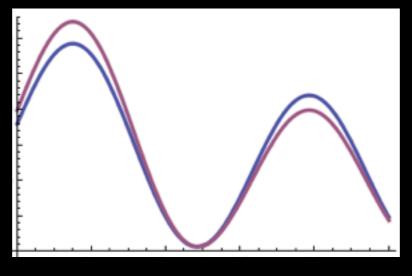
Game theory Katrina Ligett

[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06]

 ϵ -Differential Privacy for algorithm M:

for any two neighboring data sets x_1 , x_2 , differing by the addition or removal of a single row

any
$$S \subseteq \text{range}(M)$$
,
 $\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$



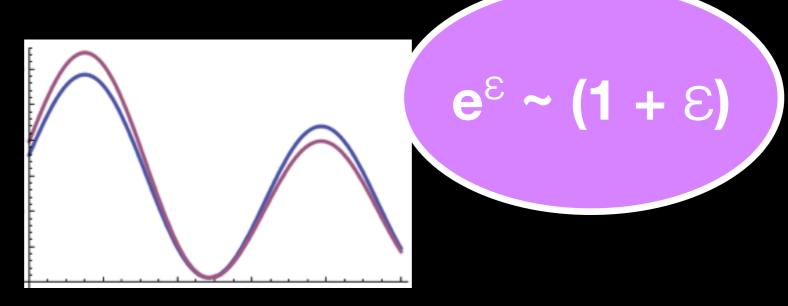
[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06]

 ϵ -Differential Privacy for algorithm M:

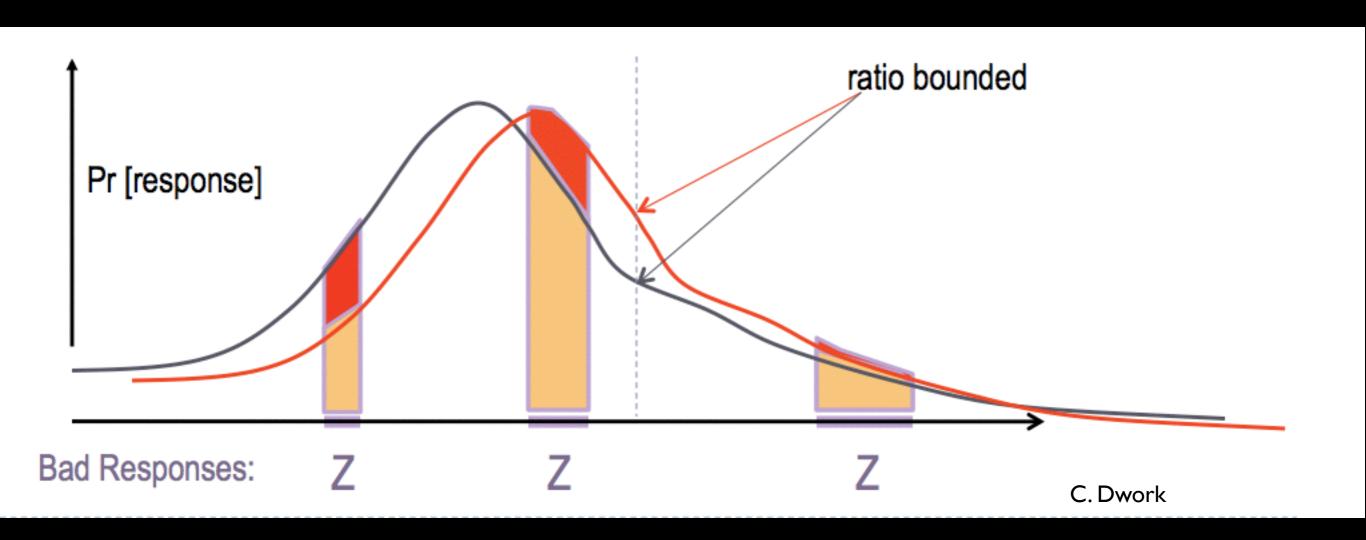
for any two neighboring data sets x_1 , x_2 , differing by the addition or removal of a single row

any
$$S \subseteq \text{range}(M)$$
,

$$\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$$



 $\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$



privacy, mechanisms, incentives, game theory

- Why would someone participate in a DP computation?
- Why would they give their true data?
- Would they need to be compensated? How much?
- How can the DP toolkit be used in game theory applications?

