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Some Common Computations in Statistics

* Median

* OLS linear regression

* Logistic regression
* Support vector machine

Natural estimator is the result
of a minimizing a convex loss function
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Convex Empirical Risk Minimization

°* Dataset X = (xq,%9, ..., %X,) EU"

* Goal: find a “parameter” 6 € C € R?
which minimizes

LB X) =y £(8x)

where
® {(:;x) is convex for all x

e ( is convex

Goal: small excess risk

True minimizer Output




Convex Loss Functions

* Median (in R%)
> £(0;x) = 116 — xl;
> L(0; X) =~ 216 — xll,

* Linear regression
> Data are pairs (x;,y;) € RxR

> L(6;X) = %Zi()’i — (x;,0))?

* Logistic regression

> Data are pairs (x;,y;) € R¢x{—1,1}

> £(0;x) = In(1 + exp(—y(6, x))) o \
* Support vector machine o. o
1 /// "4 //$
> L(6;X) = - %, h(yi(x;, 0)) + All6]13 S B e
where h(z) = (1 — 2), K L o

. . K\\ 7/
Image: steve-cronin.blogspot.com 28 . X,



Why care about privacy in ERM?

* Median: Minimizer can be a data point
0(6;x,)+ £(6;x,) + £(6; x,)

f(@;xl)

data points in the clear

Xy

X,

>

X3 v,

0" = x, is the minimizer
* SVM: Dual form of solution encodes high-dimensional

X,

* Reconstruction/membership attacks

can use regression parameters
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Convex Empirical Risk Minimization

°* Dataset X = (xq,%9, ..., %X,) EU"
* Goal: find a “parameter” 6 € C € R?
which minimizes L(0;X) = %2?213(9; X;)

where
® /(:;x) is convex for all x

e ( is convex

¢ Goals: N

* [Chaudhuri,Monteleoni,Sarwate’l | ]
0 =A(xq,...,%Xp) is
(€, §)-differentially private

\. Small expected excess risk — \ Output

ue minimizer




Population versus empirical risk
* Suppose X = (Xy, ..., Xn) ~iia P
* Empirical risk L(6; X) = %Z}Llf(ﬁ;xi)

* Population risk (generalization error)
R(0) = IEX"’i.i.d.P(L(H;X))
— Exi(f(Q;Xi))
ﬁ;oals: \

* [Chaudhuri,Monteleoni,Sarwate’l | ]
0 =A(xq,...,x5,) is
(€, §)-differentially private

* Small expected empirical risk \
k' Small expected population risk/ Sample 2 9




Bounds depend on \
assumptions about

° Suppose X — (Xlr ;Xn) ~i.id. f’ C’ R’

Population versus empiric

. : 1
* Empirical risk L(6; X) = ~/_1 €| Typical setting:

: : L * {is 1-Lipschitz
[ ]
Population risk (generalization er] _ C < (¢, ball)

R(O) =Ex.,,  ,p (L(Q; X))
Difference between these

ﬁ;oals: / is “generalization error”

* [Chaudhuri,Monteleoni,Sarwate’|
0 =A(xq, ..., Xy) is
(€, 6)-differentially private

Bounded by € + 6 for DP
algorithms!

* Small expected empirical risk

Focus for now on
empirical risk

K. Small expected population risk




Lipschitz assumption

°* Dataset X = (xq,%9, ..., %X,) EU"

* Goal: find a “parameter” 6 € C € R?
which minimizes L(0; X) = %2?215(9; X;)

where

® /(:;x) is convex for all x

e ( is convex

How can we bound
each person’s influence?

° Assume ¢ is “c-Lipschitz”:
1V€(0; )|l < c
forallx € Uand 0 € C.

