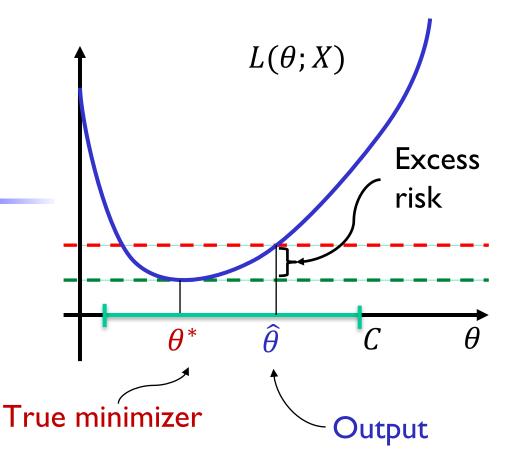
Convex Optimization with Differential Privacy

Adam Smith

Penn State

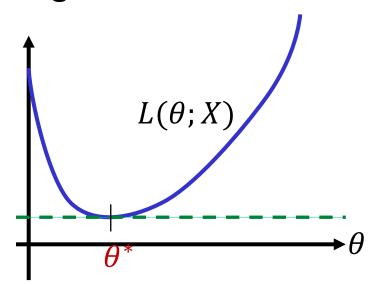
Bar-Ilan Winter School February 15, 2017

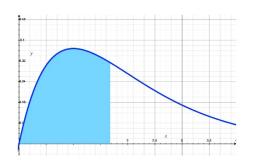


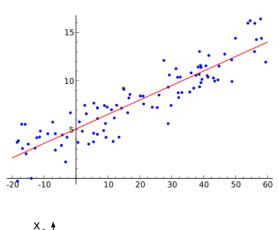
Some Common Computations in Statistics

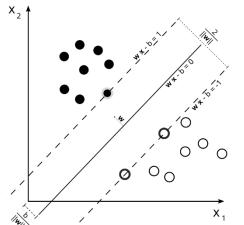
- Median
- OLS linear regression
- Logistic regression
- Support vector machine

Natural estimator is the result of a minimizing a convex loss function









Convex Empirical Risk Minimization

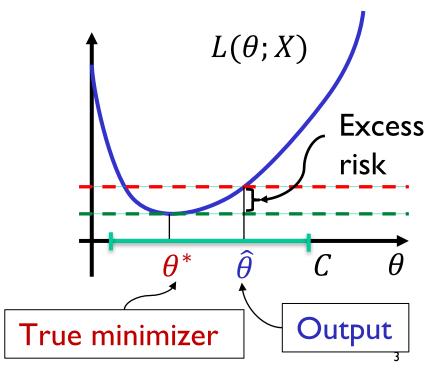
- Data set $X = (x_1, x_2, \dots, x_n) \in U^n$
- **Goal:** find a "parameter" $\theta \in C \subseteq \mathbb{R}^d$ which minimizes

$$L(\boldsymbol{\theta}; X) = \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{\theta}; x_i)$$

where

- $\ell(\cdot; x)$ is convex for all x
- C is convex

Goal: small excess risk



Convex Loss Functions

• Median (in \mathbb{R}^d)

$$\triangleright \ell(\theta; x) = \|\theta - x\|_2$$

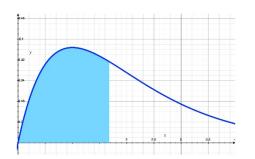
Linear regression

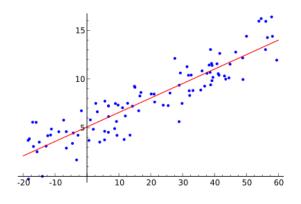
- \triangleright Data are pairs $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$
- $> L(\theta; X) = \frac{1}{n} \sum_{i} (y_i \langle x_i, \theta \rangle)^2$

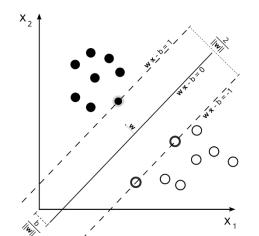
Logistic regression

- \triangleright Data are pairs $(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}$
- $\geq \ell(\theta; x) = \ln(1 + \exp(-y\langle \theta, x \rangle))$

Support vector machine

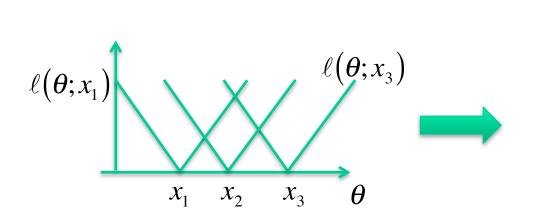


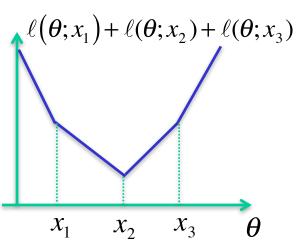




Why care about privacy in ERM?

