## 2nd Bar-Ilan Winter School on Cryptography Lattice-Based Cryptography and Applications: Day 1 Assignments

- 1. Consider the lattice  $\mathcal{L}(b_1, b_2, b_3)$  where  $b_1 = (2, 0, 0)^T$ ,  $b_2 = (0, 2, 0)^T$ , and  $b_3 = (1, 1, 1)^T$ . Find the successive minima in the  $\ell_1$  norm and in the  $\ell_{\infty}$  norm. What are the vectors that achieve these minima?
- 2. Let  $\Lambda = \mathcal{L}(b_1, \dots, b_n)$  be some rank n lattice and let  $\tilde{b}_1, \dots, \tilde{b}_n$  be the Gram-Schmidt orthogonalization of  $b_1, \dots, b_n$ .
  - (a) Show that it is *not* true in general that  $\lambda_n(\Lambda) \geq \max_i \|\tilde{b}_i\|$ .
  - **b** Show that for any j = 1, ..., n,  $\lambda_j(\Lambda) \ge \min_{i=j,...,n} \|\tilde{b}_i\|$ .
- 3. (a) Show that any unimodular matrix  $U \in \mathbb{Z}^{n \times n}$  can be transformed to the identity matrix by the following three basic column operations:  $a_i \leftrightarrow a_j$ ,  $a_i \leftarrow -a_i$ , and  $a_i \leftarrow a_i + ka_j$  for some integer k. Hint: Euclid's algorithm
  - **b** Show that for any unimodular matrix  $U \in \mathbb{Z}^{n \times n}$ ,  $U^{-1}$  is also a unimodular matrix in  $\mathbb{Z}^{n \times n}$ .
  - Show that two lattice bases  $B_1, B_2 \in \mathbb{R}^{m \times n}$  are equivalent (i.e.,  $\mathcal{L}(B_1) = \mathcal{L}(B_2)$ ) if and only if one can be obtained from the other by a sequence of three basic column operations:  $b_i \leftrightarrow b_j$ ,  $b_i \leftarrow -b_i$ , and  $b_i \leftarrow b_i + kb_j$  for some integer k.
  - (d) Describe a procedure that given any set of vectors  $b_1, \ldots, b_n \in \mathbb{Z}^m$ , finds a basis for the lattice  $\mathcal{L}(b_1, \ldots, b_n)$  (notice that these vectors are not necessarily linearly independent and that in particular, n might be greater than m). There is no need to analyze the running time. Deduce that any (finite) set of vectors in  $\mathbb{Z}^m$  spans a lattice.
  - (e) Show that any finite set of vectors in  $\mathbb{Q}^m$  spans a lattice. Show that this is not necessarily true for vectors in  $\mathbb{R}^m$ .
- 4. Find an analogue of Minkowski's First Theorem for the  $\ell_1$  and  $\ell_\infty$  norms.
- 5. Give an efficient algorithm for each of the following tasks.
  - (a) Given two bases  $B_1, B_2 \in \mathbb{Z}^{m \times n}$ , check if  $\mathcal{L}(B_1) \subseteq \mathcal{L}(B_2)$ , i.e.,  $\mathcal{L}(B_1)$  is a sublattice of  $\mathcal{L}(B_2)$ .
  - (b) Given a basis B, check if  $\mathcal{L}(B)$  is a *cyclic* lattice, where a lattice  $\Lambda$  is called cyclic if for every lattice vector  $x \in \Lambda$ , any cyclic rotation of the coordinates of x is also in  $\Lambda$ . For example, the lattice  $\mathcal{L}(b_1,b_2,b_3)$  where  $b_1=(2,0,0)^T$ ,  $b_2=(0,2,0)^T$ , and  $b_3=(1,1,1)^T$  is cyclic.
- 6. Show that for any lattice  $\Lambda$  that is contained in  $\mathbb{Z}^n$ ,  $\det(\Lambda) \cdot \mathbb{Z}^n \subseteq \Lambda$ .
- 7. (a) For all large enough  $n \in \mathbb{Z}$ , find an n-dimensional full-rank lattice in which the successive minima  $v_1, \ldots, v_n$  (in the  $\ell_2$  norm) do not form a basis of the lattice. Hint: Cesium Chloride
  - (b) Show that for any 2-dimensional full-rank lattice  $\Lambda$ , the successive minima  $v_1, v_2$  do form a basis of  $\Lambda$ . Hint: consider the lattice obtained by projecting  $\Lambda$  on the one-dimensional subspace  $\{v_1\}^{\perp}$  and show that the projection of  $v_2$  must be a basis of this lattice
  - (c) Among all 2-dimensional full-rank lattices with  $\lambda_1(\Lambda)=1$ , which one has the smallest  $\det\Lambda$ ? (this lattice is unique up to rotation). Can you guess which 3-dimensional lattice with  $\lambda_1(\Lambda)=1$  has the smallest  $\det\Lambda$ ? (no proof necessary for this)

## 2nd Bar-Ilan Winter School on Cryptography Lattice-Based Cryptography and Applications: Day 1 Assignments

8 Prove that decision-LWE with multiple independent secrets is no easier than LWE with a single secret. More formally, show that distinguishing independent tuples

$$(\mathbf{a} \leftarrow \mathbb{Z}_q^n, b_1 = \langle \mathbf{a}, \mathbf{s}_1 \rangle + e_1, \dots, b_w = \langle \mathbf{a}, \mathbf{s}_w \rangle + e_w)$$

from uniformly random, where w = poly(n) is arbitrary, the secrets  $\mathbf{s}_j$  are drawn independently from any (efficiently sampleable) distribution D, and the error terms  $e_i$  are drawn independently from any (efficiently sampleable) distribution  $\chi$ , is no easier than distinguishing independent pairs  $(\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + e)$  from uniform, where  $\mathbf{s}$  is drawn from D and the error terms e are drawn from  $\chi$ .

- 9 (a) Prove that for sufficiently large m, the "inhomogeneous" SIS problem of finding a short solution to  $\mathbf{A}\mathbf{x} = \mathbf{u}$ , where both  $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$  and  $\mathbf{u} \in \mathbb{Z}_q^n$  are uniformly random, is no easier than solving the homogeneous SIS problem (of finding a short nonzero solution to  $\mathbf{A}\mathbf{x} = \mathbf{0}$ ). *Hint*: consider the inhomogeneous problem with dimension m' = m 1.
  - (b) Prove the above statement where the matrix A is exactly the same in both problems. *Hint*: use the fact that for  $m \ge Cn \lg q$  where C > 1 is any fixed constant, the pair (A, Ax) is uniformly random when x is drawn uniformly from  $\{0,1\}^m$ , and allow the homogeneous solution to be slightly longer than the inhomogeneous one.
- Prove that if the columns of a parity-check matrix  $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$  generate all of  $\mathbb{Z}_q^n$ , i.e., if  $\mathbf{A} \cdot \mathbb{Z}^m = \mathbb{Z}_q^n$ , then  $\det(\Lambda^{\perp}(\mathbf{A})) = q^n$ . More generally, prove that  $\det(\Lambda^{\perp}(\mathbf{A})) = |G|$ , where G is the subgroup of  $\mathbb{Z}_q^n$  generated by the columns of  $\mathbf{A}$ . *Hint:* use the fact that for an m-dimensional integer lattice  $\Lambda$ ,  $\det(\Lambda) = |\mathbb{Z}^m/\Lambda|$ , the number of distinct integer cosets of  $\Lambda$ .