True minimizer Output




Bounds (n individuals, parameter 8 € C € RY)

e e T S

| (E' O)' d 1 Exponential sampling
DP 0 (E ) E) [McSherry Talwar, BST 14])

Lipschitz
A

(€,0)- (E) Noisy stochastic gradient descent
DP 0 \/E i lOg 9} [Williams McSherry, Song Chaudhuri
n € Sarwate, BST 14 ]

—

Lower bounds by
reduction from
attribute proportions

‘BUV ‘I4|

Assumptions: ||[V€(:; x)||, < 1forall x,0 € C
diameter(C) < 1 0




Some Known Algorithms

* OQutput perturbation [CM’08, RBST’ 1 0]
» Simple but generally suboptimal

* Objective perturbation [CMS’[ |]

» Works well for smooth loss functions
* Exponential Sampling [MT'07,BST’ 4]
» Works well for (€, 0)-differential privacy

» Can be tricky to implement

* Noisy SGD [SCSI3, BST 4, WLFI5]

» Tight bounds for empirical risk minimization

» Generalizes to mirror descent [TTZI5]

* Noisy Frank-Wolfe [TTZ’15]

» Exploits structure of constraint set

* Dimension reduction [RBST’ 10, KJI6,...]

» Combined with other techniques




Output perturbation [CM’08,RBST’10]

® [:C - Ris A-strongly convex if for all 8,z € C:
A
f(2) = f(6) + VL) (z = 0) + Iz = 63

°* When L(-; X) is strongly convex, can perturb
minimizer Output = (True minimizer) + (noise)

» How much noise?

* Convex Stability Lemma: If L is A-strongly convex
and f is c-Lipschitz, then
2¢C L+f
2 A
where 6*’s minimize L and L + f over C.

Qz+f -0

6,  60../0



Proof of Strong Convexity Lemma

* A=16, —6ll;
* By strong convexity: L(0,) — L(6y) = %Az

* But we also know L(6,) — L(6,)
< L(61) — L(6p) + (L + [)(8o) — (L + f)(61)

= f(80) — f(61) L+f
< CfA
A a2
* Thus EA < cA L
< >
and so A < 2¢/A. 0, 0. )




Objective Pertur bati0n [Chaudhuri,Monteleoni,Sarwate’11]

¢ Pick a random vector b~Normal (0, 626;12)

* Return 0 = argmingec L(0;X) + 2]|6]|5 + b-0
» Where A = 1/en

> VL(B;X) + 240 = b

* Privacy requires
smooth loss function

» Median is a counterexample
to privacy for nonsmooth loss

» Nonsmooth regularizer ok
(e.g, LASSO)

True minimizer




Exponential Sampling [McSherryTalwar’07, BST’14]

* Define a probability distribution on 6 € C:
p(0) o< e~ LOX) . prior(0) L(9?<>
°* Oninput X, A(X) outputs
a sample 0 from p

» (€,0)-DP since
no single data point has
strong effect on L(6; X)

* Utility analysis via “peeling”
argument

» Use convexity to argue that
p(A1) = 1 wheny = £

En
» Polynomial-time algorithm via careful MCMC argument



Noisy stochastic gradient descent

* Run stochastic projected GD, using noisy queries to

1
VL(O; X) ~ 52 ve(0; x;)
[

» For each step t: pick random i, set

. L(6; X)
g = VE(0;_q1; x;) + (noise)
» Updates: 6; < Proj. (Ht_l — \/ifgt)

® Variants evaluated empirically
Williams, McSherry ’10, Song, Chaudhuri, Sarwate ‘I 3]

QVY

* Improvements and analysis
[Bassily, S., Thakurta’l4,
Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang ‘16]

* Privacy: exploit amplification of € via random sampling
[Kasiviswanathan, Lee, Nissim, Raskhodnikova, S. ‘08]



Noisy stochastic gradient descent algorithm

At iteration t:

(6, x)

e

/

C

direction of the noisy gradient = -7, [an 0,;x)+ bt]



Noisy stochastic gradient descent algorithm

At iteration t:

direction of the noisy gradient = -7, [an 0,;x)+ bt]



Noisy stochastic gradient descent algorithm

At iteration t+1 : Fresh data sample

@0.,,;x")

_nt+1 [ﬂVf(@Hl > X ') + bt+1 ]



Noisy stochastic gradient descent algorithm

Fresh data sample

@0.,,;x")

_nt+1 [an(@Hl ; X ') + bt+1 ]

Repeat for n° iterations, then output 0, .