Median: Minimizer can be a data point





 $\theta^* = x_2$ is the minimizer

 SVM: Dual form of solution encodes high-dimensional data points in the clear

 Reconstruction/membership attacks can use regression parameters

Convex Empirical Risk Minimization

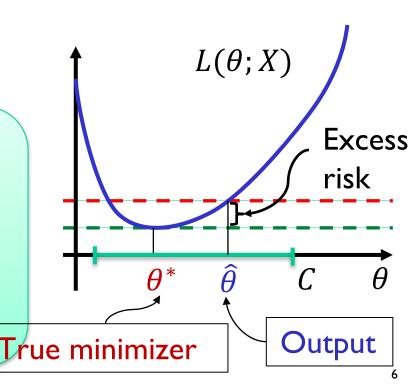
- Data set $X = (x_1, x_2, \dots, x_n) \in U^n$
- **Goal:** find a "parameter" $\theta \in C \subseteq \mathbb{R}^d$ which minimizes $L(\theta; X) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; x_i)$

where

- $\ell(\cdot; x)$ is convex for all x
- C is convex

Goals:

- [Chaudhuri, Monteleoni, Sarwate' II] $\hat{\theta} = A(x_1, ..., x_n)$ is (ϵ, δ) -differentially private
- Small expected excess risk



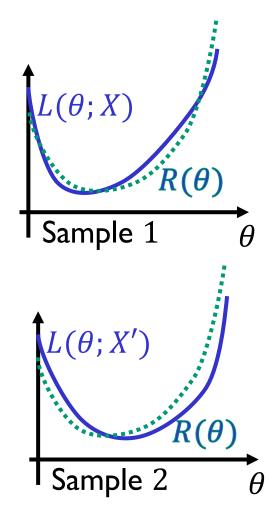
Population versus empirical risk

- Suppose $X = (X_1, ..., X_n) \sim_{i.i.d.} P$
- Empirical risk $L(\theta; X) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; x_i)$
- Population risk (generalization error)

$$R(\boldsymbol{\theta}) = \mathbb{E}_{X \sim_{i.i.d.P}} \left(L(\boldsymbol{\theta}; X) \right)$$
$$= \mathbb{E}_{X_i} \left(\ell(\boldsymbol{\theta}; X_i) \right)$$

Goals:

- [Chaudhuri, Monteleoni, Sarwate' II] $\hat{\theta} = A(x_1, ..., x_n)$ is (ϵ, δ) -differentially private
- Small expected empirical risk
- Small expected population risk



Population versus empirica

- Suppose $X = (X_1, \dots, X_n) \sim_{i.i.d.}$
- Empirical risk $L(\theta; X) = \frac{1}{n} \sum_{i=1}^{n} \ell$
- Population risk (generalization er

$$R(\boldsymbol{\theta}) = \mathbb{E}_{X \sim_{i.i.d.P}} \left(L(\boldsymbol{\theta}; X) \right)$$
$$= \mathbb{E}_{X_i} \left(\ell(\boldsymbol{\theta}; X_i) \right)$$

Goals:

[Chaudhuri, Monteleoni, Sarwate' I

$$\hat{\theta} = A(x_1, ..., x_n)$$
 is (ϵ, δ) -differentially private

- Small expected empirical risk
- Small expected population risk

Bounds depend on assumptions about ℓ , C, R, ...

Typical setting:

- ℓ is 1-Lipschitz
- $C \subseteq (\ell_2 \ ball)$

Difference between these is "generalization error"

Bounded by $\epsilon + \delta$ for DP algorithms!