outline

- game theory primer
- DP gives approximate truthfulness
- DP as a tool in game theory
- incentives to participate and truth-tell in DP algorithms

game theory and mechanism design

- goal: solve some optimization problem
- catch: you don't have the inputs; they're held by self-interested agents
- common approach: design incentives and choice of solution ("mechanism") that incentivizes truth-telling

why truth-telling/strategy-proof?

- no need for participants to strategize
- simple to predict what will happen
- often, without loss of generality ("revelation principle"): if there is a non-truth-telling mechanism, replace it with a mechanism where the coordinator strategizes on behalf of the agents

LOTS of work in mechanism design on truthful mechanisms

• particular settings, constraints, goals, etc.

outline

- game theory primer
 - DP gives approximate truthfulness
- DP as a tool in game theory
- incentives to participate and truth-tell in DP algorithms

the cheap answer (why participate, truth-tell?)

- Suppose agents $i \in [n]$ with types in X have utility functions $u_i: O \to [0, 1]$ over outcomes in O chosen by a mechanism M.
- We say $M: X^n \to O$ is ϵ -approximately dominant strategy truthful if for every player i, for every $x_{-i} \in X^{n-1}$, and every $x'_i \in X$:

$$\mathbb{E}_{o \sim M(x)}[u_i(o)] \ge \mathbb{E}_{o \sim M(x'_i, x_{-i})}[u_i(o)] - \varepsilon$$

So, if a mechanism is ε -differentially private, it is also $O(\varepsilon)$ -approximate dominant strategy truthful

the good news

- Composition very powerful! For example, if M_1 and M_2 are both ε -differentially private, their composition is $O(\varepsilon)$ -approximately dominant strategy truthful.
- (Incentive properties of general strategyproof mechanisms may not be preserved under composition.)

more good news

• If inputs x, y differ in the types of k players, we get

$$\mathbb{E}_{o \sim M(x)}[u(o)] \le e^{\varepsilon k} \mathbb{E}_{o \sim M(y)}[u(o)]$$

- Changing up to k players' types changes the expected utility by at most $\sim (1 + \varepsilon)$, when $k << 1/\varepsilon$.
- DP mechanisms make truthful reporting a $O(k\varepsilon)$ -approximate dominant strategy, even for coalitions of k agents!
- In general dominant-strategy truthful mechanisms, robustness to collusion does not come for free.

more good news

• This is all without money!

the bad news

- Not only is truthfully reporting one's type an approximate dominant strategy, any report is an approximate dominant strategy.
- ... perhaps we need to compensate (truthful) participation.

outline

- game theory primer
- DP gives approximate truthfulness
 - DP as a tool in game theory
- incentives to participate and truth-tell in DP algorithms

outline

- game theory primer
- DP gives approximate truthfulness
- DP as a tool in game theory
 - DP gives asymptotic truthfulness
 - DP gives some new mechanism design results
 - DP and equilibrium selection
 - DP and exact truthfulness
- incentives to participate and truth-tell in DP algorithms

- unlimited supply of good with zero marginal cost of production
- n unit-demand buyers w/ valuations $v_i \in [0, 1]$
- OPT = $\max_{p} \text{Rev}(p, v) = \max_{p} p |\{i : v_i \ge p\}|$

- unlimited supply of good with zero marginal cost of production
- n unit-demand buyers with valuations $v_i \in [0, 1]$
- OPT = $\max_{p} \overline{Rev(p, v)} = \max_{p} p |\{i : v_i \ge p\}|$.

