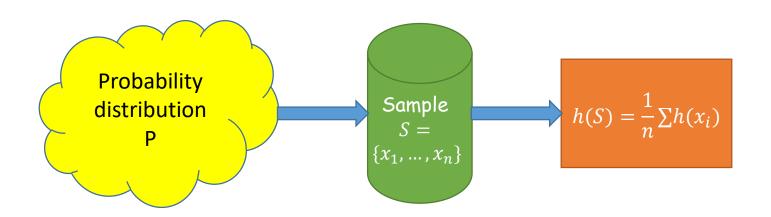
Generalization and Privacy

Kobbi Nissim, Georgetown University

Bar-Ilan Winter School on Differential Privacy February 2017

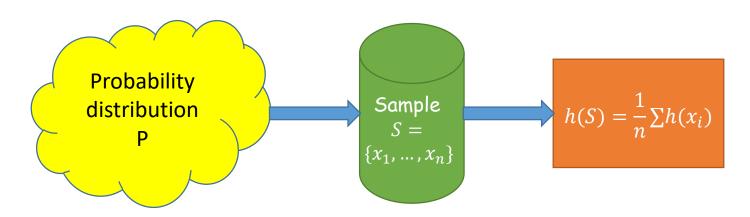
Intro: an estimation problem

- X: an arbitrary domain
- P: an (unknown) probability distribution over the domain X
- $h: X \to [0,1]$
- Estimate $h(P) = \mathop{\mathbb{E}}_{x \sim P}[h(x)]$ $S = \{x_1, \dots, x_n\}$; a sample of n i.i.d. example drawn from P
 - Return $h(S) = \frac{1}{n} \sum h(x_i)$ as an estimation for h(P)
- How far is h(S) from h(P)?
 - Intuitively, h(S) estimates h(P) well if n is large enough, but how large?



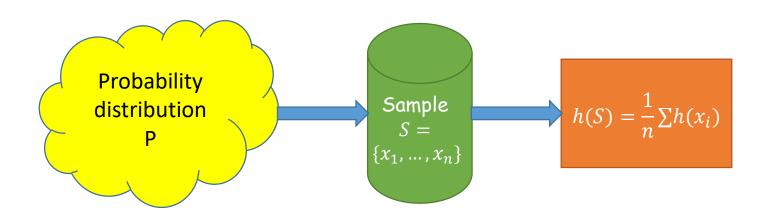
Intro: an estimation problem

- How large should the sample size *n* be?
- Tool: Hoeffding bound
 - $Z_1, ..., Z_n$: independent random variables
 - $Z_i \in [0,1]$ and $E[Z_i] = \mu$
 - $\hat{\mu} = \frac{1}{n} \sum z_i$
 - Theorem: for all $\alpha > 0$, $\Pr[|\hat{\mu} \mu| \ge \alpha] \le 2e^{-2n\alpha^2}$
- Using the Hoeffding bound:
 - $z_i = h(x_i)$
 - To get $|h(S) h(P)| \le \alpha$ with probability $\ge 1 \beta$ suffices to take $n = O(\frac{\log \frac{1}{\beta}}{\alpha^2})$.



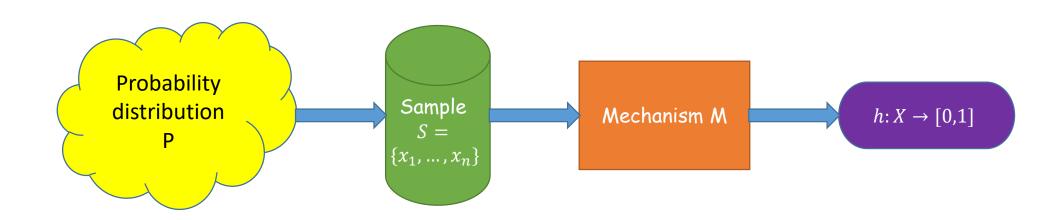
Simultaneously estimating a family of functions

- H: a family of functions $\{h: X \to [0,1]\}$
- Suffices to take $n=O(\frac{\log |\mathbf{H}| + \log \frac{1}{\beta}}{\alpha^2})$ samples to simultaneously estimate h(P) within error α for all $h\in H$ with success probability $1-\beta$
 - For each $h \in H$ we get (Hoeffding) $\Pr[|h(S) h(P)| > \alpha] \le 2e^{-2n\alpha^2} \le \frac{\beta}{|H|}$.
 - Using union bound, $\Pr\left[\exists h \in H \ s.\ t.\ |h(S) h(P)| > \alpha\right] \leq \beta$.



