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Intro: an estimation problem

e X: an arbitrary domain
e P:an (unknown) probability distribution over the domain X
*h:X - [0,1]
* Estimate h(P) = Ep[h(x)]
* S ={xq,..,xn}: asample of ni.i.d. example drawn from P
* Return h(S) = %Zh(xi) as an estimation for h(P)
* How faris h(S) from h(P)?

* Intuitively, h(S) estimates h(P) well if n is large enough, but how large?
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Intro: an estimation problem

* How large should the sample size n be?
* Tool: Hoeffding bound

* /4, ..., 2y, independent random variables
« Z;€[0,1]and E[Z;] = u

A 1
*A=-27
e Theorem:foralla > 0,Pr[ | —u|l = a] < 2e72"«
* Using the Hoeffding bound:
* z; = h(x;)

* To get |h(S) — h(P)| < a with probability = 1 — f suffices to take n = O( £y,

a’

2
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Simultaneously estimating a family of functions

* H: a family of functions {h: X — [0,1]}

1
* Suffices to take n = O(——; £} samples to simultaneously
estimate h(P) within error a for all h € H with success probability 1
—p
* For each h € H we get (Hoeffding) Pr [|h(S) — h(P)| > a] < De~2na’ < %
* Using union bound, Pr [3h € H s.t.|h(S) — h(P)| > a] < B.

log |[H|+ log

Probability

distribution h(S) = th(xl)
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When h is chosen based on the sample

e Can’t we use the Hoeffding bound?
e Let P be uniform over [0,1]

1 ifxes
0 otherwise

* Given S = {xy, ..., x,} let hg(x) = {

* We get hg(S) = 1 but hg(P) = 0
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Generalization

* We say that a hypothesis h: X — |0,1] a-generalizes (w.r.t. S) if
|h(S) — h(P)| < «

e What we saw:
lo gB

 When h is predetermined, n =

generalization
log |[H| +1log

al

* When H is predetermined, n = O(
obtaining a-generalization for all H
e Selection of h based on the sample can lead to “overfitting”

) samples suffice of simultaneously
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Differential privacy = generalization “on average”

Probability Mechanism M

- (€,6)-
dlStrlgUtlon differentially

private

* Intuition: “Overfitting is a common enemy”

* Theorem [McSherry, folklore]: E[h(S)] — IE[h(P)]‘ <e+ 8§

*S=(S,..,8,) ~ P e S=(s,..,8,)~P
- s;:arandom |ez~P ~ |*z~P
consider two : :
*lLEp N *lLEp N
element of S r [n] DP r [n] s; : a random

experiments: . cheM U _
——h e ML Jutz element of P
e RetU * Retur

Intuition:




Differential privacy =2 generalization “on average”

* A simple proposition:
* M: X" - [0,1]: (¢, 6)-differentially private
* S,S' neighboring datasets
* Then E [M(S)]<e¢ E [M(GSH]+6

rand of M rand of M
* Proof:
1 1
ranc%EOfM[M(S)] =f Pr(M(S) > t]dt E[Y] = f Pr[Y > t] dt

0 0 for r.v. Y taking values in [0,1]

1
< j [e€Pr[M(S") > t] + 6] dt (differential privacy)
0

— p€ ’
- € ranc%EofM[M(S )] +6



Differential privacy =2 generalization “on average”

* Theorem: | prp 6y — E[h(P)]| < 2¢ + 6

* Proof:
ERS)] = E, , E _[h(S)]
— SIEP h(_;\];:,(s) iEIEE[n][h(xi)] (reorder expectations)
= E E E [h(x)] (consider M’ that takes output of M and applies
S~P i€g[n] heM(S) it on x;, then apply proposition)
€ ) —
= 5B ik | sepnembincegu MOPI O] (rename z and x; as (5,2) = (5 \ (i} U {2} x)
— €
= $Sp tecinl [e s ()M 5] ( E [h(2)] = h(P))
= eESINEP h(_E(S)h(P) +9 (e€ < 1+ 2efore < 1)
= E E h(P)+2c+9$§ (for other direction: let h'(x) = 1 — h(x))

S~P he<M(S)



Differential privacy = generalization w.h.p.

* Proof strategy:

Begin with folklore guarantee (in S@P [h(S)] — S@P |h(P)]| <e+ 6

expectation) heM(S) heM(S)

M expects a single dataset S =

{s4, ..., Sy} and outputs a predicate h

Amplify to obtain high probability Sfirp [|h(S) — h(P)| > €] < 6 /¢
h<M(S)

ln%
guarantee (n = 0(6—2))



Differential privacy = generalization w.h.p.

