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Some Common Computations in Statistics
• Median
• OLS linear regression 
• Logistic regression
• Support vector machine
Natural estimator is the result
of a minimizing a convex loss function
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Convex Empirical Risk Minimization
• Data set 𝑋	 = 𝑥-, 𝑥/, … . , 𝑥2 ∈ 𝑈𝒏

• Goal: find a “parameter” 𝜃 ∈ 𝐶 ⊆ ℝ𝒅
which minimizes

𝐿 𝜃; 𝑋 =
1
𝑛;ℓ(𝜃; 𝑥=)

2

=>-
where 
• ℓ(⋅; 𝑥) is convex for all 𝑥
• 𝐶 is convex

Goal: small excess risk
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Convex Loss Functions
• Median (in ℝA)

Ø ℓ 𝜃; 𝑥 = 	 𝜃 − 𝑥 /

Ø 𝐿 𝜃; 𝑋 = -
2
∑ 𝜃 − 𝑥= /
�
=

• Linear regression 
Ø Data are pairs 𝑥=, 𝑦= ∈ ℝA×ℝ

Ø 𝐿 𝜃; 𝑋 = -
2
∑ 𝑦= − 𝑥=, 𝜃 /�
=

• Logistic regression
Ø Data are pairs 𝑥=, 𝑦= ∈ ℝA×{−1,1}
Ø ℓ 𝜃; 𝑥 = ln 1 + exp −𝑦 𝜃, 𝑥

• Support vector machine

Ø 𝐿 𝜃; 𝑋 = -
2
∑ ℎ 𝑦= 𝑥=, 𝜃 + 𝜆 𝜃 /

/�
=

where ℎ 𝑧 = 1 − 𝑧 R
4Image: steve-cronin.blogspot.com



Why care about privacy in ERM?
• Median: Minimizer can be a data point 

• SVM: Dual form of solution encodes high-dimensional 
data points in the clear

• Reconstruction/membership attacks 
can use regression parameters

 ℓ θ;x1( )  ℓ θ;x3( )

x1 x3 θx2

 ℓ θ;x1( ) + ℓ(θ;x2 )+ ℓ(θ;x3)

x1 x3 θ

θ * = x2  is the minimizer

x2
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Convex Empirical Risk Minimization
• Data set 𝑋	 = 𝑥-, 𝑥/, … . , 𝑥2 ∈ 𝑈𝒏

• Goal: find a “parameter” 𝜃 ∈ 𝐶 ⊆ ℝ𝒅

which minimizes 𝐿 𝜃; 𝑋 = -
2
∑ ℓ(𝜃; 𝑥=)2
=>-

where 
• ℓ(⋅; 𝑥) is convex for all 𝑥
• 𝐶 is convex
Goals: 
• [Chaudhuri,Monteleoni,Sarwate’11]
𝜃S = 𝐴(𝑥-, … , 𝑥2) is
𝜖, 𝛿 -differentially private

• Small expected excess risk
6
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Population versus empirical risk
• Suppose 𝑋 = 𝑋-,… , 𝑋2 ∼=.=.A. 𝑃

• Empirical risk 𝐿 𝜃; 𝑋 = -
2
∑ ℓ(𝜃; 𝑥=)2
=>-

• Population risk (generalization error) 
𝑅 𝜃 	= 𝔼[∼\.\.].^ L 𝜃; 𝑋

= 𝔼[\ ℓ 𝜃; 𝑋=
Goals: 
• [Chaudhuri,Monteleoni,Sarwate’11]
𝜃S = 𝐴(𝑥-, … , 𝑥2) is
𝜖, 𝛿 -differentially private

• Small expected empirical risk
• Small expected population risk
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Bounds depend on 
assumptions about 
ℓ, 𝐶, 𝑅,…

Typical setting:
• ℓ is 1-Lipschitz 
• 𝐶 ⊆ (ℓ/	𝑏𝑎𝑙𝑙)

Focus for now on 
empirical risk

Difference between these 
is “generalization error”

Bounded by 𝜖 + 𝛿 for DP 
algorithms!