- unlimited supply of good with zero marginal cost of production
- n unit-demand buyers with valuations $v_i \in [0, 1]$
- OPT = $\max_{p} \text{Rev}(p, v) = \max_{p} p |\{ i : v_i \ge p\}|$
- [BBHM05] gives dominant strategy truthful mechanism with revenue ≥ OPT - O(sqrt(n))

- unlimited supply of good with zero marginal cost of production
- n unit-demand buyers with valuations $v_i \in [0, 1]$
- OPT = $\max_{p} \text{Rev}(p, v) = \max_{p} p |\{i : v_i \ge p\}|$.
- [BBHM05] gives dominant strategy truthful mechanism with revenue ≥ OPT - O(sqrt(n))
- [McSherryTalwar07] DP-based approach: discretize range, use exponential mechanism to select price. With high probability, gives price s.t. revenue is ≥ OPT - O(log n/ε). Approximately truthful if valuation reports binding. (Note: not the case that every report is an approximate dominant strategy.)

outline

- game theory primer
- DP gives approximate truthfulness
- DP as a tool in game theory
 - DP gives asymptotic truthfulness
 - DP gives some new mechanism design results
 - DP and equilibrium selection
 - DP and exact truthfulness
- incentives to participate and truth-tell in DP algorithms

game theory primer: equilibrium

 Nash equilibrium: an assignment of players to strategies so that no player would benefit by changing strategy, given how everyone else is playing

game theory primer: equilibrium

- Nash equilibrium: an assignment of players to strategies so that no player would benefit by changing strategy, given how everyone else is playing
- Correlated equilibrium: generalization, where players have access to correlating signal (traffic light; Waze)

equilibrium implementation with mediator [Kearns Pai Rogers Roth Ullman 14]

- setting: mechanism designer has limited power
 - cannot enforce that agents "use" the mediator
 - no ability to pay agents
 - can only recommend actions (not enforce them)
 - no prior over player types

equilibrium implementation with mediator [Kearns Pai Rogers Roth Ullman 14]

- Goal: agents report types; mechanism recommends equilibrium strategies to agents; agents incentivized to participate, report truthfully, and to follow equilibrium
- will want to use DP tools to make "robust" strategy recommendations
 - need game to be "large"
 - need to relax privacy notion

joint differential privacy

- my recommended strategy might reveal (too much about) my type
 - think: my suggested route from home to work tells you where my home and work are
- joint differential privacy: for each player, if she changes her input, the distribution over everyone else's pieces of the output doesn't change too much

[KearnsPaiRogersRothUllman14]

in large games with private types, can implement a correlated equilibrium of the complete info game with a "strong" mediator (one who can verify your claim, if you do opt in, but can't force you to take their recommendation)

[KearnsPaiRogersRothUllman14]

for more structured games (routing), can even achieve with "weak" mediator who can't verify inputs

why this is surprising

not enough to compute equilibrium over those who opt-in, since may be an equilibrium of the wrong game—an agent could have a big effect on the equilibrium chosen, even if her actions within the game have limited impact on others' utilities

outline

- game theory primer
- DP gives approximate truthfulness
- DP as a tool in game theory
 - DP gives asymptotic truthfulness
 - DP gives some new mechanism design results
 - DP and equilibrium selection
 - DP and exact truthfulness
- incentives to participate and truth-tell in DP algorithms

obtaining exact truthfulness [NissimSmorodinskyTennenholtz12]

- one motivating question: facility location (each agent has a location and prefers to attend a school close to her; central designer must pick locations of schools to minimize overall travel time)
- might want to lie about your location in order to influence chosen locations

obtaining exact truthfulness [NissimSmorodinskyTennenholtz12]

- nonstandard environment
 - agents report types (locations)
 - mechanism picks outcome (locations of schools)
 - agents "react" (pick a school to attend)
 - reaction can be constrained based on reported type (you have to pick the school that's closest to your report)

obtaining exact truthfulness [NissimSmorodinskyTennenholtz12]

- Randomize between
 - a DP mechanism that gives approximate truthfulness
 - a punishing mechanism with bad guarantees on outcome utility, but that gives strict incentive to truth-tell

outline

- game theory primer
- DP gives approximate truthfulness
- DP as a tool in game theory