When h is chosen based on the sample

- Can't we use the Hoeffding bound?
- Let P be uniform over [0,1]
- Given $S = \{x_1, \dots, x_n\}$ let $\tilde{h}_S(x) = \begin{cases} 1 & if \ x \in S \\ 0 & otherwise \end{cases}$
- We get $\tilde{h}_S(S)=1$ but $\tilde{h}_S(P)=0$

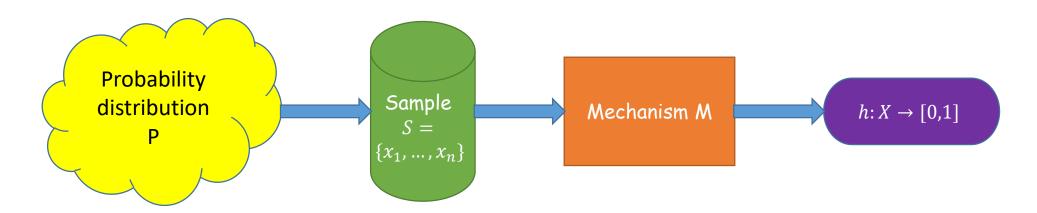


Generalization

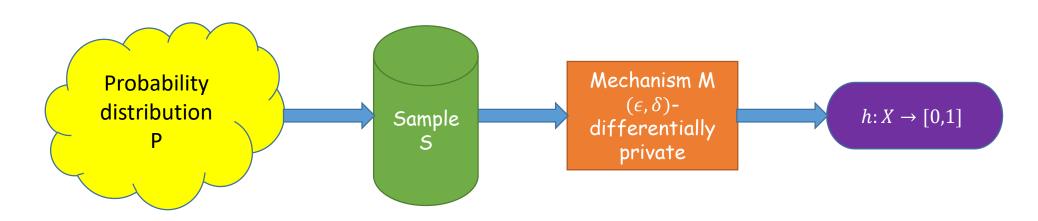
• We say that a *hypothesis* $h: X \to [0,1]$ α -generalizes (w.r.t. S) if $|h(S) - h(P)| \le \alpha$

What we saw:

- When h is predetermined, $n=O(\frac{\log \beta}{\alpha^2})$ samples suffice for obtaining α -generalization
- When H is predetermined, $n=O(\frac{\log |H|+\log \beta}{\alpha^2})$ samples suffice of simultaneously obtaining α -generalization for all H
- Selection of h based on the sample can lead to "overfitting"



Differential privacy \rightarrow generalization "on average"



- Intuition: "Overfitting is a common enemy"
- Theorem [McSherry, folklore]: $\left|\mathbb{E}[h(S)] \mathbb{E}[h(P)]\right| \le \epsilon + \delta$

Intuition: consider two experiments: • $S = (s_1, ..., s_n) \sim P$ • $z \sim P$ • $i \in_R [n]$ • $h \leftarrow M(S)$ • Return $h(s_i)$ • $S = (s_1, ..., s_n) \sim P$ • $z \sim P$ • $i \in_R [n]$ • $h \leftarrow M(S)$ • Return $h(s_i)$

 S_i : a random element of P

Differential privacy \rightarrow generalization "on average"

• A simple proposition:

- $M: X^n \to [0,1]: (\epsilon, \delta)$ -differentially private
- S, S' neighboring datasets
- Then $\mathbb{E}_{rand\ of\ M}[M(S)] \le e^{\epsilon} \mathbb{E}_{rand\ of\ M}[M(S')] + \delta$

Proof:

$$\mathbb{E}_{rand\ of\ M}[M(S)] = \int_{0}^{1} Pr[M(S) > t] \, dt$$

$$\leq \int_{0}^{1} \left[e^{\epsilon} Pr[M(S') > t] + \delta \right] dt \qquad \qquad \text{(differential\ privacy)}$$

$$= e^{\epsilon} \mathbb{E}_{rand\ of\ M}[M(S')] + \delta$$

Differential privacy \rightarrow generalization "on average"

