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Intro: an estimation problem

• 𝑋: an arbitrary domain
• 𝑃: an (unknown) probability distribution over the domain 𝑋
• ℎ: 𝑋 → [0,1]
• Estimate ℎ 𝑃 = E

𝑥~𝑃
[ℎ 𝑥 ]

• 𝑆 = {𝑥1, … , 𝑥𝑛}: a sample of 𝑛 i.i.d. example drawn from 𝑃

• Return ℎ(𝑆) =
1

𝑛
∑ℎ(𝑥𝑖) as an estimation for ℎ(𝑃)

• How far is ℎ(𝑆) from ℎ(𝑃)?
• Intuitively, ℎ(𝑆) estimates ℎ(𝑃) well if 𝑛 is large enough, but how large?

Probability 
distribution

P

Sample 
𝑆 =

{𝑥1, … , 𝑥𝑛}

ℎ(𝑆) =
1

𝑛
∑ℎ(𝑥𝑖)



Intro: an estimation problem

• How large should the sample size 𝑛 be?

• Tool: Hoeffding bound
• 𝑍1, … , 𝑍𝑛: independent random variables

• 𝑍𝑖 ∈ [0,1] and 𝐸 𝑍𝑖 = 𝜇

• ො𝜇 =
1

𝑛
∑𝑧𝑖

• Theorem: for all 𝛼 > 0, Pr ො𝜇 − 𝜇 ≥ 𝛼 ≤ 2𝑒−2𝑛𝛼
2

• Using the Hoeffding bound:
• 𝑧𝑖 = ℎ 𝑥𝑖

• To get ℎ 𝑆 − ℎ 𝑃 ≤ 𝛼 with probability ≥ 1 − 𝛽 suffices to take 𝑛 = 𝑂(
log

1

𝛽

𝛼2
).

Probability 
distribution

P

Sample 
𝑆 =

{𝑥1, … , 𝑥𝑛}

ℎ(𝑆) =
1

𝑛
∑ℎ(𝑥𝑖)



Simultaneously estimating a family of functions

• 𝐻: a family of functions {ℎ: 𝑋 → [0,1]}

• Suffices to take 𝑛 = 𝑂(
log H + log

1

𝛽

𝛼2
) samples to simultaneously 

estimate ℎ(𝑃) within error 𝛼 for all ℎ ∈ 𝐻 with success probability 1
− 𝛽

• For each ℎ ∈ 𝐻 we get (Hoeffding)  Pr ℎ 𝑆 − ℎ 𝑃 > 𝛼 ≤ 2𝑒−2𝑛𝛼
2
≤

𝛽

|𝐻|
.

• Using union bound, Pr ∃ℎ ∈ 𝐻 𝑠. 𝑡. ℎ 𝑆 − ℎ 𝑃 > 𝛼 ≤ 𝛽.

Probability 
distribution

P

Sample 
𝑆 =

{𝑥1, … , 𝑥𝑛}

ℎ(𝑆) =
1

𝑛
∑ℎ(𝑥𝑖)



When h is chosen based on the sample

• Can’t we use the Hoeffding bound?

• Let P be uniform over [0,1]

• Given 𝑆 = {𝑥1, … , 𝑥𝑛} let ෨ℎ𝑆(𝑥) = ቊ
1 𝑖𝑓 𝑥 ∈ 𝑆
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• We get ෨ℎ𝑆 𝑆 = 1 but ෨ℎ𝑆 𝑃 = 0

Probability 
distribution

P

Sample 
𝑆 =

{𝑥1, … , 𝑥𝑛}

Mechanism M ℎ: 𝑋 → [0,1]



Generalization

• We say that a hypothesis ℎ: 𝑋 → [0,1] 𝛼-generalizes (w.r.t. 𝑆) if

ℎ 𝑆 − ℎ 𝑃 ≤ 𝛼

• What we saw:

• When ℎ is predetermined, 𝑛 = 𝑂(
log 𝛽

𝛼2
) samples suffice for obtaining 𝛼-

generalization

• When 𝐻 is predetermined, 𝑛 = 𝑂(
log |𝐻| + log 𝛽

𝛼2
) samples suffice of simultaneously 

obtaining 𝛼-generalization for all 𝐻
• Selection of ℎ based on the sample can lead to “overfitting”

Probability 
distribution

P

Sample 
𝑆 =

{𝑥1, … , 𝑥𝑛}

Mechanism M ℎ: 𝑋 → [0,1]



Differential privacy  generalization “on average”

• Intuition: “Overfitting is a common enemy”

• Theorem [McSherry, folklore]: 𝔼 ℎ 𝑆 − 𝔼 ℎ 𝑃 ≤ 𝜖 + 𝛿

Intuition:
consider two 
experiments:

𝑠𝑖 : a random
element of 𝑆

≈
𝑫𝑷

• 𝑆 = 𝑠1, … , 𝑠𝑛 ∼ 𝑃
• 𝑧 ∼ 𝑃
• 𝑖 ∈𝑅 𝑛
• ℎ ← 𝑀 𝑆
• Return ℎ 𝑠𝑖

• 𝑆 = 𝑠1, … , 𝑠𝑛 ∼ 𝑃
• 𝑧 ∼ 𝑃
• 𝑖 ∈𝑅 𝑛
• ℎ ← 𝑀 𝑆 ∖ {𝑠𝑖} ∪ {𝑧}
• Return ℎ 𝑠𝑖

𝑠𝑖 : a random
element of 𝑃

Mechanism M
(𝜖, 𝛿)-

differentially 
private

ℎ: 𝑋 → [0,1]

Probability 
distribution

P
Sample

S



Differential privacy  generalization “on average”

• A simple proposition:
• 𝑀:𝑋𝑛 → [0,1]: (𝜖, 𝛿)-differentially private
• 𝑆, 𝑆′ neighboring datasets 
• Then 𝔼

𝑟𝑎𝑛𝑑 𝑜𝑓 𝑀
𝑀 𝑆 ≤ 𝑒𝜖 𝔼

𝑟𝑎𝑛𝑑 𝑜𝑓 𝑀
𝑀 𝑆′ + 𝛿

• Proof:

𝔼
𝑟𝑎𝑛𝑑 𝑜𝑓 𝑀

𝑀 𝑆 𝔼 Y = න
0

1

Pr 𝑌 > 𝑡 𝑑𝑡
for r.v. Y taking values in [0,1]

=න
0

1

𝑃𝑟 𝑀(𝑆) > 𝑡 𝑑𝑡

(differential privacy)≤ න
0

1

[e𝜖𝑃𝑟 𝑀 𝑆′ > 𝑡 + 𝛿] 𝑑𝑡

= 𝑒𝜖 𝔼
𝑟𝑎𝑛𝑑 𝑜𝑓 𝑀

𝑀 𝑆′ + 𝛿



Differential privacy  generalization “on average”

• Theorem: 𝔼 ℎ 𝑆 − 𝔼 ℎ 𝑃 ≤ 2𝜖 + 𝛿

• Proof:
𝔼 ℎ 𝑆 = 𝔼

𝑆~𝑃
𝔼

ℎ←𝑀(𝑆)
ℎ 𝑆

(reorder expectations)= 𝔼
𝑆~𝑃

𝔼
ℎ←𝑀 𝑆

𝔼
𝑖∈𝑅[𝑛]

ℎ 𝑥𝑖

(consider 𝑀′ that takes output of 𝑀 and applies 
it on 𝑥𝑖,  then apply proposition)

= 𝔼
𝑆~𝑃

𝔼
𝑖∈𝑅[𝑛]

𝔼
ℎ←𝑀 𝑆

ℎ 𝑥𝑖

(rename 𝑧 and 𝑥𝑖 as (𝑆, 𝑧) ≡ (𝑆 ∖ 𝑥𝑖 ∪ 𝑧 , 𝑥𝑖)≤ 𝔼
𝑆~𝑃

𝔼
𝑖∈𝑅 𝑛

𝑒𝜖 𝔼
𝑧~𝑃; ℎ←𝑀 𝑆∖ 𝑥𝑖 ∪ 𝑧

ℎ 𝑥𝑖 + 𝛿

(𝑒𝜖 ≤ 1 + 2𝜖 for 𝜖 < 1)= e𝜖 𝔼
𝑆~𝑃

𝔼
ℎ←𝑀 𝑆

ℎ 𝑃 + 𝛿

(for other direction: let ℎ′ 𝑥 = 1 − ℎ(𝑥))= 𝔼
𝑆~𝑃

𝔼
ℎ←𝑀 𝑆

ℎ 𝑃 + 2𝜖 + 𝛿

( 𝔼
𝑧~𝑃

ℎ 𝑧 = ℎ(𝑃))= 𝔼
𝑆~𝑃

𝔼
𝑖∈𝑅 𝑛

𝑒𝜖 𝔼
𝑧~𝑃; ℎ←𝑀 𝑆

ℎ 𝑧 + 𝛿



Differential privacy  generalization w.h.p.

• Proof strategy:

Amplify to obtain high probability 

guarantee (𝑛 ≥ 𝑂(
ln

1

𝛿

𝜖2
))

Pr
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿/𝜖

Begin with folklore guarantee (in 
expectation)

𝑀 expects a single dataset 𝑆 =
{𝑠1, … , 𝑠𝑛} and outputs a predicate ℎ

𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − 𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑃 ≤ 𝜖 + 𝛿



Differential privacy  generalization w.h.p.