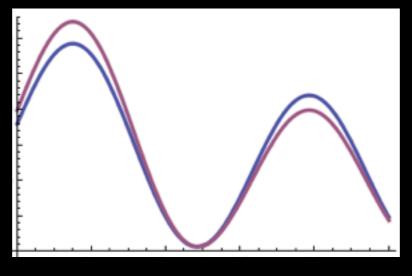
incentives to participate and truth-tell in DP algorithms

[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06]

 ϵ -Differential Privacy for algorithm M:

for any two neighboring data sets x_1 , x_2 , differing by the addition or removal of a single row

any
$$S \subseteq \text{range}(M)$$
,
 $\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$



differential privacy

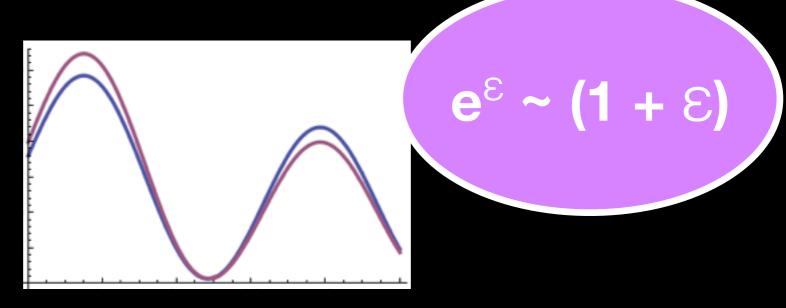
[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06]

 ϵ -Differential Privacy for algorithm M:

for any two neighboring data sets x_1 , x_2 , differing by the addition or removal of a single row

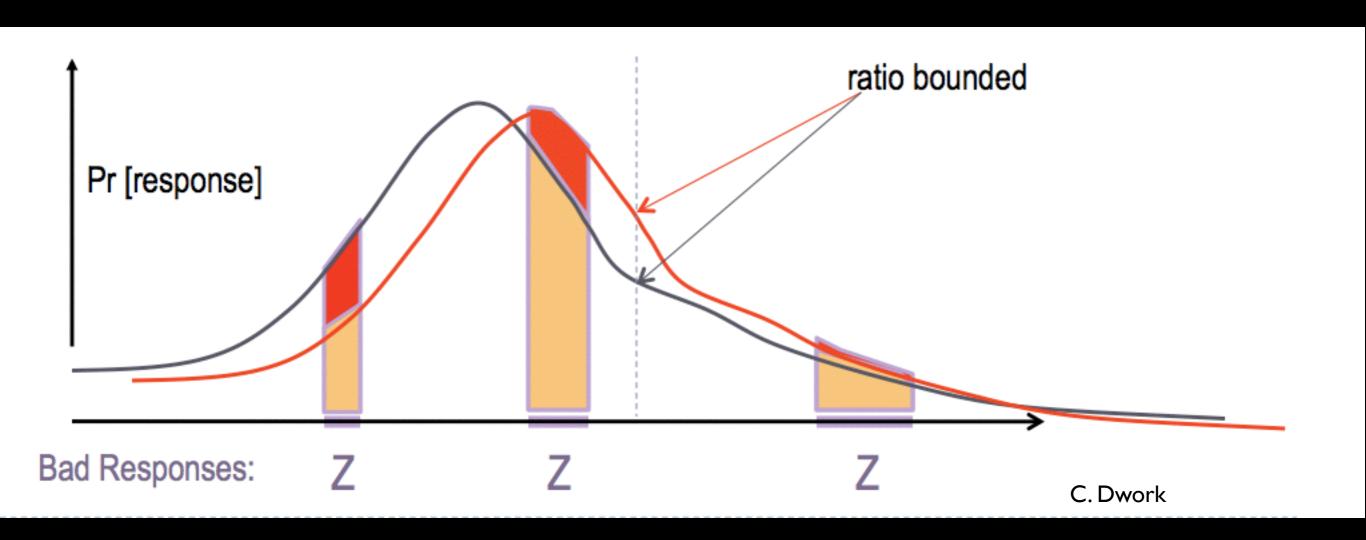
any
$$S \subseteq \text{range}(M)$$
,

$$\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$$



differential privacy

 $\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$



 challenging to strictly incentivize truthtelling in DP mechanisms, unless

- challenging to strictly incentivize truthtelling in DP mechanisms, unless
 - agents care about the outcome