Focus for now on empirical risk

Lipschitz assumption

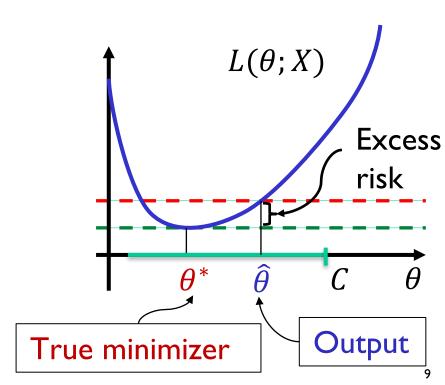
- Data set $X = (x_1, x_2, ..., x_n) \in U^n$
- **Goal:** find a "parameter" $\theta \in C \subseteq \mathbb{R}^d$ which minimizes $L(\theta; X) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; x_i)$

where

- $\ell(\cdot; x)$ is convex for all x
- C is convex

How can we bound each person's influence?

• Assume ℓ is "c-Lipschitz": $\|\nabla \ell(\theta; x)\|_2 \le c$ for all $x \in U$ and $\theta \in C$.



Bounds (n individuals, parameter $\theta \in C \subset \mathbb{R}^d$)

_	Privacy	Excess Risk	Technique
Lipschitz	$(\epsilon,0)$ -DP	$O\left(\frac{\frac{d}{n}\cdot\frac{1}{\epsilon}\right)$	Exponential sampling [McSherry Talwar, BST 14])
	(ϵ, δ) - DP	$O\left(\frac{\sqrt{d}}{n} \cdot \frac{\log\left(\frac{n}{\delta}\right)}{\epsilon}\right)$	Noisy stochastic gradient descent [Williams McSherry, Song Chaudhuri Sarwate, BST14]
Strongly convex	$(\epsilon, 0)$ -DP	$O\left(\frac{d^2}{n^2\Lambda}\cdot\frac{1}{\epsilon}\right)$	Lower bounds by
	(ϵ, δ) - DP	$O\left(\frac{d}{n^2\Lambda} \cdot \frac{\log^2\left(\frac{n}{\delta}\right)}{\epsilon}\right)$	reduction from attribute proportions [BUV '14]

Assumptions: $\|\nabla \ell(\cdot; x)\|_2 \le 1$ for all $x, \theta \in C$ diameter $(C) \le 1$

Some Known Algorithms

- Output perturbation [CM'08, RBST'10]
 - > Simple but generally suboptimal
- Objective perturbation [CMS'11]
 - Works well for smooth loss functions
- Exponential Sampling [MT'07,BST'14]
 - \triangleright Works well for $(\epsilon, 0)$ -differential privacy
 - > Can be tricky to implement
- Noisy SGD [SCS13, BST14, WLF15]
 - > Tight bounds for empirical risk minimization
 - Generalizes to mirror descent [TTZ15]
- Noisy Frank-Wolfe [TTZ'15]
 - > Exploits structure of constraint set
- Dimension reduction [RBST'10, KJ16,...]
 - Combined with other techniques

Output perturbation [CM'08,RBST'10]

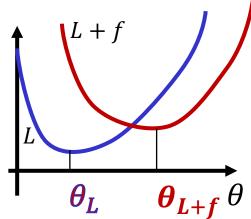
• $L: C \to \mathbb{R}$ is λ -strongly convex if for all $\theta, z \in C$:

$$f(z) \ge f(\theta) + \nabla L(\theta)^T (z - \theta) + \frac{\lambda}{2} ||z - \theta||_2^2$$

- When $L(\cdot; X)$ is strongly convex, can perturb minimizer $Output = (True\ minimizer) + (noise)$
 - > How much noise?
- Convex Stability Lemma: If L is λ -strongly convex and f is c-Lipschitz, then

$$\left\|\theta_{L+f}^* - \theta_L^*\right\|_2 \le \frac{2c}{\lambda}$$

where θ^* 's minimize L and L + f over C.