Lipschitz assumption
• Data set 𝑋	 = 𝑥-, 𝑥/, … . , 𝑥2 ∈ 𝑈𝒏

• Goal: find a “parameter” 𝜃 ∈ 𝐶 ⊆ ℝ𝒅

which minimizes 𝐿 𝜃; 𝑋 = -
2
∑ ℓ(𝜃; 𝑥=)2
=>-

where 
• ℓ(⋅; 𝑥) is convex for all 𝑥
• 𝐶 is convex
How can we bound 
each person’s influence?
• Assume ℓ is “𝑐-Lipschitz”:

𝛻ℓ 𝜃; 𝑥 / ≤ 𝑐
for all 𝑥 ∈ 𝑈 and 𝜃 ∈ 𝐶.
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Bounds (𝑛 individuals, parameter 𝜃 ∈ 𝐶 ⊂ ℝA)
Privacy Excess Risk Technique

(𝜖, 0)-
DP 𝑂

𝑑
𝑛 ⋅

1
𝜖

Exponential sampling
[McSherry Talwar, BST14])

(𝜖, 𝛿)-
DP 𝑂

𝑑�

𝑛 ⋅
log 𝑛

𝛿
𝜖

Noisy stochastic gradient descent
[Williams McSherry, Song Chaudhuri  
Sarwate, BST14 ]

(𝜖, 0)-
DP 𝑂

𝑑/

𝑛/Λ ⋅
1
𝜖

Localization (new technique)

(𝜖, 𝛿)-
DP 𝑂

𝑑
𝑛/Λ ⋅

log/ 𝑛
𝛿

𝜖

Noisy SGD (or localization)
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Assumptions: 𝛻ℓ ⋅; 𝑥 / ≤ 1 for all 𝑥, 𝜃 ∈ 𝐶
diameter 𝐶 ≤ 1

Lower bounds by 
reduction from 

attribute proportions
[BUV ‘14]



Some Known Algorithms
• Output perturbation [CM’08, RBST’10]

Ø Simple but generally suboptimal

• Objective perturbation [CMS’11]
Ø Works well for smooth loss functions

• Exponential Sampling [MT’07,BST’14]
Ø Works well for (𝜖, 0)-differential privacy
Ø Can be tricky to implement

• Noisy SGD [SCS13, BST14, WLF15]
Ø Tight bounds for empirical risk minimization
Ø Generalizes to mirror descent [TTZ15]

• Noisy Frank-Wolfe [TTZ’15]
Ø Exploits structure of constraint set

• Dimension reduction [RBST’10, KJ16,…]
Ø Combined with other techniques
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Output perturbation [CM’08,RBST’10]
• 𝐿: 𝐶 → ℝ is 𝜆-strongly convex if for all 𝜃, 𝑧 ∈ 𝐶:

𝑓 𝑧 ≥ 𝑓 𝜃 + 𝛻𝐿 𝜃 y 𝑧 − 𝜃 +
𝜆
2 𝑧 − 𝜃 /

/

• When 𝐿(⋅; 𝑋) is strongly convex, can perturb 
minimizer 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑇𝑟𝑢𝑒	𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 + (𝑛𝑜𝑖𝑠𝑒)
ØHow much noise? 

• Convex Stability Lemma: If 𝐿 is 𝜆-strongly convex 
and 𝑓 is 𝑐-Lipschitz, then 

𝜃�R�∗ − 𝜃�∗ /
≤
2𝑐
𝜆

where 𝜃∗’s minimize 𝐿 and 𝐿 + 𝑓 over 𝐶.
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Proof of Strong Convexity Lemma
• Δ = 𝜃- − 𝜃� /

• By strong convexity: 𝐿 𝜃- − 𝐿 𝜃� ≥ �
/
Δ/

• But we also know 𝐿 𝜃- − 𝐿 𝜃�
≤ 𝐿 𝜃- − 𝐿 𝜃� + 𝐿 + 𝑓 𝜃� − 𝐿 + 𝑓 𝜃-
= 𝑓 𝜃� − 𝑓 𝜃-
≤ 𝑐�Δ

• Thus  �
/
Δ/ ≤ 𝑐Δ

and so Δ ≤ 2𝑐/𝜆.
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Objective Perturbation [Chaudhuri,Monteleoni,Sarwate’11]