- challenging to strictly incentivize truthtelling in DP mechanisms, unless
 - agents care about the outcome
 - responses are verifiable

- challenging to strictly incentivize truthtelling in DP mechanisms, unless
 - agents care about the outcome
 - responses are verifiable
 - now or later

- challenging to strictly incentivize truthtelling in DP mechanisms, unless
 - agents care about the outcome
 - responses are verifiable
 - now or later
 - with reasonable probability

Buying Private Data WITH Verification

Buying Private Data WITH Verification

 [GhoshRoth II] introduced problem of buying private data

Buying Private Data WITH Verification

- [GhoshRoth II] introduced problem of buying private data
- idea: want to buy sensitive information to estimate a population statistic, cheaply

 IF individuals don't care about privacy of their costs...

- IF individuals don't care about privacy of their costs...
- nearly optimal, truthful auctions

- IF individuals don't care about privacy of their costs...
- nearly optimal, truthful auctions
 - fixed accuracy target, minimizing payments

- IF individuals don't care about privacy of their costs...
- nearly optimal, truthful auctions
 - fixed accuracy target, minimizing payments
 - fixed budget, maximizing accuracy

[GhoshRoth II, Nissim Vadhan Xiao I4]: bad news

• Strong impossibility results for individually rational mechanisms when the costs themselves are private.

- Strong impossibility results for individually rational mechanisms when the costs themselves are private.
- Wlog, assume true statistic is between 0 and n/2 with probability at least 1/2.

- Strong impossibility results for individually rational mechanisms when the costs themselves are private.
- Wlog, assume true statistic is between 0 and n/2 with probability at least 1/2.
- In order to be meaningfully accurate, when input database is all 1's, should return a value greater than n/2 w.p., say, at least 2/3.

- Strong impossibility results for individually rational mechanisms when the costs themselves are private.
- Wlog, assume true statistic is between 0 and n/2 with probability at least 1/2.
- In order to be meaningfully accurate, when input database is all 1's, should return a value greater than n/2 w.p., say, at least 2/3.
- By DP, sum of the epsilons must be greater than In 4/3.

- Strong impossibility results for individually rational mechanisms when the costs themselves are private.
- Wlog, assume true statistic is between 0 and n/2 with probability at least 1/2.
- In order to be meaningfully accurate, when input database is all I's, should return a value greater than n/2 w.p., say, at least 2/3.
- By DP, sum of the epsilons must be greater than In 4/3.
- To get IR, total payment must exceed min v_i * sum of epsilons.

- Strong impossibility results for individually rational mechanisms when the costs themselves are private.
- Wlog, assume true statistic is between 0 and n/2 with probability at least 1/2.
- In order to be meaningfully accurate, when input database is all 1's, should return a value greater than n/2 w.p., say, at least 2/3.
- By DP, sum of the epsilons must be greater than In 4/3.
- To get IR, total payment must exceed min v_i * sum of epsilons.
- By DP, this must hold for *all* inputs, so cannot make finite payment.

• [NVX14] strengthen impossibility results of GR11, extending to much wider class of privacy valuations, including (ϵ, δ) -DP

responding to impossibility

- [FleischerLyu I 2]: c_i drawn from known prior given b_i ; relies on knowing prior exactly
- [LigettRoth I 2]: take-it-or-leave-it offers (lose individual rationality); revised model of privacy costs
- [NissimVadhanXiao14]: monotonicity of correlation between bits and costs; known bound on how many players' costs exceed a given threshold

forms of report verification

- direct (check your driver's license, draw your blood)
- possibly randomized
- agents care about outcome (or can be scored based on future event) - prediction market
- correlations in population

Should we acquire company X?

- Should we acquire company X?
- What is the prevalence of drug use?