Proof of Strong Convexity Lemma

- $\Delta = \|\theta_1 \theta_0\|_2$
- By strong convexity: $L(\theta_1) L(\theta_0) \ge \frac{\lambda}{2} \Delta^2$

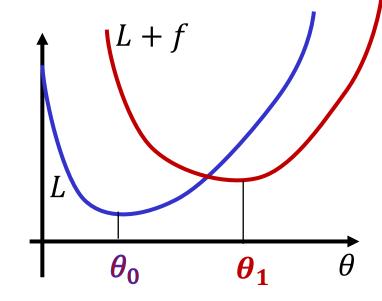
• But we also know $L(\theta_1) - L(\theta_0)$

$$\leq L(\theta_1) - L(\theta_0) + (L+f)(\theta_0) - (L+f)(\theta_1)$$

$$= f(\theta_0) - f(\theta_1)$$

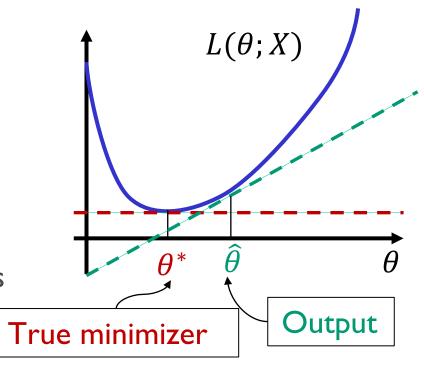
$$\leq c_f \Delta$$

• Thus $\frac{\lambda}{2}\Delta^2 \le c\Delta$ and so $\Delta \le 2c/\lambda$.



Objective Perturbation [Chaudhuri, Monteleoni, Sarwate'11]

- Pick a random vector $\vec{b} \sim \text{Normal}\left(0, \frac{c}{\epsilon^2 n^2}\right)$
- Return $\hat{\theta} = argmin_{\theta \in C} L(\theta; X) + \lambda ||\theta||_2^2 + \vec{b} \cdot \theta$
 - \triangleright Where $\lambda \approx 1/\epsilon n$
 - $> \nabla L(\hat{\theta}; X) + 2\lambda \hat{\theta} = \vec{b}$
- Privacy requires
 smooth loss function
 - Median is a counterexample to privacy for nonsmooth loss
 - Nonsmooth regularizer ok (e.g, LASSO)

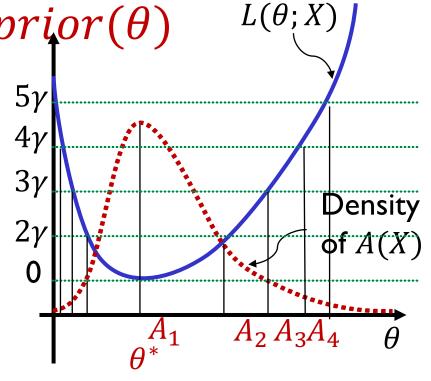


Exponential Sampling [McSherryTalwar'07, BST'14]

• Define a probability distribution on $\theta \in C$:

$$p(\theta) \propto e^{-\epsilon n \cdot L(\theta;X)} \cdot prior(\theta)$$

- On input X, A(X) outputs a sample $\hat{\theta}$ from p
 - \triangleright $(\epsilon, 0)$ -DP since no single data point has strong effect on $L(\theta; X)$
- Utility analysis via "peeling" argument
 - ► Use convexity to argue that $p(A_1) \approx 1$ when $\gamma \approx \frac{d}{\epsilon \cdot n}$
 - > Polynomial-time algorithm via careful MCMC argument



Noisy stochastic gradient descent

Run stochastic projected GD, using noisy queries to

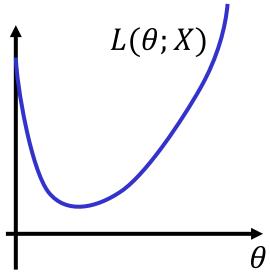
$$\nabla L(\theta; X) \approx \frac{1}{n} \sum_{i} \nabla \ell(\theta; x_i)$$

 \triangleright For each step t: pick random i, set

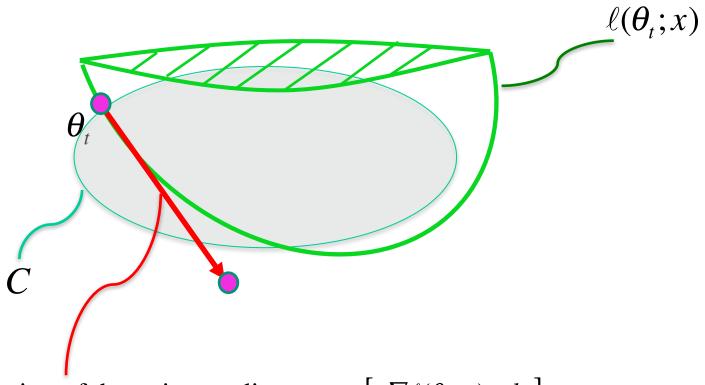
$$g_t = \nabla \ell(\theta_{t-1}; x_i) + (noise)$$

