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Outline

 Computational hardness results in DP

e Surprising tradeoffs between privacy, utility, and
computational efficiency

* Interesting cryptographic techniques: digital signatures,
traitor-tracing schemes, watermarking
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Main Questions
4 )

1. Can we answer >> n? statistical queries privately,
accurately, and in poly(n, d) time?

2. Can we efficiently generate private synthetic datasets?
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Hardness of Large Query Families
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Theorem®*:

There is a family of 22 statistical queries Q on {0,1}¢ s.t. no
DP algorithm can take a dataset of size n = poly(d), run in
time poly(n, d), and output an accurate summary for Q.
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Compare to Private Multiplicative Weights, which can
answer any 2% queries over the universe {0,1}¢ in time

poly(n, 2¢) given a dataset of size 0(d3/?).

*[Dwork+’09, Boneh-Zhandry’14, Kowalczyk+'17]



Traitor-Tracing Schemes

users1,..,n can encrypt a message b € {0,1}
secret keys sk; € {0,1}¢(key) so that every user can decrypt
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Traitor Tracing vs. Differential Privacy
~

Theorem*:

If there is a TTS for n users then there is a family of 2¢(ctext)
statistical queries Q over {0,1}%€¥) sych that no DP
algorithm can take a dataset of size n, run in polynomial
time, and output an accurate summary for Q.
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Dataset size

Number of queries

Length of dataset elements
Efficient, accurate summary

Number of users
Number of ciphertexts
Length of secret keys
Efficient pirate decoder

17070

*[Dwork+'09]



Traitor Tracing vs. Differential Privacy

efficient
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e Defining the queries:

Qpec = {CIc |ce {0,1}f(ctext) }, where q.(sk) = Dec(sk, c)

* If c = Enc(mk, b) then q.(x) = % Y q:(sk;) = % Y.;Dec(sk;,c)=b

* So an accurate summary for Qp,.. can be used to decrypt ciphertexts!



Traitor Tracing vs. Differential Privacy
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* So an accurate summary for Qp,.. can be used to decrypt ciphertexts!
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Traitor Tracing vs. Differential Privacy

Theorem*:

If there is a TTS for n users then there is a family of 2¢(ctext)
statistical queries Q over {0,1}/€¥) sych that no DP
algorithm can take a dataset of size n, run in polynomial
time, and output an accurate summary for Q.
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Krheorem [BZ'14, KMU’17]:

Assuming OWF, for every d, and every n = poly(d), there is
a “good enough” TTS with £(key) = ¢(ctext) = d secure
against poly(d) time adversaries.
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Hardness of Large Query Families
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Theorem®*:

There is a family of 22 statistical queries Q on {0,1}¢ s.t. no
DP algorithm can take a dataset of size n = poly(d), run in
time poly(n, d), and output an accurate summary for Q.

\_ )

Compare to Private Multiplicative Weights, which can
answer any 2% queries over the universe {0,1}¢ in time

poly(n, 2¢) given a dataset of size 0(d3/?).
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Hardness of Large Query Families
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Theorem®™:

There is a family of 22 statistical queries Q on {0,1}¢ s.t. no
DP algorithm can take a dataset of size n = poly(d), runin

time poly(n, d), and output an accurate summary for Q.
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yger assumption
Theorem [KMUZ’16]:

e Exists a hard family of O(n”) queries over {0,1}¢
* Small family of queries, large data universe

e Exists a hard family of 2¢ queries over {1, ...,0(n”)}
e Large family of queries, small data universe
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Interactive Mechanisms
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Interactive Mechanisms
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* Changes in the interactive setting:

e Same family of queries

* View A(x) together as the efficient pirate decoder

* Relevant measure is now the number of queries made by Trace,,



Interactive Mechanisms
a )

Theorem [U’13]:

If there is a TTS for n users with keys in {0,1}Y(k€¥) sych that
Trace makes k queries, then no efficient DP interactive
mechanism answers k arbitrary queries.

o /

Gheorem [U’13]: A
Assuming OWF, for every £, and every n = poly(¥), thereis a
“sood enough” TTS that makes k = 0(n?) queries and is
secure against poly(#) time adversaries
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*“Good enough” means that the scheme traces “stateful-but-cooperative” pirates.