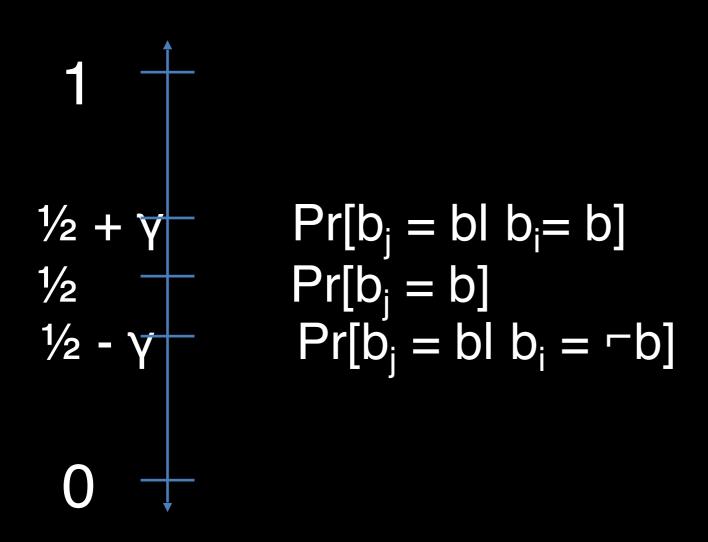
- Should we acquire company X?
- What is the prevalence of drug use?
- Do our employees accept bribes?

- Should we acquire company X?
- What is the prevalence of drug use?
- Do our employees accept bribes?
- Are students cheating in class?

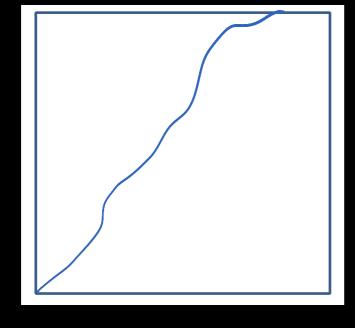
Bayesian setting

- bit-cost pairs (b_i, c_i) drawn from known joint distribution
- agent's cost c_i does not give her additional information about other agents beyond what was conveyed by b_i

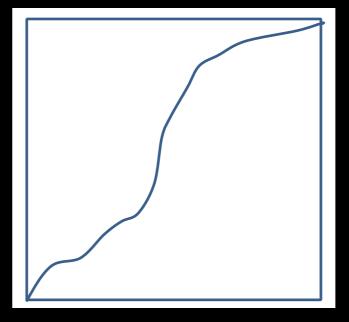
example Bayesian setting



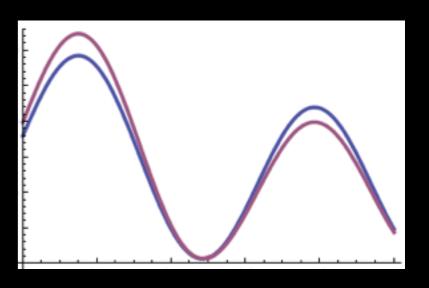
example Bayesian setting



$Pr[c_i > cl b_i = 1]$

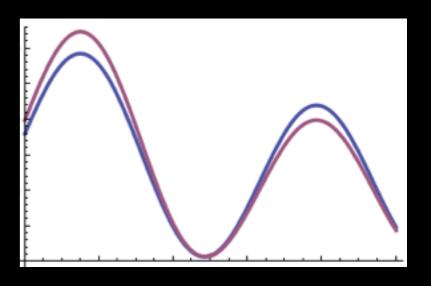


modeling privacy costs



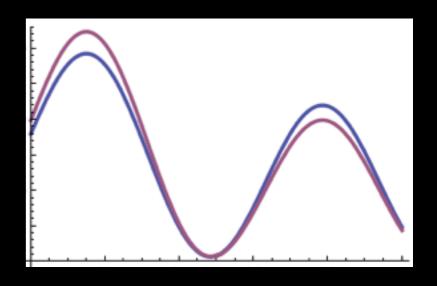
 for most results, adopt model of [NissimOrlandiSmorodinsky | 2]: privacy costs can be arbitrary, but upper-bounded by linear cost c_i ε