- > Updates: $\theta_t \leftarrow \operatorname{Proj}_{\mathcal{C}}\left(\theta_{t-1} \frac{1}{\sqrt{t}}g_t\right)$
- Variants evaluated empirically
 [Williams, McSherry '10, Song, Chaudhuri, Sarwate '13]

• Privacy: exploit amplification of ϵ via random sampling [Kasiviswanathan, Lee, Nissim, Raskhodnikova, S. '08]

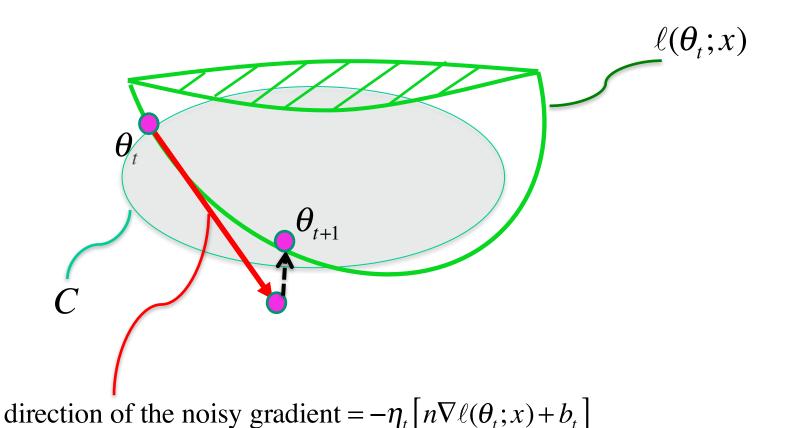


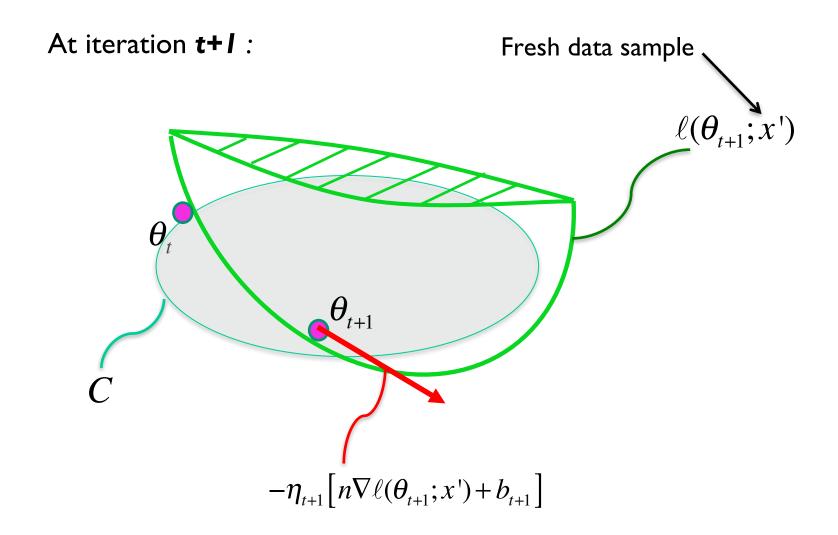
At iteration t:

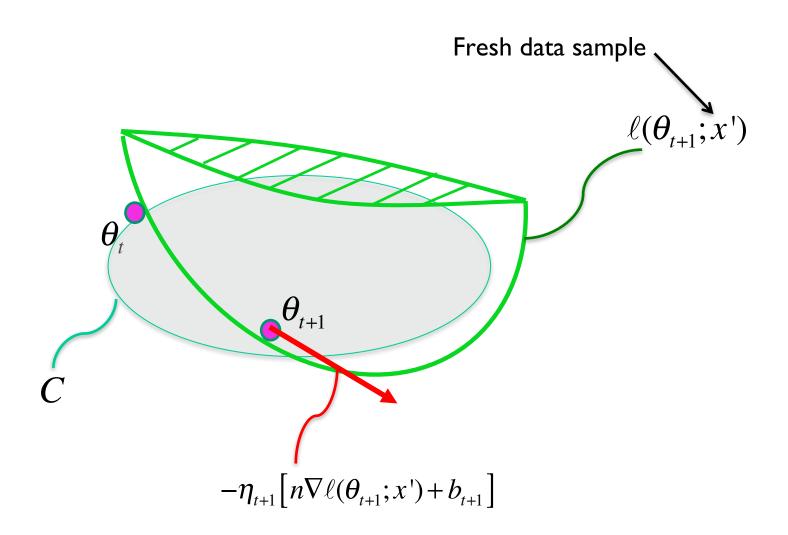


direction of the noisy gradient = $-\eta_t [n\nabla \ell(\theta_t; x) + b_t]$

At iteration t:







Repeat for n^2 iterations, then output θ_{n^2} .

