2nd Bar-Ilan Winter School on Cryptography Lattice-Based Cryptography and Applications: Day 2 Assignments

- 1. Describe an algorithm that given a basis $b_1, \ldots, b_n \in \mathbb{Q}^n$ of a lattice and a point $t \in \mathbb{Q}^n$, finds a point $x \in \mathcal{L}(b_1, \ldots, b_n)$ such that $||x t||^2 \le \frac{1}{4}(||\tilde{b}_1||^2 + \cdots + ||\tilde{b}_n||^2)$.
- 2. Show that an LLL reduced basis b_1, \ldots, b_n of a lattice Λ satisfies the following properties.
 - (a) $||b_1|| \le 2^{(n-1)/4} (\det \Lambda)^{1/n}$
 - (b) For any $1 \le i \le n$, $||b_i|| \le 2^{(i-1)/2} ||\tilde{b_i}||$
 - (c) $\|\|b_i\| \le 2^{n(n-1)/4} \det \Lambda$

Remark: the quantity $\Pi \|b_i\| / \det \Lambda$ is known as the *orthogonality defect* of the basis; to see why, notice that it is 1 iff the basis is orthogonal; it can never be less than one by Hadamard's inequality.

- (d) For any $1 \le i \le j \le n$, $||b_i|| \le 2^{(j-1)/2} ||\tilde{b_j}||$
- (e) For any $1 \le i \le n$, $\lambda_i(\Lambda) \le 2^{(i-1)/2} \|\tilde{b}_i\|$
- (f) For any $1 \le i \le n$, $\lambda_i(\Lambda) \ge 2^{-(n-1)/2} ||b_i||$
- (g) For $1 \le i \le n$ consider $H = \text{span}\{b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n\}$. Show that $2^{-n(n-1)/4} ||b_i|| \le \text{dist}(H, b_i) \le ||b_i||$. Hint: use (c)
- 3. Show an algorithm that solves SVP exactly in time $2^{O(n^2)} \cdot \text{poly}(D)$ where n is the rank of the lattice and D is the input size. Hint: show that if we represent the shortest vector in an LLL-reduced basis, none of the coefficients can be larger than 2^{cn} for some c.
- 4. (a) Let $\mathbf{S} \in \mathbb{Z}^{m \times m}$ be a basis for $\Lambda^{\perp}(\mathbf{A})$ (i.e., $\mathbf{AS} = \mathbf{0}$ and \mathbf{S} is nonsingular over the integers), and suppose that the columns of \mathbf{A} generate all of \mathbb{Z}_q^n (i.e., $\mathbf{A} \cdot \mathbb{Z}^m = \mathbb{Z}_q^n$). Let $\mathbf{A}' = [\mathbf{A}|\mathbf{A}_1]$ be an arbitrary extension of \mathbf{A} . Show how, given \mathbf{S} and \mathbf{A}' , to efficiently compute a basis \mathbf{T} of $\Lambda^{\perp}(\mathbf{A}')$ so that $\max \|\tilde{\mathbf{t}}_i\| = \max \|\tilde{\mathbf{s}}_i\|$ (where \mathbf{s}_i , \mathbf{t}_i are the ith columns of \mathbf{S} , \mathbf{T} respectively, and the tilde notation $\tilde{\cdot}$ denotes the Gram-Schmidt orthogonalization).
 - (b) In the second trapdoors talk we defined ${\bf R}$ to be a (strong) trapdoor for $\Lambda^{\perp}({\bf A})$ if

$$\mathbf{A}\left[\begin{smallmatrix} \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \right] = \mathbf{G},$$

the special gadget matrix. Prove that the order of the rows in $\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ is immaterial, i.e., that we can still efficiently invert LWE and sample Gaussian-distributed SIS preimages for \mathbf{A} even if the rows of $\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ are arbitrarily permuted. *Hint:* show that $\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ is a trapdoor (in the above sense) for some matrix \mathbf{A}' whose columns are a permutation of the columns of \mathbf{A} . Then show why inverting LWE and sampling SIS preimages are equivalent for \mathbf{A} and \mathbf{A}' .

(c) Using the previous part, give a *very* simple and efficient algorithm for extending a trapdoor \mathbf{R} for \mathbf{A} into a trapdoor \mathbf{R}' for any extended matrix $\mathbf{A}' = [\mathbf{A}|\mathbf{A}_1]$, so that $s_1(\mathbf{R}') = s_1(\mathbf{R})$. (Recall that $s_1(\mathbf{R}) = \max_{\mathbf{u} \neq \mathbf{0}} ||\mathbf{R}\mathbf{u}|| / ||\mathbf{u}||$ is the spectral norm of \mathbf{R} .)