modeling privacy costs



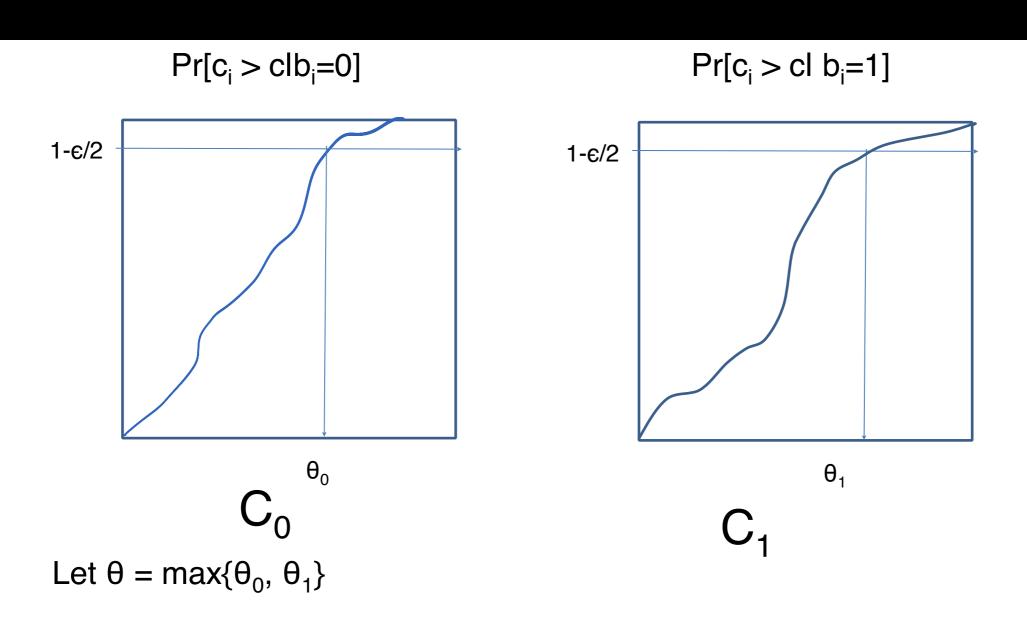
- for most results, adopt model of [NissimOrlandiSmorodinsky | 2]: privacy costs can be arbitrary, but upper-bounded by linear cost c_i ε
- utility model: bounded by c_i ε p_i

modeling privacy costs



- for most results, adopt model of [NissimOrlandiSmorodinsky | 2]: privacy costs can be arbitrary, but upper-bounded by linear cost c_i ε
- utility model: bounded by c_i ε p_i
- could also incorporate explicit preferences to manipulate outcome

participation threshold



if verification weren't an issue...

- 1. Collect $\widehat{b_i} \in \{0, 1, \bot\}$
- 2. Release $\frac{\left|\{i:\widehat{b_i}=1\}\right|+\lambda(\frac{\epsilon n}{2})}{n}$
- 3. Pay $\frac{2\theta}{\epsilon n}$
- $\frac{2}{\epsilon n}$ -Differentially Private
- Expected Error: $\frac{\epsilon}{2}$ from noise, $\leq \frac{\epsilon}{2}$ from nonparticipation
- Cost: $\frac{2\theta}{\epsilon}$

if privacy weren't an issue...

peer-prediction literature
 [MillerResnickZeckhauser05]

if privacy weren't an issue...

- peer-prediction literature
 [MillerResnickZeckhauser05]
- key idea: reward participants for reports that are predictive of *others*' reports

if privacy weren't an issue...

- peer-prediction literature
 [MillerResnickZeckhauser05]
- key idea: reward participants for reports that are predictive of *others*' reports
- uses proper scoring rule, which incentivizes participants to truthfully report beliefs (e.g., log of probability mass you placed on event that actually occurred)

peer-prediction algorithm

- randomly pair players i and j
- pay player i properScoringRule(r_j, p_{ri})
 - r_j is player j's reported bit
 - p_{ri} is the posterior based on player i's reported bit

my payment reveals too much about me

- my payment reveals too much about me
- being paid based on a single other player's bit too revealing

- my payment reveals too much about me
- being paid based on a single other player's bit too revealing
- can't get full participation at any fixed cost