N oisy Frank- Wolf e [Talwar, Thakurta, Zhang ‘15]

* Suppose C is a polytope (e.g. £ ball)

> C = ConvexHull({ve.rt.ice.S}) V;,1 is always a
» (How) can we do optimization over C vertex

while leaking little information?
* Recall Frank-Wolfe algorithm [FW’56] %
Vt+1 = argmaxvec( —VTVL(Ht))
Ory1 =0 + (Vi1 — Op)

°* [TTZI5] Use exponential mechanism to select a good vertex
> If C € (¢4 ball) and ||V2(0; x) |0 < 1, then set

J8Tlog1/6
Vey1 = argmaxyec — v | VL(8,) + Lap

ne

» Error grows with log(d), instead of poly(d)

21



N oisy Frank- Wolf e [Talwar, Thakurta, Zhang ‘15]

* Suppose C is a polytope (e.g. £ ball)

> C = ConvexHull({ve.rt.ice.S}) V;,1 is always a
» (How) can we do optimization over C vertex

while leaking little information?
* Recall Frank-Wolfe algorithm [FW’56] %
Vt+1 = argmaxvec( —VTVL(Ht))
Ory1 =0 + (Vi1 — Op)

°* [TTZI5] Use exponential mechanism to select a good vertex
> If C € (¢4 ball) and ||V2(0; x)|lo < 1, then set

8Tlogl/o
Vepq = Argmaxyec — v' (VL(Ht) + Lap <\/ 81/ )>

ne

* For LASSO, get exponential improvement over SGD

E(L(67) —L(6*)) =0 (‘08(‘0 + 10g(n/6)>

(en)2/3

22



The shape of C

° Bounds of [BST 4] apply to any C < (¥, ball)
» Assuming ¢ is 1-Lipschitz in £,norm

° [TTZ’I5] Better bounds when C € (£{ball) is a
polytope

» Assuming € has gradients with all entries in [—1,1]
* [TTZ’15,KJ'16] Replace Vd with Gaussian width

— T
w(C) = Ep-neon (rggglb ZI)

» Exact bounds involve other quantities

* [JT’14] When C = R%: dimension-independent bounds
for regularized GLM’s.

* Open problem: Characterize the effect of C.

23



Sequences of Optimization Problems [Ullman15]

* Suppose we have a sequence of optimization problems
>4, (4
> £,,C,
> ...

» We can solve each one differentially privately

* Naive accounting shows that privacy loss (¢, §)
accumulates as 'k for a sequence of k problems

* [U'l5, FGV’|6] Do better by re-using information

» View first-order algorithms as sequence of linear
measurements

» Learn model of the data set as you go
via private multiplicative weights

» Privacy loss poly(logk,log|U|,1/n)

24



DP and generalization error

Two methods to control generalization error

* Uniform convergence + ERM

» Show that with high probability over X,
|L(6;X) — R(O)| small for all 6

» Not always optimal
* Stability + ERM
» Argue that algorithm is “stable”

» Use general result that for a stable algorithm,
IL(0; X) — R(6)| is small [Devroye-Wagner 78,...]

» Every DP algorithm is stable
* DP algorithms have low generalization error [McSherry’08, BST’ 14]
* Used/strengthened in adaptive analysis context by [DFHPRR’15, ...]

> (gen. error) < (empirical error) + 26 + § fore < 1

25



Some things I didn’t talk about

* Online learning [DNPR’10,)KT"12,ST" | 3]
* Random projections as a tool for feasibility [K]| 6]

* Approaches for specific loss functions [Refs omitted]
» Median

» Linear regression
> “Robust” statistics
> Lasso

* Optimization in the local model [KLNRS’08, DJW’ 3]

* More!

26



Wrapping up

* State of the art: Algorithms and impossibility results
for differentially private convex ERM

» Tight bounds on (worst-case) empirical risk under general
conditions

» Role of geometry of constraints and functions not fully
understood
* Open: Tight bounds on
generalization error

* Strong connections between
computational efficiency
and privacy

* Transfer: Techniques developed
for convex optimization also
useful for nonconvex objectives

[ACGMMTZ'16] True minimizer \ Output
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