• Proof strategy:

Amplify to obtain high probability 

guarantee (𝑛 ≥ 𝑂(
ln

1

𝛿

𝜖2
))

Pr
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿/𝜖

Begin with folklore guarantee (in 
expectation)

𝑀 expects a single dataset 𝑆 =
{𝑠1, … , 𝑠𝑛} and outputs a predicate ℎ

𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − 𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑃 ≤ 𝜖 + 𝛿

Modify folklore guarantee to enable 
amplification

B expects 𝑇 sub-datasets Ԧ𝑆 =
𝑆1, 𝑆2, … , 𝑆𝑇 and outputs an index 𝑡

of a sub-dataset and a predicate ℎ

𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←B 𝑺

𝒉 𝑺𝒕 − 𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←B 𝑺

𝒉 𝑷 ≤ 𝜖 + 𝑇𝛿



Modified folklore guarantee - setup

ℎ: 𝑋 → [0,1], i

Probability 
distribution

P Mechanism B
(𝜖, 𝛿)-differentially private

S1

S2

ST

…



ℬ = private alg. with

Input: 𝑻 sub-databases Ԧ𝑆 = 𝑆1, 𝑆2, … , 𝑆𝑇 iid from 𝑃
Output: Predicate ℎ and index 1 ≤ 𝑡 ≤ 𝑇

• Notation: 𝑺𝒕 = 𝒙𝒕,𝟏, … , 𝒙𝒕,𝒏

𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝒉 𝑺𝒕 = ෍

𝑚=1

𝑇

𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝟏 𝒕=𝒎 ⋅ 𝒉 𝑺𝒎

=
1

𝑛
෍

𝑖=1

𝑛

෍

𝑚=1

𝑇

𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝟏 𝒕=𝒎 ⋅ 𝒉 𝒙𝒎,𝒊 =
1

𝑛
෍

𝑖=1

𝑛

෍

𝑚=1

𝑇

𝐏𝐫
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝟏 𝒕=𝒎 ⋅ 𝒉 𝒙𝒎,𝒊 = 𝟏

• Given 𝑺, 𝒎, 𝒊 , 𝒛 define 𝑺 𝒙𝒎,𝒊:𝒛 to be as 𝑺 after replacing 𝒙𝒎,𝒊 with 𝒛

≤
1

𝑛
෍

𝑖=1

𝑛

෍

𝑚=1

𝑇

𝑒𝜖 𝐏𝐫
𝒛,𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺 𝒙𝒎,𝒊:𝒛

𝟏 𝒕=𝒎 ⋅ 𝒉 𝒙𝒎,𝒊 = 𝟏 + 𝜹

Proof of the modified folk guarantee



• Given 𝑺, 𝒎, 𝒊 , 𝒛 define 𝑺 𝒙𝒎,𝒊:𝒛 to be as 𝑺 after replacing 𝒙𝒎,𝒊 with 𝒛

𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝒉 𝑺𝒕 ≤
1

𝑛
෍

𝑖=1

𝑛

෍

𝑚=1

𝑇

𝑒𝜖 𝐏𝐫
𝒛,𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺 𝒙𝒎,𝒊:𝒛

𝟏 𝒕=𝒎 ⋅ 𝒉 𝒙𝒎,𝒊 = 𝟏 + 𝜹

=
1

𝑛
෍

𝑖=1

𝑛

෍

𝑚=1

𝑇

𝑒𝜖 𝔼
𝒛,𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺 𝒙𝒎,𝒊:𝒛

𝟏 𝒕=𝒎 ⋅ 𝒉 𝒙𝒎,𝒊 + 𝜹

• Every 𝑺 𝒙𝒎,𝒊:𝒛 above contains iid samples from 𝑷

• 𝒙𝒎,𝒊 is independent of 𝑺 𝒙𝒎,𝒊:𝒛

=
1

𝑛
෍

𝑖=1

𝑛

෍

𝑚=1

𝑇

𝑒𝜖 𝔼
𝒛,𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝟏 𝒕=𝒎 ⋅ 𝒉 𝒛 + 𝜹 = 𝑒𝜖 𝔼
𝒛,𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝒉 𝒛 + 𝑻𝜹

= 𝑒𝜖 𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝒉 𝑷 + 𝑻𝜹 ≤ 𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←𝓑 𝑺

𝒉 𝑷 + 𝟐𝝐 + 𝑻𝜹

Proof of the modified folk guarantee



• Given 𝜖, 𝛿 -DP 𝑀 and distribution 𝑃 s.t. 𝑀 outputs ℎ with large |ℎ 𝑆 − 𝑃 |
w.p. ≥ 𝛿/𝜖

• Create 𝜖, 𝛿 -DP 𝐵 that expects 𝑇 ≈ 𝜖/𝛿 sub-datasets:

• 𝐵 executes 𝑀 on each of the 𝑇 sub-datasets to get predicates ℎ1, … , ℎ𝑇
• W.h.p. there exists 𝑡 such that |ℎ𝑡 𝑆𝑡 − ℎ𝑡 𝑃 | is large

• 𝐵 identifies (with DP) such a sub-dataset 𝑡 and outputs 𝑡, ℎ𝑡
• W.h.p. ℎ 𝑆𝑡 − ℎ𝑡(𝑃 | is large, contradicting the modified theorem! 𝑀

cannot exist!