Noisy Frank-Wolfe [Talwar, Thakurta, Zhang '15]

- Suppose C is a polytope (e.g. ℓ_1 ball)
 - $\succ C = ConvexHull(\{vertices\})$
 - ➤ (How) can we do optimization over *C* while leaking little information?

Recall Frank-Wolfe algorithm [FW'56]

$$v_{t+1} = argmax_{v \in C} \left(-v^T \nabla L(\theta_t) \right)$$

$$\theta_{t+1} = \theta_t + \eta(v_{t+1} - \theta_t)$$

- [TTZ15] Use exponential mechanism to select a good vertex
 - ightharpoonup If $C\subseteq (\ell_1\ ball)$ and $\|\nabla\ell(\theta;x)\|_{\infty}\leq 1$, then set

$$v_{t+1} = argmax_{v \in C} - v^T \left(\nabla L(\theta_t) + Lap\left(\frac{\sqrt{8 T \log 1/\delta}}{n \epsilon} \right) \right)$$

 \triangleright Error grows with $\log(d)$, instead of poly(d)

Noisy Frank-Wolfe [Talwar, Thakurta, Zhang '15]

- Suppose C is a polytope (e.g. ℓ_1 ball)
 - $\succ C = ConvexHull(\{vertices\})$
 - ➤ (How) can we do optimization over *C* while leaking little information?

Recall Frank-Wolfe algorithm [FW'56]

$$\begin{aligned} v_{t+1} &= argmax_{v \in C} \left(-v^T \nabla L(\theta_t) \right) \\ \theta_{t+1} &= \theta_t + \eta (v_{t+1} - \theta_t) \end{aligned}$$

- [TTZ15] Use exponential mechanism to select a good vertex
 - ightharpoonup If $C \subseteq (\ell_1 \ ball)$ and $\|\nabla \ell(\theta; x)\|_{\infty} \leq 1$, then set

$$v_{t+1} = argmax_{v \in C} - v^T \left(\nabla L(\theta_t) + Lap\left(\frac{\sqrt{8 T \log 1/\delta}}{n \epsilon} \right) \right)$$

For LASSO, get exponential improvement over SGD

$$\mathbb{E}\big(L(\boldsymbol{\theta}_T) - L(\boldsymbol{\theta}^*)\big) = O\left(\frac{\log(\boldsymbol{d}) + \log(n/\delta)}{(\epsilon n)^{2/3}}\right)$$

The shape of C

- Bounds of [BST'14] apply to any $C \subseteq (\ell_2 \ ball)$
 - \triangleright Assuming ℓ is 1-Lipschitz in ℓ_2 norm
- [TTZ'15] Better bounds when $C \subseteq (\ell_1 ball)$ is a polytope
 - \triangleright Assuming ℓ has gradients with all entries in [-1,1]
- [TTZ'15,KJ'16] Replace \sqrt{d} with Gaussian width

$$w(C) = \mathbb{E}_{b \sim N(0,\mathbb{I})} \left(\max_{z \in C} |b^T z| \right)$$

- > Exact bounds involve other quantities
- [JT'14] When $C = \mathbb{R}^d$: dimension-independent bounds for regularized GLM's.
- Open problem: Characterize the effect of C.