• Theorem:
$$\left| \mathbb{E}[h(S)] - \mathbb{E}[h(P)] \right| \le 2\epsilon + \delta$$

Proof:

$$\mathbb{E}[h(S)] = \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{h \leftarrow M(S)}{\mathbb{E}}[h(S)]$$

$$= \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{h \leftarrow M(S)}{\mathbb{E}} \underset{i \in_{R}[n]}{\mathbb{E}}[h(x_{i})]$$

$$= \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{i \in_{R}[n]}{\mathbb{E}} \underset{h \leftarrow M(S)}{\mathbb{E}}[h(x_{i})]$$

$$\leq \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{i \in_{R}[n]}{\mathbb{E}} \left[e^{\epsilon} \underset{z \sim P; h \leftarrow M(S)}{\mathbb{E}} [h(x_{i})] + \delta \right]$$

$$= \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{i \in_{R}[n]}{\mathbb{E}} \left[e^{\epsilon} \underset{z \sim P; h \leftarrow M(S)}{\mathbb{E}} [h(z)] + \delta \right]$$

$$= e^{\epsilon} \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{h \leftarrow M(S)}{\mathbb{E}} h(P) + \delta$$

$$= \mathbb{E} \underset{S \sim P}{\mathbb{E}} \underset{h \leftarrow M(S)}{\mathbb{E}} h(P) + 2\epsilon + \delta$$

(reorder expectations)

(consider M' that takes output of M and applies it on x_i , then apply proposition)

(rename z and x_i as $(S, z) \equiv (S \setminus \{x_i\} \cup \{z\}, x_i)$

$$(\mathop{\mathbb{E}}_{z \sim P} [h(z)] = h(P))$$

$$(e^{\epsilon} \le 1 + 2\epsilon \text{ for } \epsilon < 1)$$

(for other direction: let h'(x) = 1 - h(x))

Differential privacy \rightarrow generalization w.h.p.

Proof strategy:

Begin with folklore guarantee (in expectation) M expects a single dataset $S = \{s_1, \dots, s_n\}$ and outputs a predicate h

$$\left| \underset{S \sim P}{\mathbb{E}} [h(S)] - \underset{S \sim P}{\mathbb{E}} [h(P)] \right| \le \epsilon + \delta$$

$$\left| \underset{h \leftarrow M(S)}{h \leftarrow M(S)} \right|$$

Amplify to obtain high probability guarantee
$$(n \ge O(\frac{\ln \frac{1}{\delta}}{\epsilon^2}))$$

$$\Pr_{\substack{S \sim P \\ h \leftarrow M(S)}} [|h(S) - h(P)| > \epsilon] \le \delta/\epsilon$$

Differential privacy \rightarrow generalization w.h.p.

Proof strategy:

Begin with folklore guarantee (in expectation)

M expects a single dataset $S = \{s_1, \dots, s_n\}$ and outputs a predicate h

$$\left| \underset{S \sim P}{\mathbb{E}} [h(S)] - \underset{S \sim P}{\mathbb{E}} [h(P)] \right| \le \epsilon + \delta$$

$$\left| \underset{h \leftarrow M(S)}{h \leftarrow M(S)} \right|$$

Modify folklore guarantee to enable amplification

B expects T sub-datasets $\vec{S} = (S_1, S_2, ..., S_T)$ and outputs an index t of a sub-dataset and a predicate h