Concluding the proof:
Modified folklore guarantee

B expects 𝑇 sub-datasets Ԧ𝑆
= 𝑆1, 𝑆2, … , 𝑆𝑇 and outputs an index 
𝑡 of a sub-dataset and a predicate ℎ

𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←B 𝑺

𝒉 𝑺𝒕 − 𝔼
𝑺 ∼𝑷

𝒉,𝒕 ←B 𝑺

𝒉 𝑷 ≤ 𝜖 + 𝑇𝛿



Modified folklore guarantee – proof construction

ℎ𝑡, t

Probability 
distribution

P

S1

S2

ST

…

M ℎ1

…

Exponential 
Mechanism

(choose i s.t.
|ht(Si)-ht(P)| 

Large)

M ℎ2

M ℎ𝑇

Algorithm B

Notes: 
Proof by contradiction: Algorithm B only used in proof, M does not need to be modified
Algorithm B ”knows” the underlying distribution P



Differential privacy  generalization (summary)

• Define: ℎ 𝑆 =
1

𝑛
∑ℎ(𝑠𝑖) and ℎ 𝑃 = Pr

𝑠∼𝑃
[ℎ 𝑠 ]

Expectation 

High probability 

Theorem [McSherry, 
folklore]:

𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 ≈ 𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑃

Theorem [DFHPRR’15]: Pr
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿𝜖

Tight theorem [BNSSSU’16] 

(𝑛 ≥ 𝑂(
ln

1

𝛿

𝜖2
)):

Pr
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿/𝜖

Hypothesis hSample
S~Pn

M: (𝜖, 𝛿)-
differentially 

private algorithm 

Probability 
distribution

P



• Theorem: Let M be 𝜖, 𝛿 -differentially private. Let S be 𝑛 ≥ 𝑂(
ln

1

𝛿

𝜖2
) i.i.d. samples from an 

underlying distribution P. Interpret M(S) as a hypothesis h. Then, 

Pr |𝐸𝑆 ℎ − 𝐸𝑃 ℎ > 𝜖 ≤ 𝑂(
𝛿

𝜖
)



In theory* …

*In theory, theory and practice are the same. In practice, they are not.  [A. Einstein]

Select 
queries 
𝐻

Query 
data for 
ℎ ∈ 𝐻

Analyze 
results

Statistically valid if sample size large 
enough (≈ log |𝐻|)



In practice*

Analysts makes adaptive decisions:

• Queries selected based on the 
results of previous analyses

• Risk of false discoveries!

• A real problem. Lots of published 
research results are wrong!

• Almost all existing approaches to 
ensuring generalization assume the 
entire data-analysis procedure is 
fixed ahead of time

Select 
queries 
𝐻

Query 
data for 
ℎ ∈ 𝐻

Analyze 
results

*In theory, theory and practice are the same. In practice, they are not.  [A. Einstein]



Application to adaptive querying

• Differential privacy closed under post processing

• Robust generalization: further post-processing unlikely to generate a non-
generalizing hypothesis!

• In standard learning, a model (that generalizes) may inadvertently reveal 
the sample, and hence lead to a non-generalizing hypothesis!

• Differential privacy closed under adaptive composition

• [DFHPRR’15]: Even adaptive querying with differential privacy would not 
lead to a non-generalizing hypothesis



Application to adaptive querying

• Can import tools developed for answering queries adaptively with differential privacy!

• In particular, differential privacy allows approximating ℎ 𝑆 =
1

𝑛
∑ℎ(𝑠𝑖) for 𝑘 ≈ 𝑛2

adaptively selected predicates ℎ1, … , ℎ𝑘

Upper bounds:

• [DFHPRR’15]: Efficient mechanism that w.h.p. answers any 𝑘 adaptively chosen queries 

ℎ1, … , ℎ𝑘 within accuracy 𝛼 given 𝑛 = ෨𝑂 𝑘/𝛼2.5 samples

• [BNSSSU]: Sample complexity reduced to 𝑛 = ෨𝑂 𝑘/𝛼2

Lower bound:

• [Hardt Ullman 14, Steinke Ullman 15]: Any efficient mechanism that answers 𝑘 adaptive

queries within accuracy 𝛼 requires 𝑛 = Ω 𝑘/𝛼
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