Sequences of Optimization Problems [Ullman15]

Suppose we have a sequence of optimization problems

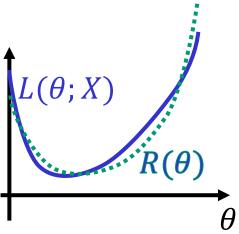
- $\geq \ell_1, C_1$
- $\geq \ell_2, C_2$
- > ...
- > We can solve each one differentially privately
- Naïve accounting shows that privacy loss (ϵ, δ) accumulates as \sqrt{k} for a sequence of k problems
- [U'15, FGV'16] Do better by re-using information
 - View first-order algorithms as sequence of linear measurements
 - Learn model of the data set as you go via private multiplicative weights
 - \triangleright Privacy loss $poly(\log k, \log |U|, 1/n)$

DP and generalization error

Two methods to control generalization error

- Uniform convergence + ERM
 - Show that with high probability over X, $|L(\theta; X) R(\theta)|$ small for all θ
 - ➤ Not always optimal
- Stability + ERM
 - > Argue that algorithm is "stable"

- > Every DP algorithm is stable
 - DP algorithms have low generalization error [McSherry'08, BST'14]
 - Used/strengthened in adaptive analysis context by [DFHPRR'15, ...]
- \triangleright (gen. error) \leq (empirical error) + $2\epsilon + \delta$ for $\epsilon \leq 1$

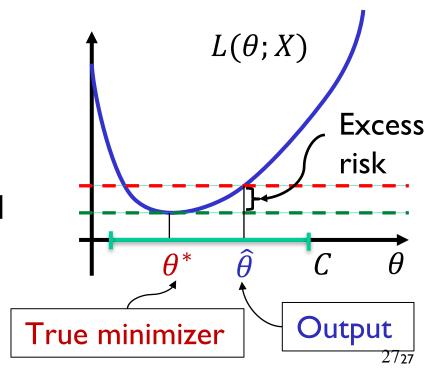


Some things I didn't talk about

- Online learning [DNPR'10,JKT'12,ST'13]
- Random projections as a tool for feasibility [KJ'16]
- Approaches for specific loss functions [Refs omitted]
 - ➤ Median
 - > Linear regression
 - "Robust" statistics
 - > Lasso
- Optimization in the local model [KLNRS'08, DJW'13]
- More!

Wrapping up

- State of the art: Algorithms and impossibility results for differentially private convex ERM
 - Tight bounds on (worst-case) empirical risk under general conditions
 - Role of geometry of constraints and functions not fully understood
- Open: Tight bounds on generalization error
- Strong connections between computational efficiency and privacy
- Transfer: Techniques developed for convex optimization also useful for nonconvex objectives [ACGMMTZ'16]



References

- [ACGMMTZ'16] M. Abadi, A. Chu, I. Goodfellow, B. McMahan, I. Mironov, K. Talwar, L. Zhang. Deep Learning with Differential Privacy. CCS 2016.
- [BST'14] R. Bassily, A. Smith, A. Thakurta, FOCS 2014.
- [CM'08] K. Chaudhuri, C. Monteleoni. NIPS 2008
- [CMS'11] K. Chaudhuri, C. Monteleoni, A. Sarwate, JMLR 2011
- [DJW] J. Duchi, M. Jordan, M. Wainwright. FOCS 2013
- [DFHPRR'15] Dwork, Feldman, Hardt, Pitassi Reingold, Roth. STOC 2015.
- [DNPR'10] C. Dwork, M. Naor, T. Pitassi, G. Rothblum. Privacy under continual Observation, STOC 2010
- [FGV'16] Feldman, Guzman, Vempala. arXiv:1512.09170
- [JKT'12] P. Jain, P. Kothari, A. Thakurta. Differentially Private Online Learning. COLT 2012.
- [JT'14] P. Jain, A. Thakurta. ICML 2014
- [KJ '16] S. Kasiviswanathan, H. Jin. Efficient Private Empirical Risk Minimization for High-dimensional Learning. NIPS 2015
- [KLNRS] S. Kasiviswanathan,
- [KST'13] D. Kifer, A. Smith, A. Thakurta. Private Convex Optimization for Empirical Risk Minimization with Applications to High-dimensional Regression. COLT 2012
- [McSherry'08] Frank McSherry. Unpublished. Later appeared as a blog post. https://windowsontheory.org/2014/02/04/differential-privacy-for-measure-concentration/
- [RBHT'10] Rubinstein, Bickell, Huang, Taft, J. Privacy and Confidentiality 2011
- [ST'13] A. Smith, A. Thakurta. (Nearly) Optimal Algorithms for Private Online Learning in Full-information and Bandit Settings. NIPS 2013
- [Ullman'15] J. Ullman, PODS 2015.
- [WM'10] O. Williams, F. McSherry. Probabilistic Inference and Differential Privacy. NIPS 2010
- [WLF'15] Wang, Lei, Feinberg. arXiv:1502.07645.