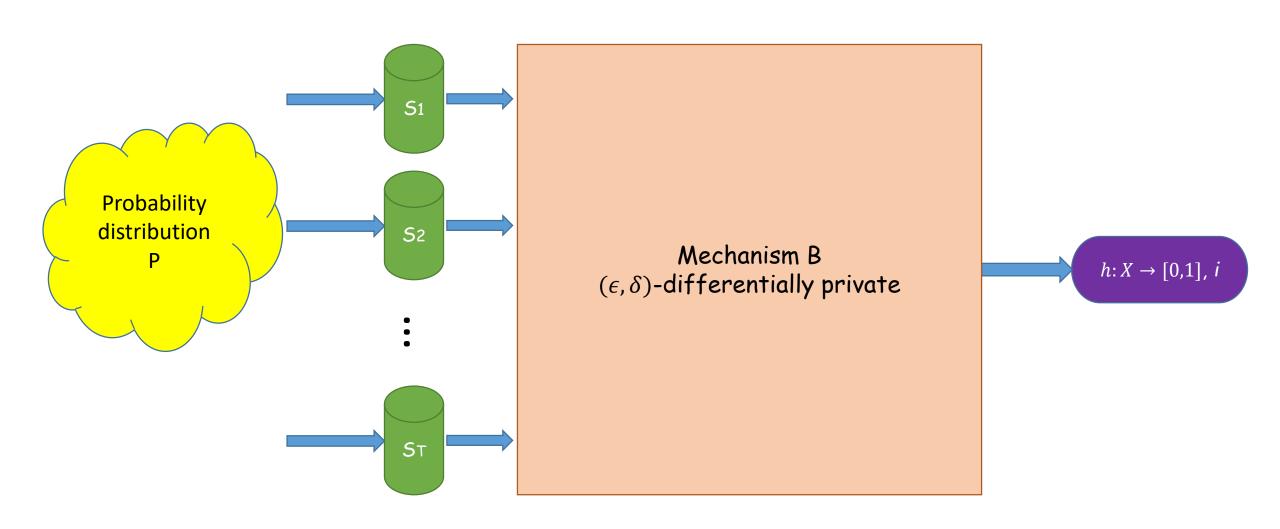
$$\begin{vmatrix} \mathbb{E} & [h(S_t)] - \mathbb{E} & [h(P)] \\ \vec{S} \sim P & \vec{S} \sim P \\ (h,t) \leftarrow B(\vec{S}) & (h,t) \leftarrow B(\vec{S}) \end{vmatrix} \leq \epsilon + T\delta$$

Amplify to obtain high probability

guarantee (
$$n \ge O(\frac{\ln \frac{1}{\delta}}{\epsilon^2})$$
)

$$\Pr_{\substack{S \sim P \\ h \leftarrow M(S)}} [|h(S) - h(P)| > \epsilon] \le \delta/\epsilon$$

Modified folklore guarantee - setup



Proof of the modified folk guarantee

 \mathcal{B} = private alg. with

Input: T sub-databases $\vec{S} = (S_1, S_2, ..., S_T)$ iid from P

Output: Predicate h and index $1 \le t \le T$

• Notation: $S_t = (x_{t,1}, ..., x_{t,n})$

$$\mathbb{E}_{\substack{\vec{S} \sim P \\ (h,t) \leftarrow \mathcal{B}(\vec{S})}} [h(S_t)] = \sum_{m=1}^{T} \mathbb{E}_{\substack{\vec{S} \sim P \\ (h,t) \leftarrow \mathcal{B}(\vec{S})}} [\mathbf{1}_{\{t=m\}} \cdot h(S_m)]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\sum_{m=1}^{T}\sum_{\substack{\vec{S}\sim P\\(h,t)\leftarrow\mathcal{B}(\vec{S})}}^{\mathbb{E}}\left[\mathbf{1}_{\{t=m\}}\cdot h(x_{m,i})\right]=\frac{1}{n}\sum_{i=1}^{n}\sum_{m=1}^{T}\sum_{\substack{\vec{S}\sim P\\(h,t)\leftarrow\mathcal{B}(\vec{S})}}^{Pr}\left[\mathbf{1}_{\{t=m\}}\cdot h(x_{m,i})=\mathbf{1}\right]$$

• Given \vec{S} , (m,i), z define $\vec{S}^{(x_{m,i}:z)}$ to be as \vec{S} after replacing $x_{m,i}$ with z

$$\leq \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{T} \left(e^{\epsilon} \Pr_{\substack{\mathbf{z}, \mathbf{\vec{S}} \sim P \\ (\mathbf{h}, \mathbf{t}) \leftarrow \mathcal{B}(\mathbf{\vec{S}}^{(x_{m, i}: \mathbf{z})})}} \left[\mathbf{1}_{\{t=m\}} \cdot \mathbf{h}(x_{m, i}) = \mathbf{1} \right] + \boldsymbol{\delta} \right)$$