* Proof strategy:

Begin with folklore guarantee (in
expectation)

M expects a single dataset S =

{s4, ..., Sy} and outputs a predicate h

Modify folklore guarantee to enable
amplification
B expects T sub-datasets S =

(51,55, ..., S7) and outputs an index t
of a sub-dataset and a predicate h

Amplify to obtain high probability
ln%
guarantee (n = 0(6—2))

(B, W] — (E, [h(P)]| < e +38

h—M(S) h<M(S)

E [n(S)]— E [h(P)]|<e+T6s
S~P S~P

(h,t)<B(S) (h,t)<B(S)

strp [|h(S) — h(P)| > €] < 6/€e
h<M(S)



Modified folklore guarantee - setup
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Proof of the modified folk guarantee

B = private alg. with
Input: T sub-databases S = (51,55, ..., S7) iid from P
Output: Predicate handindex 1 <t < T

* Notation: §; = (xt1,-- ;xt,n)

T
E [h(S)] = L [L=my - h(Sm)]

m=1

(h,t)<B(S) (h,t)<B(S)

Y B [ W) =2 Y e [t Ao <1

m=1 t)<—B(S)

SIP—‘
[M]s

Il
[N

[

e Given S, (m, i), z define S(xmiz) to be as § after replacing X, ; with z

n T
» <ee Pro Ly - h(xms) = 1] +a>
zS ~P

<

SIP—‘

i=1m=1 (h,t)eB(f(xm'i:z))



Proof of the modified folk guarantee

. Given S, (m, i), z define S(xmiz) to be as S after replacing x,,, ; with z

1
L [R(S)] < Ez Z P, |Lit=my - h(Xmi) = 1| + 8
(ht)<B(3) = (h, &) <B(3(mi2))

zn: z E [Le=m) - R(xm:)] + 6

= = zS ~P
(h,)<B(smi?))

SIP—*

* Every SGmi2) ahove contains iid samples from P
Xmi is independent of f(xm,iiz)

n T

1
n = = zS ~P zS ~P
B (h,t)<B(5) (h,t)<B(S)

=e¢ E [h(P)]+T6< [E |h(P)]+2€+T6
S~P S~P
(h,t)<B(S) (h,t)<B(S)



Concluding the proof:

Modified folklore guarantee E [h(S)]l— E [h(P)]|<e+Té6
- S~P S ~P
B expects T sub-datasets S (ht)<B(5) (ht)<B(5)

= (54,5,, ..., S7) and outputs an index
t of a sub-dataset and a predicate h

* Given (€,6)-DP M and distribution P s.t. M outputs h with large |h(S) — (P)]|
W.p. = 0/€
* Create (€,6)-DP B that expects T = €/6 sub-datasets:
* B executes M on each of the T sub-datasets to get predicates h4, ..., hp
* W.h.p. there exists t such that |h;(S;) — h:(P)]| is large
* B identifies (with DP) such a sub-dataset t and outputs t, h;

* W.h.p. |h(S;) — hs(P)| is large, contradicting the modified theorem! M
cannot exist!



Modified folklore guarantee — proof construction

Probability Exponential
distribution Mechanism

P
(choose i s.t.

|ht(Si)-ht(P)|
Large)

Algorithm B

Notes:
Proof by contradiction: Algorithm B only used in proof, M does not need to be modified
Algorithm B "knows” the underlying distribution P



Differential privacy =2 generalization (summary)

Probability M: (€, 8)-
distribution differentially Hypothesis h
P private algorithm

* Define: h(S) = %Zh(si) and h(P) = SEI;[h(S)]

Theorem [McSherry, E [h(S)] = E [h(P)] _ Expectation
folklore]: heM(S) heM(S) }
Theorem [DFHPRR’15]: SPNrP [|h(S) — h(P)| > €] < 6€ ]
heM(S) High probability
Tight theorem [BNSSSU’16] SP~rP [|h(S) — h(P)| > €] <d/e i
In heM(S)

(Tl = 0(6—2)) )



Ins
e Theorem: Let M be (¢, §)-differentially private. Let S be n > 0(%) i.i.d. samples from an
underlying distribution P. Interpret M(S) as a hypothesis h. Then,

)
Prl|Es(h) — Ep(W)| > €] < 0(0)



In theory™

/(Select A
\ querles)

Statistically valid if sample size large
enough (= log |H|)

*In theory, theory and practice are the same. In practice, they are not. [A. Einstein]



In practice®

e Queries selected based on the

(Select | Analysts makes adaptive decisions:
results of previous analyses

gueries

e Risk of false discoveries!

* A real problem. Lots of published
research results are wrong!

* Almost all existing approaches to
ensuring generalization assume the
entire data-analysis procedure is
fixed ahead of time

*In theory, theory and practice are the same. In practice, they are not. [A. Einstein]



Application to adaptive querying

* Differential privacy closed under post processing

* Robust generalization: further post-processing unlikely to generate a non-
generalizing hypothesis!

* In standard learning, a model (that generalizes) may inadvertently reveal
the sample, and hence lead to a non-generalizing hypothesis!
 Differential privacy closed under adaptive composition

 [DFHPRR’15]: Even adaptive querying with differential privacy would not
lead to a non-generalizing hypothesis



Application to adaptive querying

e Can import tools developed for answering queries adaptively with differential privacy!

* |n particular, differential privacy allows approximating h(S) = %Zh(si) for k ~ n?
adaptively selected predicates hy, ..., hy

Upper bounds:

e [DFHPRR’15]: Efficient mechanism that w.h.p. answers any k adaptively chosen queries
hy, ..., hy within accuracy a givenn = 0(\/%/6(2'5) samples

e [BNSSSU]: Sample complexity reduced ton = 5(\/%/&2)

Lower bound:

e [Hardt Ullman 14, Steinke Ullman 15]: Any efficient mechanism that answers k adaptive

gueries within accuracy a requires n = Q(\/E/a)
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