- my payment reveals too much about me
- being paid based on a single other player's bit too revealing
- can't get full participation at any fixed cost
- incentive to truth-tell must be robust to noise in aggregation and to error due to lack of full participation

- my payment reveals too much about me
- being paid based on a single other player's bit too revealing
- can't get full participation at any fixed cost
- incentive to truth-tell must be robust to noise in aggregation and to error due to lack of full participation
- more noise: directly harms accuracy, but encourages participation (which helps accuracy)

joint differential privacy

- the amount you are paid is too revealing
- give a guarantee under "joint differential privacy," wherein the closeness differential privacy requires is on the computation's outcome and everyone else's payments

private peer-prediction [GhoshLigettRothSchoenebeck | 5]

private peer-prediction [GhoshLigettRothSchoenebeck | 5]

private peer-prediction [GhoshLigettRothSchoenebeck | 5]

1. Collect
$$\hat{b}_i \in \{0, 1, \bot\}$$

2. Compute $\bar{b} = \left|\{i : \hat{b}_i = 1\}\right| + \lambda \left(\frac{\epsilon n}{2}\right)$

3. Compute
$$\bar{a} = \frac{\bar{b}}{n}$$
, $\overline{a_{-i}} = \frac{\bar{b} - b_i}{n-1}$

4. Release \bar{a}

5. Payment
$$p_i = \frac{2\theta}{\epsilon n(2\gamma - \epsilon)} \ (1 - \overline{a_{-i}})$$
 if $\hat{b}_i = 0$; $p_i = \frac{2\theta}{\epsilon n(2\gamma - \epsilon)} \ \overline{a_{-i}}$ if $\hat{b}_i = 1$; $p_i = 0$ if $\hat{b}_i = 1$

- $\frac{2}{\epsilon n}$ -JointDP
- Equilibrium for agents with costs $< \theta$ to truth-tell
- Expected Error: $\frac{\epsilon}{2}$ from noise, $\leq \frac{\epsilon}{2}$ from non-participation
- Cost: $\frac{2\theta}{\epsilon(2\gamma-\epsilon)}$

private peer-prediction: sketch of accuracy proof

 accuracy comes from truthfulness of enough players

private peer-prediction: sketch of accuracy proof

- accuracy comes from truthfulness of enough players
- show existence of threshold strategy equilibrium, where all agents with cost below threshold are incentivized to truth-tell

private peer-prediction: sketch of accuracy proof

- accuracy comes from truthfulness of enough players
- show existence of threshold strategy equilibrium, where all agents with cost below threshold are incentivized to truth-tell
- find threshold such that a large fraction of players have costs below it, and for all players, conditioning on having either bit, posterior says large fraction of others have costs below it

- adversary
 - cannot see agents' participation
 - updates belief about agent based on outcome

- adversary
 - cannot see agents' participation
 - updates belief about agent based on outcome
- if mechanism is ε-DP then agent only affects outcome with probability ε

- adversary
 - cannot see agents' participation
 - updates belief about agent based on outcome
- if mechanism is ε-DP then agent only affects outcome with probability ε
- with probability ε , adversary changes view by ε , so cost of participation is $c_i \varepsilon^2$

- adversary
 - cannot see agents' participation
 - updates belief about agent based on outcome
- if mechanism is ε-DP then agent only affects outcome with probability ε
- with probability ε , adversary changes view by ε , so cost of participation is $c_i \varepsilon^2$
- can achieve 0 cost in limit of n

privacy + game theory

- DP gives asymptotic truthfulness, some new mechanism design and equilibrium selection results
- the asymptotic truthfulness toolkit is sometimes useful for getting exact truthfulness
- interesting challenge of modeling costs for privacy
- interesting challenges in elicitation/payment for private data

if privacy is for humans...

- do we need to understand...
 - how people currently value it?
 - how people behave with respect to it? (revealed preferences)
 - how people "should" value it (if they were rational, understood risks, etc.)?
 - how the technologies we enable and implement change people's value for and expectations of privacy?
- what are the right promises to give?