Proof of the modified folk guarantee

• Given \vec{S} , (m, i), z define $\vec{S}^{(x_{m,i}:z)}$ to be as \vec{S} after replacing $x_{m,i}$ with z

$$\mathbb{E}_{\substack{\overrightarrow{S} \sim P \\ (h,t) \leftarrow \mathcal{B}(\overrightarrow{S})}} [h(S_t)] \leq \frac{1}{n} \sum_{i=1}^n \sum_{m=1}^T \left(e^{\epsilon} \Pr_{\substack{z, \overrightarrow{S} \sim P \\ (h,t) \leftarrow \mathcal{B}\left(\overrightarrow{S}^{(x_{m,i}:z)}\right)}} [\mathbf{1}_{\{t=m\}} \cdot h(x_{m,i}) = \mathbf{1}] + \delta \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{T} \left(e^{\epsilon} \underset{\boldsymbol{z}, \vec{S} \sim P}{\mathbb{E}} \left[\mathbf{1}_{\{t=m\}} \cdot \boldsymbol{h}(\boldsymbol{x}_{m,i}) \right] + \boldsymbol{\delta} \right)$$

$$(\boldsymbol{h}, t) \leftarrow \mathcal{B}(\vec{S}^{(x_{m,i}:z)})$$

- Every $\vec{S}^{(x_{m,i}:z)}$ above contains iid samples from P
- $x_{m,i}$ is independent of $\overrightarrow{S}^{(x_{m,i}:z)}$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{T} \left(e^{\epsilon} \underset{\substack{\mathbf{z}, \vec{\mathbf{S}} \sim \mathbf{P} \\ (\mathbf{h}, \mathbf{t}) \leftarrow \mathcal{B}(\vec{\mathbf{S}})}}{\mathbb{E}} \left[\mathbf{1}_{\{\mathbf{t} = \mathbf{m}\}} \cdot \mathbf{h}(\mathbf{z}) \right] + \boldsymbol{\delta} \right) = e^{\epsilon} \underset{\substack{\mathbf{z}, \vec{\mathbf{S}} \sim \mathbf{P} \\ (\mathbf{h}, \mathbf{t}) \leftarrow \mathcal{B}(\vec{\mathbf{S}})}}{\mathbb{E}} \left[\mathbf{h}(\mathbf{z}) \right] + \boldsymbol{T} \boldsymbol{\delta}$$

$$= e^{\epsilon} \underset{\overrightarrow{S} \sim P}{\mathbb{E}} [h(P)] + T\delta \leq \underset{\overrightarrow{S} \sim P}{\mathbb{E}} [h(P)] + 2\epsilon + T\delta$$

$$(h,t) \leftarrow \mathcal{B}(\overrightarrow{S}) \qquad (h,t) \leftarrow \mathcal{B}(\overrightarrow{S})$$

Concluding the proof:

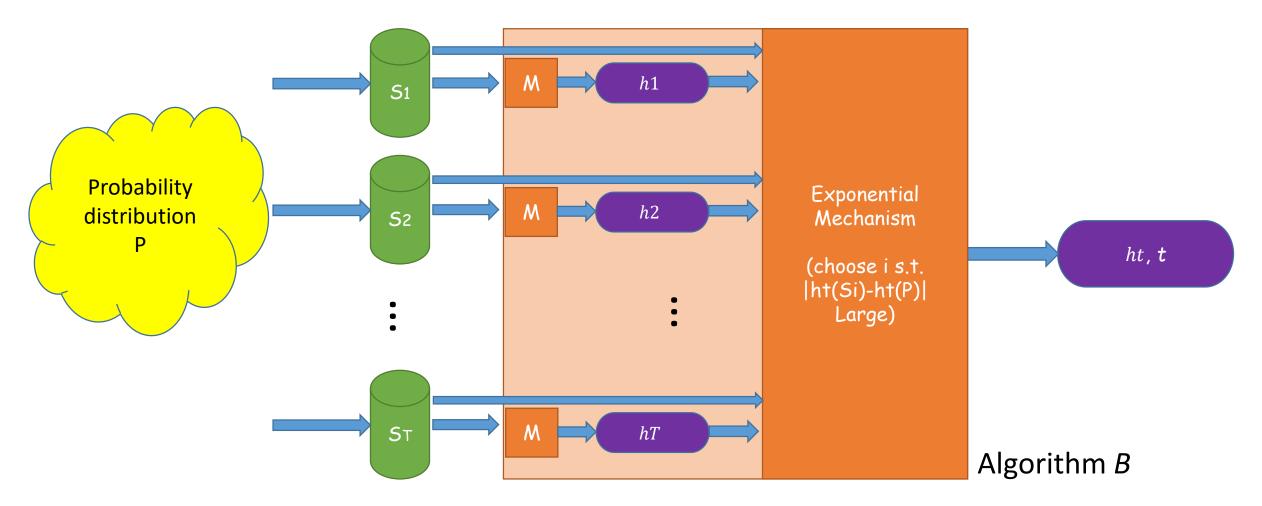
Modified folklore guarantee

B expects T sub-datasets \vec{S} = $(S_1, S_2, ..., S_T)$ and outputs an index t of a sub-dataset and a predicate h