• Pick a random vector 𝑏~Normal 0, �
��2�

• Return 𝜃S = 𝑎𝑟𝑔𝑚𝑖𝑛�∈�	𝐿 𝜃; 𝑋 + 𝜆 𝜃 /
/ + 𝑏 ⋅ 𝜃	

ØWhere 𝜆 ≈ 1/𝜖𝑛

Ø 𝛻𝐿 𝜃); 𝑋 + 2𝜆𝜃) = 𝑏

• Privacy requires 
smooth loss function
ØMedian is a counterexample 

to privacy for nonsmooth loss
ØNonsmooth regularizer ok

(e.g, LASSO)
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Exponential Sampling [McSherryTalwar’07, BST’14]

• Define a probability distribution on 𝜃 ∈ 𝐶:

𝑝 𝜃 ∝ 𝑒��2⋅� �;[ ⋅ 𝑝𝑟𝑖𝑜𝑟(𝜃)
• On input 𝑋, 𝐴(𝑋) outputs 

a sample 𝜃S from 𝑝
Ø 𝜖, 0 -DP since 

no single data point has 
strong effect on 𝐿 𝜃; 𝑋

• Utility analysis via “peeling” 
argument
ØUse convexity to argue that 
𝑝(𝐴-) ≈ 1 when 𝛾 ≈ A

�⋅2
ØPolynomial-time algorithm via careful MCMC argument
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Noisy stochastic gradient descent
• Run stochastic projected GD, using noisy queries to 

𝛻𝐿 𝜃; 𝑋 ≈
1
𝑛;𝛻ℓ 𝜃; 𝑥=

�

=
Ø For each step 𝑡: pick random 𝑖, set 

𝑔� = 𝛻ℓ 𝜃��-; 𝑥= + (𝑛𝑜𝑖𝑠𝑒)
ØUpdates: 𝜃� ← Proj� 𝜃��- −

-
��
𝑔�

• Variants evaluated empirically
[Williams, McSherry ’10, Song, Chaudhuri, Sarwate ‘13]

• Improvements and analysis 
[Bassily, S. , Thakurta’14, 
Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang ‘16]

• Privacy: exploit amplification of 𝜖 via random sampling 
[Kasiviswanathan, Lee, Nissim, Raskhodnikova, S. ‘08]
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Noisy stochastic gradient descent algorithm

θt

C

 ℓ(θt ;x)

 direction of the noisy gradient = −ηt n∇ℓ(θt ;x)+ bt[ ]

At iteration t :



Noisy stochastic gradient descent algorithm

θt

C

 ℓ(θt ;x)

 direction of the noisy gradient = −ηt n∇ℓ(θt ;x)+ bt[ ]

θt+1

At iteration t :



Noisy stochastic gradient descent algorithm

θt

C

 ℓ(θt+1;x ')

 −ηt+1 n∇ℓ(θt+1;x ')+ bt+1[ ]

θt+1

Fresh data sampleAt iteration t+1 :



Noisy stochastic gradient descent algorithm

θt

C

 ℓ(θt+1;x ')

 −ηt+1 n∇ℓ(θt+1;x ')+ bt+1[ ]

θt+1

Fresh data sample

Repeat for       iterations, then output        .θ
n2n2



Noisy Frank-Wolfe [Talwar, Thakurta, Zhang ‘15]
• Suppose 𝐶 is a polytope (e.g. ℓ- ball)

Ø 𝐶 = 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙({𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠})
Ø (How) can we do optimization over 𝐶

while leaking little information? 

• Recall Frank-Wolfe algorithm [FW’56]
𝑣�R- = 𝑎𝑟𝑔𝑚𝑎𝑥¤∈� 	−𝑣y𝛻𝐿 𝜃�
𝜃�R- = 𝜃� + 𝜂(𝑣�R- − 𝜃�)

• [TTZ15] Use exponential mechanism to select a good vertex
Ø If 𝐶 ⊆ ℓ-	𝑏𝑎𝑙𝑙 and 𝛻ℓ(𝜃; 𝑥) ¦ ≤ 1, then set 

𝑣�R- = 𝑎𝑟𝑔𝑚𝑎𝑥¤∈� 	− 𝑣y 𝛻𝐿 𝜃� + 𝐿𝑎𝑝
8	𝑇 log 1/𝛿		�

𝑛	𝜖

Ø Error grows with log	(𝑑), instead of 𝑝𝑜𝑙𝑦(𝑑)
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Noisy Frank-Wolfe [Talwar, Thakurta, Zhang ‘15]
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Ø (How) can we do optimization over 𝐶

while leaking little information? 

