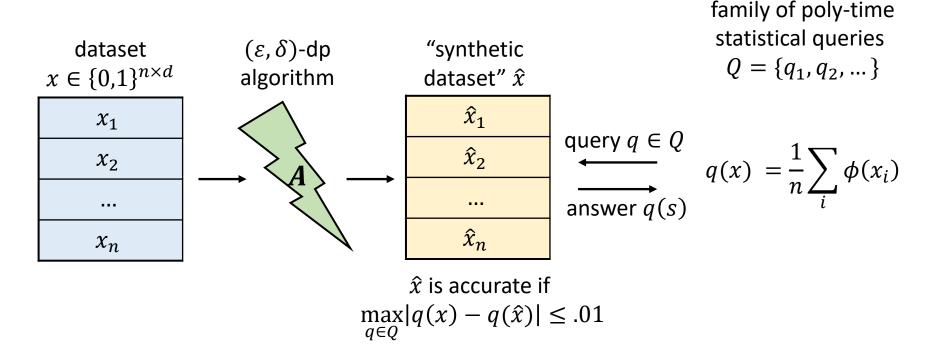
Theorem [U'13]:

No DP algorithm can take a dataset $x \in \{0,1\}^{n \times d}$, run in time poly(n,d,|q|) per query, and accurately answer $k = \tilde{O}(n^2)$ arbitrary statistical queries

Previous results apply to arbitrary---and, statisticians might say, rather funny looking---statistical queries.

What can we say about *simple* families of queries?

Synthetic Datasets



PMW Mechanism:

- Adds error $O\left(\frac{\sqrt{d} \cdot \ln |Q|}{\varepsilon n}\right)^{1/2}$; can answer $2^{n/\sqrt{d}}$ queries
- Running time is $poly(n, 2^d, |q_1| + |q_2| + \cdots)$
- Summary is a synthetic dataset $\hat{x} \in \{0,1\}^{n \times d}$

Assuming OWF

Theorem [DNRRV'09, UV'11]:

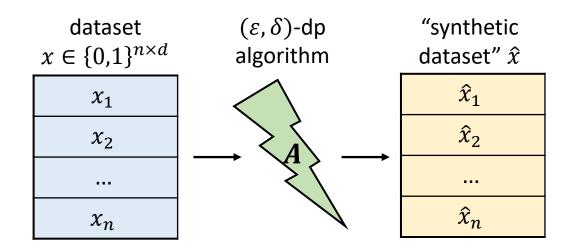
No DP algorithm can take a dataset of size n = poly(d), run in time poly(n, d), and output a synthetic dataset accurate for the means of and correlations between each column.

 d^2 statistical queries of the form

$$q_{i,k}(x) = \frac{1}{n} \sum_{i} x_{ij} \cdot x_{ik}$$

Laplace is efficient and accurate, but no synthetic data.

PMW is accurate and generates synthetic data, but requires at least 2^d time.

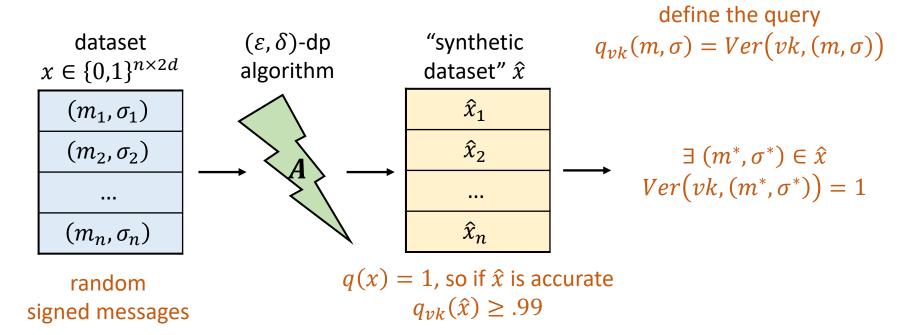


family of queries
$$Q = \{q_1, q_2, ...\}$$

 \hat{x} is accurate if $\max_{q \in Q} |q(x) - q(\hat{x})| \le .01$

Digital Signatures:

- Three algorithms (*Gen*, *Sign*, *Ver*)
- $Gen \rightarrow (sk, vk) \in \{0,1\}^d$
- For a message $m \in \{0,1\}^d$, $Sign(sk,m) \rightarrow \sigma \in \{0,1\}^d$
- $Ver(vk, (m, \sigma)) \in \{0,1\}$; outputs 1 if $\sigma = Sign(sk, m)$
- No poly(d) time adversary, even one with a signing oracle, can forge a new pair (m^*, σ^*) s.t. $Ver(vk, (m^*, \sigma^*)) = 1$



Argument:

- Choose $(sk, vk) \leftarrow Gen$
- Let x be n random message-signature pairs
- Query: "what fraction of this dataset is valid signatures?"
- Accuracy implies that the dataset contains a valid signature
 - Case 1: $(m^*, \sigma^*) \in x$: violates privacy
 - Case 2: $(m^*, \sigma^*) \notin x$: violates unforgeability

Assumes that secure cryptography is possible.

Theorem [DNRRV'09]:

No DP algorithm can take a dataset of size n = poly(d), run in time poly(n,d), and output a synthetic dataset accurate for all "verification queries" $Q_{vk} = \{Ver(vk,\cdot)\}_{vk \in \{0,1\}^d}$

- Can reduce the *number* of queries to by embedding the verification key in the dataset.
- Can simplify the queries to means and correlations using techniques from hardness of approximation
 - Encodings of the signed messages as probabilistically checkable proofs (PCPs)

Assuming OWF

Theorem [DNRRV'09, UV'11]:

No DP algorithm can take a dataset of size n = poly(d), run in time poly(n, d), and output a synthetic dataset accurate for the means of and correlations between each column.

 d^2 statistical queries of the form

$$q_{i,k}(x) = \frac{1}{n} \sum_{i} x_{ij} \cdot x_{ik}$$

Outline

- Computational hardness results in DP
 - Surprising tradeoffs between privacy, utility, and computational efficiency
 - Interesting cryptographic techniques: digital signatures, traitor-tracing schemes, watermarking
- Hardness of private data release
- Hardness of generating synthetic data