$$\begin{vmatrix} \mathbb{E} & [h(S_t)] - \mathbb{E} & [h(P)] \\ \vec{S} \sim P & \vec{S} \sim P \\ (h,t) \leftarrow B(\vec{S}) & (h,t) \leftarrow B(\vec{S}) \end{vmatrix} \leq \epsilon + T\delta$$

- Given (ϵ, δ) -DP M and distribution P s.t. M outputs h with large |h(S) (P)| w.p. $\geq \delta/\epsilon$
- Create (ϵ, δ) -DP B that expects $T \approx \epsilon/\delta$ sub-datasets:
 - B executes M on each of the T sub-datasets to get predicates h_1, \dots, h_T
 - W.h.p. there exists t such that $|h_t(S_t) h_t(P)|$ is large
 - B identifies (with DP) such a sub-dataset t and outputs t, h_t
 - W.h.p. $|h(S_t) h_t(P)|$ is large, contradicting the modified theorem! M cannot exist!

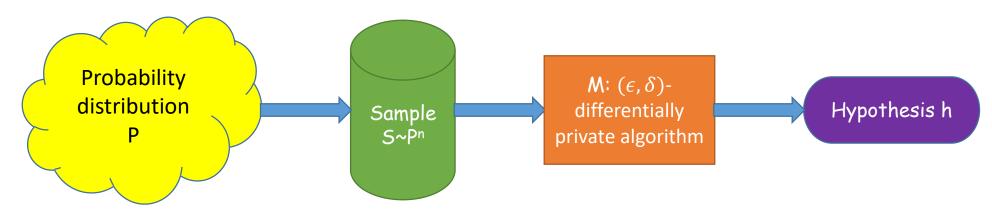
Modified folklore guarantee – proof construction



Notes:

Proof by contradiction: Algorithm B only used in proof, M does not need to be modified Algorithm B "knows" the underlying distribution P

Differential privacy \rightarrow generalization (summary)



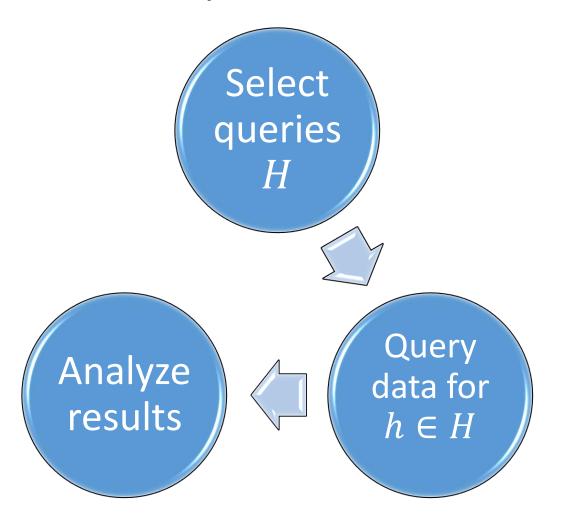
• Define:
$$h(S) = \frac{1}{n} \sum h(s_i)$$
 and $h(P) = \Pr_{S \sim P}[h(s)]$

Theorem [McSherry, folklore]:	$\underset{S \sim P}{\mathbb{E}} [h(S)] \approx \underset{S \sim P}{\mathbb{E}} [h(P)]$ $h \leftarrow M(S) \qquad h \leftarrow M(S)$	Expectation
Theorem [DFHPRR'15]:	$\Pr_{\substack{S \sim P \\ h \leftarrow M(S)}} [h(S) - h(P) > \epsilon] \le \delta^{\epsilon}$	High probability
Tight theorem [BNSSSU'16] $(n \ge O(\frac{\ln \frac{1}{\delta}}{\epsilon^2})):$	$\Pr_{\substack{S \sim P \\ h \leftarrow M(S)}} [h(S) - h(P) > \epsilon] \le \delta/\epsilon$	Tilgii produbility