Hardness of Large Query Families
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Theorem [U’13]:

No DP algorithm can take a dataset x € {0,1}**%, run in time
poly(n,d, |q|) per query, and accurately answer k = 0(n?)
arbitrary statistical queries

\_ )

Compare to Laplace, which answers k = Q(n?) queries in
time poly(n, d, |g|) per query.

Compare to Private Multiplicative Weights, which answers
k ~ 2n/Vd queries in time poly(n, 24 Iql) per query.



Hardness of Large Query Families
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Theorem [U’13]:

No DP algorithm can take a dataset x € {0,1}**%, run in time
poly(n,d, |q|) per query, and accurately answer k = 0(n?)
arbitrary statistical queries
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Previous results apply to arbitrary---and, statisticians might
say, rather funny looking---statistical queries.

What can we say about simple families of queries?



Synthetic Datasets
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Hardness of Synthetic Data
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Theorem [DNRRV’09, UV’11]:

No DP algorithm can take a dataset of size n = poly(d), run
in time poly(n, d), and output a synthetic dataset accurate
for the means of and correlations between each column.

d? statistical queries of the form

1
Cli,k(x) = Ez Xij * Xik
N : Y,

Laplace is efficient and accurate, but no synthetic data.

PMW is accurate and generates synthetic data, but
requires at least 2¢ time.



Hardness of Synthetic Data
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Digital Signatures: * Three algorithms (Gen, Sign, Ver)
e Gen - (sk,vk) € {0,1}¢
* For amessage m € {0,1}4, Sign(sk,m) - o € {0,1}¢
. Ver(vk, (m, 0)) € {0,1}; outputs 1 if ¢ = Sign(sk, m)
* No poly(d) time adversary, even one with a signing oracle,
can forge a new pair (m*, ™) s.t. Ver(vk, (m*, a*)) =1



Hardness of Synthetic Data

define the query
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x € {0,1}*?d algorithm dataset” X
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Ver(vk, (m*,a*)) =1

(mn; Un) -)?n
random q(x) = 1, so if X is accurate
signed messages qpr (X) = .99
Argument: * Choose (sk,vk) « Gen

* Let x be n random message-signature pairs

* Query: “what fraction of this dataset is valid signatures?”

e Accuracy implies that the dataset contains a valid signature
 Casel: (m* o*) € x: violates privacy
e Case2:(m* c") & x: violates unforgeability



Hardness of Synthetic Data

( Assumes that secure
/ cryptography is possible.

Theorem [DNRRV’09]:
No DP algorithm can take a dataset of size n = poly(d), run
in time poly(n, d), and output a synthetic dataset accurate
for all “verification queries” Q,; = {Ver(vk")}vke{o,l}d
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e Can reduce the number of queries to by embedding the
verification key in the dataset.
* Can simplify the queries to means and correlations

using techniques from hardness of approximation

* Encodings of the signed messages as probabilistically
checkable proofs (PCPs)



Hardness of Synthetic Data
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Theorem [DNRRV’09, UV’11]:
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No DP algorithm can take a dataset of size n = poly(d), run
in time poly(n, d), and output a synthetic dataset accurate
for the means of and correlations between each column.
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d? statistical queries of the form

1
Cli,k(x) = Hz Xij " Xik
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Outline

 Computational hardness results in DP

e Surprising tradeoffs between privacy, utility, and
computational efficiency

* Interesting cryptographic techniques: digital signatures,
traitor-tracing schemes, watermarking

* Hardness of private data release

* Hardness of generating synthetic data