• Recall Frank-Wolfe algorithm [FW’56]
𝑣�R- = 𝑎𝑟𝑔𝑚𝑎𝑥¤∈� 	−𝑣y𝛻𝐿 𝜃�
𝜃�R- = 𝜃� + 𝜂(𝑣�R- − 𝜃�)

• [TTZ15] Use exponential mechanism to select a good vertex
Ø If 𝐶 ⊆ ℓ-	𝑏𝑎𝑙𝑙 and 𝛻ℓ(𝜃; 𝑥) ¦ ≤ 1, then set 

𝑣�R- = 𝑎𝑟𝑔𝑚𝑎𝑥¤∈� 	− 𝑣y 𝛻𝐿 𝜃� + 𝐿𝑎𝑝
8	𝑇 log 1/𝛿		�

𝑛	𝜖

• For LASSO, get exponential improvement over SGD 

𝔼 𝑳 𝜽𝑻 − 𝑳 𝜽∗ = 𝑶
𝐥𝐨𝐠 𝒅 + 𝐥𝐨𝐠 𝒏/𝜹

𝝐𝒏 𝟐/𝟑
22
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The shape of 𝑪
• Bounds of [BST’14] apply to any 𝐶 ⊆ (ℓ/	𝑏𝑎𝑙𝑙)

ØAssuming ℓ is 1-Lipschitz in ℓ/norm

• [TTZ’15] Better bounds when 𝐶 ⊆ (ℓ-𝑏𝑎𝑙𝑙) is a 
polytope
ØAssuming ℓ has gradients with all entries in [−1,1]

• [TTZ’15,KJ’16] Replace 𝑑� with Gaussian width
𝑤 𝐶 = 𝔼·~¸ �,𝕀 max

º∈�
𝑏y𝑧

ØExact bounds involve other quantities

• [JT’14] When 𝐶 = ℝA : dimension-independent bounds 
for regularized GLM’s.

• Open problem: Characterize the effect of 𝐶.

23



Sequences of Optimization Problems [Ullman15]
• Suppose we have a sequence of optimization problems

Øℓ-, 𝐶-
Øℓ/, 𝐶/
Ø…
ØWe can solve each one differentially privately

• Naïve accounting shows that privacy loss (𝜖, 𝛿)
accumulates as 𝑘� for a sequence of 𝑘 problems

• [U’15, FGV’16] Do better by re-using information
ØView first-order algorithms as sequence of linear 

measurements
ØLearn model of the data set as you go 

via private multiplicative weights
ØPrivacy loss 𝑝𝑜𝑙𝑦(log 𝑘 , log 𝑈 , 1/𝑛)
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DP and generalization error
Two methods to control generalization error 
• Uniform convergence + ERM

Ø Show that with high probability over X, 
𝐿 𝜃; 𝑋 − 𝑅 𝜃 small for all 𝜃

ØNot always optimal

• Stability + ERM
ØArgue that algorithm is “stable”
ØUse general result that for a stable algorithm,
𝐿 𝜃); 𝑋 − 𝑅 𝜃 is small [Devroye-Wagner 78,…]

ØEvery DP algorithm is stable
• DP algorithms have low generalization error [McSherry’08, BST’14]
• Used/strengthened in adaptive analysis context by [DFHPRR’15, ...]

Ø (gen. error) ≤ (empirical error) + 2𝜖 + 𝛿 for 𝜖 ≤ 1
25
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Some things I didn’t talk about
• Online learning [DNPR’10,JKT’12,ST’13]
• Random projections as a tool for feasibility [KJ’16]
• Approaches for specific loss functions [Refs omitted]

ØMedian
ØLinear regression
Ø “Robust” statistics
ØLasso

• Optimization in the local model [KLNRS’08, DJW’13]
• More!
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Wrapping up
• State of the art: Algorithms and impossibility results 

for differentially private convex ERM
Ø Tight bounds on (worst-case) empirical risk under general 

conditions
Ø Role of geometry of constraints and functions not fully 

understood 

• Open: Tight bounds on
generalization error

• Strong connections between 
computational efficiency 
and privacy

• Transfer: Techniques developed 
for convex optimization also 
useful for nonconvex objectives
[ACGMMTZ’16]
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