• Theorem: Let M be (ϵ, δ) -differentially private. Let S be $n \geq O(\frac{\ln \frac{1}{\delta}}{\epsilon^2})$ i.i.d. samples from an underlying distribution P. Interpret M(S) as a hypothesis h. Then, $\Pr[|E_S(h) - E_P(h)| > \epsilon] \le O(\frac{\delta}{\epsilon})$

$$\Pr[|E_S(h) - E_P(h)| > \epsilon] \le O(\frac{\delta}{\epsilon})$$

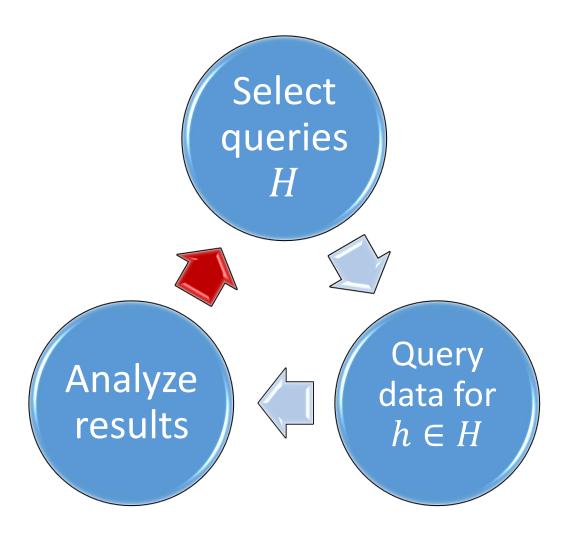
In theory* ...



Statistically valid if sample size large enough ($\approx \log |H|$)

^{*}In theory, theory and practice are the same. In practice, they are not. [A. Einstein]

In practice*



Analysts makes adaptive decisions:

- Queries selected based on the results of previous analyses
- Risk of false discoveries!
- A real problem. Lots of published research results are wrong!
- Almost all existing approaches to ensuring generalization assume the entire data-analysis procedure is fixed ahead of time

^{*}In theory, theory and practice are the same. In practice, they are not. [A. Einstein]

Application to adaptive querying

- Differential privacy closed under post processing
 - Robust generalization: further post-processing unlikely to generate a nongeneralizing hypothesis!
 - In standard learning, a model (that generalizes) may inadvertently reveal the sample, and hence lead to a non-generalizing hypothesis!
- Differential privacy closed under adaptive composition
 - [DFHPRR'15]: Even adaptive querying with differential privacy would not lead to a non-generalizing hypothesis

Application to adaptive querying

- Can import tools developed for answering queries adaptively with differential privacy!
- In particular, differential privacy allows approximating $h(S) = \frac{1}{n} \sum h(s_i)$ for $k \approx n^2$ adaptively selected predicates h_1, \dots, h_k

Upper bounds:

- [DFHPRR'15]: Efficient mechanism that w.h.p. answers any k adaptively chosen queries h_1,\ldots,h_k within accuracy α given $n=\tilde{O}\big(\sqrt{k}/\alpha^{2.5}\big)$ samples
- [BNSSSU]: Sample complexity reduced to $n = \tilde{O}(\sqrt{k}/\alpha^2)$

Lower bound:

• [Hardt Ullman 14, Steinke Ullman 15]: Any efficient mechanism that answers k adaptive queries within accuracy α requires $n=\Omega(\sqrt{k}/\alpha)$

References

- Moritz Hardt, Jonathan Ullman: Preventing False Discovery in Interactive Data Analysis Is Hard. FOCS 2014
- Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Leon Roth: Preserving Statistical Validity in Adaptive Data Analysis. STOC 2015
- Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Roth: Generalization in Adaptive Data Analysis and Holdout Reuse. NIPS 2015
- Thomas Steinke, Jonathan Ullman: Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery. COLT 2015
- Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, Jonathan Ullman: Algorithmic stability for adaptive data analysis. STOC 2016
- Thomas Steinke, Jonathan Ullman: Subgaussian Tail Bounds via Stability Arguments. 2017